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Abstract 

In exploratory data analysis and machine learning, partitioning clustering is a frequently used unsupervised 
learning technique for finding the meaningful patterns in numeric datasets. Clustering aims to identify and classify 
the objects or the cases in datasets in practice. The clustering quality or the performance of a clustering algorithm 
is generally evaluated by using the internal validity indices. In this study, an R package named 'fcvalid' is 
introduced for validation of fuzzy and possibilistic clustering results. The package implements a broad collection 
of the internal indices which have been proposed to validate the results of fuzzy clustering algorithms. 
Additionally, the options to compute the generalized and extended versions of the fuzzy internal indices for 
validation of the possibilistic clustering are also included in the package. 

Keywords: internal validity indices, fuzzy clustering, possibilistic clustering, data analysis, R 

fcvalid: Olasılıklı ve Olabilirlikli Bölümleyici Kümelemede Bulanık 
Geçerlilik İndeksleri için Bir R Paketi 

Öz 

Bölümleyici kümeleme, keşifsel veri analizi ve makine öğrenmesinde sayısal veri kümelerindeki anlamlı 
örüntüleri bulmak için yaygın olarak kullanılan denetimsiz öğrenme tekniklerinden biridir. Kümeleme, pratikte 
veri kümesindeki nesneleri veya olguları tanımayı ve sınıflandırmayı amaçlar. Bir kümeleme analizinin kalitesi 
veya bir kümeleme algoritmasının performansı genellikle iç geçerlilik endeksleri kullanılarak değerlendirilir. Bu 
çalışmada, bulanık ve olabilirlikli kümeleme sonuçlarının doğrulanması için 'fcvalid' adında bir R paketinin 
işlevleri tanıtılmaktadır. Paket, bulanık kümeleme algoritmalarının sonuçlarını doğrulamak için önerilen çok 
sayıda iç endeksin uygulamasını içermektedir. Ayrıca, olabilirlikli kümelemenin doğrulanması için bulanık iç 
endekslerin genelleştirilmiş ve genişletilmiş sürümlerini hesaplama seçenekleri de pakete dâhil edilmiştir. 

Anahtar Kelimeler: iç geçerlilik endeksleri, bulanık kümeleme, olabilirlikli kümeleme, veri analizi, R 

1. Introduction 

Clustering is one of the frequently used unsupervised learning techniques to explore the meaningful 
substructures or patterns in examined datasets. The objective of clustering is to divide a dataset into c 
subsets by using a clustering algorithm. As a result of clustering, similar set of data points are brought 
together to form groups or classes so-called clusters. In the related literature, numerous clustering 
algorithms have been introduced using different approaches to divide a dataset into subsets. These 
algorithms can primarily be categorized as the hierarchical and the non-hierarchical (or flat) clustering 
algorithms. The non-hierarchical algorithms can also be further classified into the partitioning 
algorithms, the density-based algorithms, the grid-based algorithms and the model-based algorithms.  

As the subject of this study, the partitioning clustering algorithms assign data points into one of c 
clusters, a predefined number of clusters. Then, they iteratively reallocate data points to reach a good 
quality of clustering result. According to the constraints to define membership degrees of data points to 
clusters, the partitioning clustering algorithms can be probabilistic, possibilistic and combined version 
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of probabilistic and possibilistic ones. Further they can be hard and soft in regard of expression of the 
membership degrees of data points. The well-known K-means algorithm and its successors such as K-
medoids PAM, CLARA etc. are the examples of probabilistic partitioning algorithms produce hard 
clustering results. Here, the term "hard" means that a data point can be a member of only one cluster. 
But, in reality, some data points can be in an equidistant location to the centres of two or more clusters 
in a dataset. So they should be member of several clusters with some degrees of membership. The 
algorithms assigning such fuzzy points to more than one clusters with varying membership degrees are 
called "fuzzy" or "soft" algorithms.  

Fuzzy C-Means Clustering (FCM) algorithm [1] and its modifications which have been developed later 
are the well-known examples of soft probabilistic partitioning algorithms. However it is sensitive to 
outliers in datasets. FCM has been the primary algorithm for fuzzy clustering in numerous applications. 
Krishnapuram and Keller [2-3] developed Possibilistic C-Means (PCM) algorithm. They proposed to 
relax the probabilistic constraint of FCM in order to fix the outliers problem with FCM. However, if the 
algorithm poorly initialized, PCM can produce coincident clusters Later, the mixed algorithms have 
been proposed by combining FCM and PCM to overcome the issues with FCM and PCM algorithms. 
The algorithm Fuzzy Possibilistic C-Means (FPCM) [4] was one of the earlier examples of this kind of 
algorithms. It has been revealed that FPCM algorithm has the row sum constraints problem for the 
probabilistic part of its objective function. For this reason, Pal et al [5] proposed Possibilistic Fuzzy C-
Means (PFCM) to solve the above mentioned problems with FCM, PCM and FPCM. As another 
algorithm, Possibilistic Clustering Algorithm (PCA) was developed to improve FCM and PCM [6]. 
Recently, as an improved version of PCA, Wu et al [7] introduced Unsupervised Possibilistic Clustering 
(UPFC) algorithm in order to eliminate the problems such as noise sensitivity and coincident clusters. 
UPFC has also the advantage that it does not require an FCM initialization for possibilistic part of the 
clustering.   

In partitioning clustering, be either probabilistic or possibilistic, a partitioning task performed with the 
actual number of clusters in an examined dataset or at least a close value to it, results with a good quality 
of clustering. Hence, in order to ensure the quality of a clustering analysis, its result should be validated 
by using the internal fuzzy validity indices. Most of the fuzzy indices have been proposed for validation 
of the results of the basic FCM algorithm and its successor that can produce fuzzy membership degrees 
only [8-11]. So, the fuzzy internal indices cannot directly used in validating the possibilistic results. 
Since various variants of FCM and PCM such as PFCM and UPFC compute both probabilistic 
membership degrees and possibilistic typicality degrees, the extended and generalized validity indices 
are needed to simultaneously evaluate the probabilistic and possibilistic clustering results. 

As stated by Jain and Dubes [12], the validation of clustering results is the most difficult and deterrent 
task in cluster analysis. Therefore, while there is a need for development of more effective indices, there 
is also a strong need for their implementations. Although the availability of some software components 
and stand-alone tools to be used in fuzzy clustering validation, most of them lack the options that 
validate possibilistic clustering results. Additionally, most of existing tools only serves a limited number 
of validity indices for evaluating the result of fuzzy clustering. Therefore, in this study, an R package 
named 'fcvalid' is introduced as a useful tool to be used for validating the clustering results from FCM, 
PCM, FPCM, PFCM, UPFC and the other fuzzy and possibilistic clustering algorithms. 

2. Probabilistic and Possibilistic Partitioning Clustering Algorithms 

In this study, FCM, PCM and UPFC were used as the representatives of probabilistic, possibilistic and 
combined algorithms to test the functions of internal validity indices. In this section, a compact 
motivation is given to introduce these algorithms. Let 𝑽𝑽 = {𝒗𝒗1,𝒗𝒗2, … ,𝒗𝒗𝑐𝑐} be a prototypes matrix for the 
cluster centres in dataset 𝑿𝑿 = {𝒙𝒙1,𝒙𝒙2, … , 𝒙𝒙𝑛𝑛} to be partitioned. Here, p is the number of variables or 
fetaures, c is the number of partitions, and n is the number of data points. Bezdek's original FCM 
algorithm [1] uses the objective function in Equation 1. 
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𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹(𝑿𝑿;  𝑼𝑼,𝑽𝑽) =  ��𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚
𝑛𝑛

𝑖𝑖=1

𝑐𝑐

𝑖𝑖=1

𝑑𝑑𝑖𝑖𝑖𝑖𝑨𝑨2  (1) 

Although the classical K-means algorithm works with squared distances, the objective function of FCM 
uses weighted squared distances. In the objective function in Equation 1, a fuzzy partititon of X is given 
with the membership matrix U of n×c dimension. 

𝑼𝑼 = �𝑢𝑢𝑖𝑖𝑖𝑖� ∈ 𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹 (2) 

In Equation 2, uij is the membership degree of xj to the cluster i. So, the column i in U includes the 
membership degrees of n data points to the cluster i. In Equation 3, V is a cluster prototypes matrix.  

𝑽𝑽 = [𝒗𝒗1,𝒗𝒗2, … ,𝒗𝒗𝑐𝑐], 𝒗𝒗𝑖𝑖 ∈ ℝ𝑝𝑝 (3) 

In Equation 1 above, 𝑑𝑑𝑖𝑖𝑖𝑖𝑨𝑨2  is the distance between the center of the cluster i and the data point j. As seen 
in Equation 4, it is calculated as a squared inner-product distance norm. 

𝑑𝑑𝑖𝑖𝑖𝑖𝑨𝑨2 = �𝒙𝒙𝑖𝑖 − 𝒗𝒗𝑖𝑖�𝑨𝑨
2 = (𝒙𝒙𝑖𝑖 − 𝒗𝒗𝑖𝑖)𝑇𝑇𝑨𝑨(𝒙𝒙𝑖𝑖 − 𝒗𝒗𝑖𝑖)  (4) 

In Equation 4, the matrix A is symmetric and positive norm matrix. When the matrix A equals the unit 
matrix I, 𝑑𝑑𝑖𝑖𝑖𝑖𝑨𝑨2  is computed in squared Euclidean norm. In Equation 1, m is a weighting exponent which 
is set to a real number greater than 1.If 𝑚𝑚 goes to 1 clustering becomes crisper.  On the other hand, as it 
approaches infinity, clustering becomes more fuzzy. The exponent value is generally set to 2 for many 
applications. The constraints of the objective function of FCM are given in Equation 5.  

𝑢𝑢𝑖𝑖𝑖𝑖 ∈ [0,1],∀𝑖𝑖, 𝑗𝑗  ;  �𝑢𝑢𝑖𝑖𝑖𝑖 = 1,∀𝑗𝑗
𝑐𝑐

𝑖𝑖=1

 ;   0 <  �𝑢𝑢𝑖𝑖𝑖𝑖 < 𝑛𝑛 ,∀𝑖𝑖
𝑛𝑛

𝑖𝑖=1

  (5) 

FCM is an iterative algorithm whose details are given below.  
1. Initialize the matrices 𝑼𝑼 and 𝑽𝑽. 
2. Update the matrix 𝑽𝑽 with Equation 6.  

𝒗𝒗𝑖𝑖 =
∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛
𝑖𝑖=1

 ;  ∀𝑖𝑖  (6) 

3. Update the matrix 𝑼𝑼 with Equation 7. 

𝑢𝑢𝑖𝑖𝑖𝑖 = ���𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖/𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖�
2/(𝑚𝑚−1)

𝑐𝑐

𝑖𝑖=1

�
−1

;  ∀𝑗𝑗, 𝑘𝑘  (7) 

4. If �𝑼𝑼(𝑟𝑟) −𝑼𝑼(𝑟𝑟−1)� < 𝜀𝜀 or r > rmax then stop else go to the step 2. 

As seen the algorithm above, FCM updates the matrices U and V with Equation 6 and Equation 
7 at each iteration step. It stops if the number of iterations (r)  is greater than a user-defined value for 
maximum number of iterations (rmax). It also stops when the difference between the sums of objective 
function in two successive iteration steps is less than a user-defined convergence value (𝜀𝜀).  

Possibilistic C-Means (PCM) introduced by Krishnapuram and Keller [2-3] is the first possibilistic 
algorithm that solves the FCM's problem because of outlier values by omitting the row sum constraint 
in Equation 5. With PCM algorithm, the data points closer to the cluster centers are evaluated to be 
"typical" members whereas the data points away from the cluster centers are considered as "atypical" 
members of the clusters in a dataset. The typicality degrees obtained with PCM range from 0 to 1. A 
data point having zero and near zero typicality degree is a typical member of a cluster, while those close 
to one can be considered noise. The objective function of PCM is formulated as given in Equation 8. 
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𝐽𝐽𝑃𝑃𝐹𝐹𝐹𝐹(𝑋𝑋;𝑇𝑇,𝑉𝑉) = � � 𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚 𝑑𝑑2�𝒙𝒙𝑖𝑖,𝒗𝒗𝑖𝑖� + � 𝜂𝜂𝑖𝑖� (1 − 𝑡𝑡𝑖𝑖𝑖𝑖)𝑚𝑚
𝑛𝑛

𝑖𝑖=1

𝑐𝑐

𝑖𝑖=1

𝑐𝑐

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
 (8) 

The row sum constraint of FCM in Equation 5 is not taken into account as the constraint of PCM 
objective function as seen in Equation 9. 

𝜂𝜂𝑖𝑖 > 0;  ∀𝑖𝑖 , 𝑡𝑡𝑖𝑖𝑖𝑖 ∈ [0, 1];  ∀𝑖𝑖, 𝑗𝑗 (9) 

In Equation 8, 𝑡𝑡𝑖𝑖𝑖𝑖 is the typicality degree of 𝒙𝒙𝑖𝑖 to the cluster i. For a good start of PCM, Krishnapuram 
and Keller [3] suggested to use a clustering configuration obtained from an earlier FCM run. In Equation 
8,  𝜂𝜂𝑖𝑖 is a penalty term trying to make 𝑡𝑡𝑖𝑖𝑖𝑖 close to 1. It is specifically calculated for each of the clusters 
in datasets as seen in Equation 10. 

𝜂𝜂𝑖𝑖 = 𝐾𝐾� 𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚 𝑑𝑑2�𝒙𝒙𝑖𝑖,𝒗𝒗𝑖𝑖� 
𝑛𝑛

𝑖𝑖=1
 � 𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚

𝑛𝑛

𝑖𝑖=1
�  ;  𝐾𝐾 > 0  (10) 

In Equation 10, K is a positive number which is generally defined as 1. If ηi is obtained as 0 with 
Equation 10, PCM gives the same partitioning result with FCM. The updating equations in PCM 
algorithm are given in Equations 11 and 12. 

𝑡𝑡𝑖𝑖𝑖𝑖 = �1 + �
𝑑𝑑2�𝒙𝒙𝑖𝑖, 𝒗𝒗𝑖𝑖�

𝜂𝜂𝑖𝑖
�
1/(𝑚𝑚−1)

�

−1

;    ∀𝑖𝑖, 𝑗𝑗 (11) 

𝒗𝒗𝑖𝑖 =
∑ 𝑡𝑡𝑖𝑖𝑖𝑖  

𝑚𝑚 𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛
𝑖𝑖=1

;    ∀𝑖𝑖, 𝑗𝑗 (12) 

When compared to FCM, for a dataset containing the outliers, PCM is considered more efficient in 
calculation of the cluster centers during partitioning. But, unfortunately, since it is sensitive to the initial 
values input for starting the prototype matrix V. When the initial values in this matrix are started close 
to each other, the overlapping clusters may be obtained from a PCM run. As the objective function in 
Equation 8 approaches a local minimum only some of the centres will be overlapped but PCM has also 
the other problems. Yang and Wu [6] proposed a possibilistic clustering algorithm named Possibilistic 
Clustering Algorithm (PCA) which has also the coinciding clusters defect like PCM. 

Wu et al [7] proposed a clustering algorithm named Unsupervised Possibilistic Fuzzy C-Means (UPFC) 
in order to eliminate the disadvantages of FCM and PCA. Unlike PCM, UPFC needs not to the matrix 
U returned by a previous FCM analysis since it does not use the sample variances of the features as seen 
in Equation 13. This results with a remarkable decrease the execution time in cluster analysis. 

𝐽𝐽𝑈𝑈𝑃𝑃𝐹𝐹𝐹𝐹(𝑿𝑿;𝑼𝑼,𝑽𝑽) = � � (𝑎𝑎 𝑢𝑢𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹
𝑚𝑚 + 𝑏𝑏 𝑢𝑢𝑖𝑖𝑖𝑖,𝑃𝑃𝐹𝐹𝑖𝑖

𝜂𝜂 ) 𝑑𝑑2�𝒙𝒙𝑖𝑖,𝒗𝒗𝑖𝑖�
𝑐𝑐

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

+  
𝛽𝛽

𝑛𝑛2√𝑐𝑐
� � (𝑢𝑢𝑖𝑖𝑖𝑖,𝑃𝑃𝐹𝐹𝑖𝑖

𝜂𝜂 𝑙𝑙𝑙𝑙𝑙𝑙 𝑢𝑢𝑖𝑖𝑖𝑖,𝑃𝑃𝐹𝐹𝑖𝑖
𝜂𝜂 −  𝑢𝑢𝑖𝑖𝑖𝑖,𝑃𝑃𝐹𝐹𝑖𝑖

𝜂𝜂 )
𝑐𝑐

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
 

(13) 

The constraints of the objective function of UPFC are given in Equation 14.  

�𝑢𝑢𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹 = 1 ; ∀𝑗𝑗
𝑐𝑐

𝑖𝑖=1

;  0 ≤  𝑢𝑢𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 1;  𝑎𝑎 >  0;  𝑏𝑏 >  0;  𝑚𝑚 >  1;  𝜂𝜂 >  1 (14) 

As a recent represantive of mixed c-means algortihms, UPFC computes both membership and typicality 
degrees simultaneously. In Equation 13, 𝑢𝑢𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹 and 𝑢𝑢𝑖𝑖𝑖𝑖,𝑃𝑃𝐹𝐹𝑖𝑖 are respectively the fuzzy membership and 
typicality degrees of 𝒙𝒙𝑖𝑖 to the cluster i. The parameters m and η are respectively the exponents for 
fuzziness and typicality, which are set to 2 in general. The values a and b in Equation 13 are the 
weighting coefficients, which defines the relative importance of fuzziness and typicality in the objective 
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functions of UPFC.  If b is zero, the objective functions of UPFC and FCM are equal to each other. 
Generally, these coefficients are defined equal to 1. 

In order to minimize the objective function of UPFC, the membership degrees (𝑢𝑢𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹) and typicalities 
(𝑢𝑢𝑖𝑖𝑖𝑖,𝑃𝑃𝐹𝐹𝑖𝑖) are updated as in Equation 15 and Equation 16, respectively. 

𝑢𝑢𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹 = �� �
𝑑𝑑�𝒙𝒙𝑖𝑖 ,𝒗𝒗𝑖𝑖�
𝑑𝑑�𝒙𝒙𝑖𝑖 ,𝒗𝒗𝑖𝑖�

�
2/( 𝑚𝑚−1)𝑐𝑐

𝑖𝑖=1
�

−1

     ∀𝑖𝑖, 𝑗𝑗 (15) 

𝑢𝑢𝑖𝑖𝑖𝑖,𝑃𝑃𝐹𝐹𝑖𝑖 =  𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑏𝑏 𝑛𝑛 √𝑐𝑐 𝑑𝑑2�𝒙𝒙𝑖𝑖,𝒗𝒗𝑖𝑖�

𝛽𝛽
�     ∀𝑖𝑖, 𝑗𝑗 (16) 

In Equation 16, β is a variance measure, which is computed using the distances between the overall 
mean and data points as shown in Equation 17. 

𝛽𝛽 =
1
𝑛𝑛
�  𝑑𝑑2(𝒙𝒙𝑖𝑖 , �̅�𝑒) ; 

𝑛𝑛

𝑖𝑖=1
�̅�𝑒 =

1
𝑛𝑛
� 𝒙𝒙𝑖𝑖

𝑛𝑛

𝑖𝑖=1
  (17) 

Through the iterations the cluster centers are updated by using both 𝑢𝑢𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹 and 𝑢𝑢𝑖𝑖𝑖𝑖,𝑃𝑃𝐹𝐹𝑖𝑖 as formulated 
in Equation 18. 

𝒗𝒗𝑖𝑖 =
∑ (𝑎𝑎 𝑢𝑢𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹

𝑚𝑚 +𝑛𝑛
𝑖𝑖=1  𝑏𝑏 𝑢𝑢𝑖𝑖𝑖𝑖,𝑃𝑃𝐹𝐹𝑖𝑖

𝜂𝜂 )  𝒙𝒙𝑖𝑖
∑ (𝑎𝑎 𝑢𝑢𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝐹𝐹

𝑚𝑚 +𝑛𝑛
𝑖𝑖=1  𝑏𝑏 𝑢𝑢𝑖𝑖𝑖𝑖,𝑃𝑃𝐹𝐹𝑖𝑖

𝜂𝜂 )  
,     ∀𝑖𝑖 (18) 

3. Internal Validity Indices for Fuzzy Clustering  

The internal indices are often used to assess the clustering quality because clustering is an unsupervised 
learning technique. That is, it is used to determine the clustering pattern in a dataset in which the 
clustering structure is unknown. Therefore, internal validation quantifies the quality of a clustering 
relying only on information intrinsic to the examined dataset. It means that the internal indices help to 
determine the quality of a clustering without respect to any external information. 

In the literature, various internal validity indices have been proposed for validating clustering analysis. 
The detailed information of the internal indices is out of the scope of this study but the details about 
them can be found in the package manual of 'fcvalid' as well as in some thorough surveys [9-11]. Also 
the logic behind the indices can be found in the original articles, cited in Table 1. The package 'fcvalid' 
includes the functions of the internal indices, which are listed in chronological order in Table 1.   

Table 1 Internal Validity Indices Implemented in the Package 'fcvalid' 
Index Description 

PC Partition Coefficient [13] 
PE Partition Entropy [13] 

APD Average Partition Density [14] 
FHV Fuzzy Hyper Volume [14] 
FS Fukuyama-Sugeno Index [15] 
XB Xie-Beni Index [16] 

AWCD Average Within-Cluster Distance [17] 
K Kwon Index [18] 
CS Compactness / Separation Ratio [19] 

MPC Modified Partition Coefficient [20] 
CWB Composed Within and Between Scattering Index [21] 

SC Separation/Compactness Ratio [22] 
CL Chen-Linkens Index [23] 
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Table 1 Internal Validity Indices Implemented in the Package 'fcvalid' (cont.) 
PBMF Pakhira-Bandyopadhyay-Maulik Index [24] 
TSS Tang, Sun & Sun Index [25] 
FSIL Fuzzy Silhouette Index [26] 
MCD Minimum Centroid Distance [27] 

KPBM Modified Kernel Form of Pakhira-Bandyopadhyay-Maulik Index [28] 

The formulae of the internal validity indices implemented in the package 'fcvalid' are given in Table 2. 
As can be seen from the formulae in Table 2, the indices differ how they measure the compactness 
(within-cluster variability) and the separability (between-clusters distance). Since clustering aims to 
maximize compactness and separability, the validity indices try to measure the compactness and 
separation of clusters after a clustering session. Compactness is a measure how the data points in a 
cluster are interrelated or adherent to each other. Separation reveals how much a cluster is separated or 
far from each other. So, the low compactness and high degree of separation indicate a good quality of 
clustering. Secondly, the internal indices differ which type of information they use in their formulae. 
However, the majority of them use both the matrices U and V in addition to the original dataset X, a few 
of them use only the matrix U. 

Table 2 Formulae of the Internal Validity Indices Implemented in the Package 'fcvalid' 
Index Formula Op.V. 

PC 𝐼𝐼𝑃𝑃𝐹𝐹(𝑼𝑼) = 1
𝑛𝑛
�∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚𝑛𝑛

𝑖𝑖=1
𝑐𝑐
𝑖𝑖=1 �   max 

MPC 𝐼𝐼𝐹𝐹𝑃𝑃𝐹𝐹(𝑼𝑼) = 1 − 1
𝑐𝑐−1

(1 − 𝐼𝐼𝑃𝑃𝐹𝐹)  max 

PE 𝐼𝐼𝑃𝑃𝑃𝑃(𝑼𝑼) = 1
𝑛𝑛
�∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖  𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏(𝑢𝑢𝑖𝑖𝑖𝑖)𝑛𝑛

𝑖𝑖=1
𝑐𝑐
𝑖𝑖=1 �  min 

CL 𝐼𝐼𝐹𝐹𝐶𝐶(𝑼𝑼) = 1
𝑛𝑛
∑ max

1≤𝑖𝑖≤𝑐𝑐
�𝑢𝑢𝑖𝑖𝑖𝑖� −

1
∑ 𝑖𝑖𝑐𝑐−1
𝑖𝑖=1

∑ ∑ �1
𝑛𝑛
∑ min (𝑢𝑢𝑖𝑖𝑖𝑖,𝑢𝑢𝑙𝑙𝑖𝑖)𝑛𝑛
𝑙𝑙=1 �𝑐𝑐

𝑙𝑙=𝑖𝑖+1
𝑐𝑐−1
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1   max 

FS 𝐼𝐼𝐹𝐹𝐹𝐹(𝑿𝑿;𝑽𝑽,𝑼𝑼) = ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚�𝒙𝒙𝑖𝑖 − 𝒗𝒗𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1
𝑐𝑐
𝑖𝑖=1 − ∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚 �𝒗𝒗𝑖𝑖 −

1
𝑐𝑐
∑ 𝒗𝒗𝑖𝑖𝑐𝑐
𝑖𝑖=1 �

2𝑛𝑛
𝑖𝑖=1

𝑐𝑐
𝑖𝑖=1   min 

XB 
𝐼𝐼𝑋𝑋𝑋𝑋(𝑿𝑿;𝑽𝑽,𝑼𝑼) =

∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖
2 �𝒙𝒙𝑖𝑖−𝒗𝒗𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

𝑐𝑐
𝑖𝑖=1

𝑛𝑛 � min
1≤𝑖𝑖,𝑖𝑖≤𝑐𝑐; 𝑖𝑖≠𝑖𝑖{‖𝒗𝒗𝑖𝑖−𝒗𝒗𝑘𝑘‖2}�

  
min 

K 
𝐼𝐼𝐾𝐾(𝑿𝑿;𝑽𝑽,𝑼𝑼) =

∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖
2 �𝒙𝒙𝑖𝑖−𝒗𝒗𝑖𝑖�

2+ 1𝑐𝑐 ∑ �𝑣𝑣𝑖𝑖−
1
𝑛𝑛∑ 𝒙𝒙𝑙𝑙𝑛𝑛

𝑙𝑙=1 �
2𝑐𝑐

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

𝑐𝑐
𝑖𝑖=1

min
𝑖𝑖≠𝑖𝑖{‖𝒗𝒗𝑖𝑖−𝒗𝒗𝑘𝑘‖2}

    
min 

TSS 
𝐼𝐼𝑇𝑇𝐹𝐹𝐹𝐹(𝑿𝑿;𝑽𝑽,𝑼𝑼) =

∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖
2 �𝒙𝒙𝑖𝑖−𝒗𝒗𝑖𝑖�

2+ 1
𝑐𝑐 (𝑐𝑐−1)∑ �𝑣𝑣𝑖𝑖−

1
𝑛𝑛∑ 𝒙𝒙𝑙𝑙𝑛𝑛

𝑙𝑙=1 �
2𝑐𝑐

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

𝑐𝑐
𝑖𝑖=1

min
1≤𝑖𝑖≤𝑐𝑐; 𝑖𝑖≠𝑖𝑖{‖𝒗𝒗𝑖𝑖−𝒗𝒗𝑘𝑘‖2}+1𝑐𝑐

   
min 

PBMF 
𝐼𝐼𝑃𝑃𝑋𝑋𝐹𝐹𝐹𝐹(𝑿𝑿;𝑽𝑽,𝑼𝑼) = �1

𝑐𝑐
 

∑ 𝑢𝑢1𝑖𝑖�𝒙𝒙𝑖𝑖−𝒗𝒗��𝑛𝑛
𝑖𝑖=1

∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖 �𝒙𝒙𝑖𝑖−𝒗𝒗𝑖𝑖�𝑛𝑛
𝑖𝑖=1

𝑐𝑐
𝑖𝑖=1

 max
1≤𝑖𝑖,𝑖𝑖≤,𝑐𝑐; 𝑖𝑖≠𝑖𝑖

‖𝒗𝒗𝑖𝑖 − 𝒗𝒗𝑖𝑖‖�
𝑝𝑝

   
max 

KPBM 𝐼𝐼𝐾𝐾𝑃𝑃𝑋𝑋𝐹𝐹(𝑿𝑿;𝑽𝑽,𝑼𝑼) = 1
𝑐𝑐

1

∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑚𝑚�𝒙𝒙𝑖𝑖−𝒗𝒗𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

𝑐𝑐
𝑖𝑖=1

max
𝑖𝑖,𝑖𝑖=1,..,𝑐𝑐; 𝑖𝑖≠𝑖𝑖

‖𝒗𝒗𝑖𝑖 − 𝒗𝒗𝑖𝑖‖2  max 

FHV 
𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹(𝑿𝑿;𝑽𝑽,𝑼𝑼) = �∑ 𝑑𝑑𝑒𝑒𝑡𝑡 �

∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑚𝑚(𝑥𝑥𝑖𝑖−𝒗𝒗𝑖𝑖)𝑇𝑇(𝑥𝑥𝑖𝑖−𝒗𝒗𝑖𝑖)𝑛𝑛

𝑖𝑖=1
∑ 𝑢𝑢𝑖𝑖𝑖𝑖

𝑚𝑚𝑛𝑛
𝑖𝑖=1

�𝑐𝑐
𝑖𝑖=1  �

1/2
  

min 

FSIL 
𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶(𝑿𝑿;𝑽𝑽,𝑼𝑼) =

∑ �𝑢𝑢𝑖𝑖𝑖𝑖−𝑢𝑢𝑖𝑖𝑖𝑖′�
𝛼𝛼
� 𝑏𝑏𝑖𝑖−𝑎𝑎𝑖𝑖
max (𝑏𝑏𝑖𝑖, 𝑎𝑎𝑖𝑖)

�𝑛𝑛
𝑖𝑖=1

∑ �𝑢𝑢𝑖𝑖𝑖𝑖−𝑢𝑢𝑖𝑖𝑖𝑖′�
𝛼𝛼𝑛𝑛

𝑖𝑖=1

  
min 

APD 𝐼𝐼𝑖𝑖𝑃𝑃𝐴𝐴(𝑿𝑿;𝑽𝑽,𝑼𝑼) = 1
𝑐𝑐
∑ �

∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑥𝑥∈𝑿𝑿𝑖𝑖

𝒗𝒗𝑖𝑖
�𝑐𝑐

𝑖𝑖=1   max 
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Table 2 Formulae of the Internal Validity Indices Implemented in the Package 'fcvalid' (cont.) 
CS 𝐼𝐼𝐹𝐹𝐹𝐹(𝑿𝑿;𝑽𝑽,𝑼𝑼) = ∑

∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑚𝑚𝑑𝑑2(𝒙𝒙𝑖𝑖,𝒗𝒗𝑖𝑖)𝑛𝑛

𝑖𝑖=1
∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 ∑ ‖𝒗𝒗𝑖𝑖−𝒗𝒗𝑙𝑙‖2𝑐𝑐

𝑙𝑙=1

𝑐𝑐
𝑖𝑖=1   min 

CWB 𝐼𝐼𝐹𝐹𝐶𝐶𝑋𝑋(𝑿𝑿;𝑽𝑽,𝑼𝑼) = α Scat(c)  +  Dis(c)  

𝑆𝑆𝑐𝑐𝑎𝑎𝑡𝑡(𝑐𝑐) =
1
𝑐𝑐 ∑ ||�∑ 𝑢𝑢𝑖𝑖𝑖𝑖�𝒙𝒙𝑖𝑖−𝒗𝒗𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1 �/𝑛𝑛||𝑐𝑐

𝑖𝑖=1

�𝑿𝑿𝑇𝑇𝑿𝑿
  

𝐷𝐷𝑖𝑖𝐷𝐷(𝑐𝑐) = max (‖𝒗𝒗𝑖𝑖−𝒗𝒗𝑘𝑘‖)
min (‖𝒗𝒗𝑖𝑖−𝒗𝒗𝑘𝑘‖)

∑ (∑ ‖𝒗𝒗𝑖𝑖 − 𝒗𝒗𝑖𝑖‖𝑐𝑐
𝑖𝑖=1 )−1𝑐𝑐

𝑖𝑖=1    

min 

SC 
𝐼𝐼𝐹𝐹𝐹𝐹(𝑿𝑿;𝑽𝑽,𝑼𝑼) = ∑ ‖𝒗𝒗𝑖𝑖−𝑣𝑣�‖2/𝑐𝑐𝑐𝑐

𝑖𝑖=1

∑ �∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑚𝑚�𝒙𝒙𝑖𝑖−𝒗𝒗𝑖𝑖�

2/∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 �𝑐𝑐

𝑖𝑖=1
−

∑ ∑ �∑ �𝑚𝑚𝑖𝑖𝑛𝑛(𝑢𝑢𝑖𝑖𝑖𝑖,𝑢𝑢𝑖𝑖𝑘𝑘)2/𝑛𝑛𝑖𝑖+𝑘𝑘�𝑛𝑛
𝑖𝑖=1 �𝑐𝑐−𝑖𝑖

𝑘𝑘=1
𝑐𝑐−1
𝑖𝑖=1

∑ �𝑚𝑚𝑚𝑚𝑥𝑥(𝑢𝑢𝑖𝑖𝑖𝑖
2)/∑ max (𝑢𝑢𝑖𝑖𝑖𝑖)𝑛𝑛

𝑖𝑖=1 �𝑛𝑛
𝑖𝑖=1

  
max 

AWCD 
𝐼𝐼𝑖𝑖𝐶𝐶𝐹𝐹𝐴𝐴(𝑿𝑿;𝑽𝑽,𝑼𝑼) = 1

𝑛𝑛 𝑐𝑐

∑ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑚𝑚�𝒙𝒙𝑖𝑖−𝒗𝒗𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1

𝑐𝑐
𝑖𝑖=1

∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑚𝑚𝑛𝑛

𝑖𝑖=1
  

min 

MCD 𝐼𝐼𝐹𝐹𝐹𝐹𝐴𝐴(𝑽𝑽) = min
𝑖𝑖,𝑖𝑖=1,..,𝑐𝑐; 𝑖𝑖≠𝑖𝑖

‖𝒗𝒗𝑖𝑖 − 𝒗𝒗𝑖𝑖‖2  max 

In the formulae in Table 2: 

vi : prototype (centres) vector for cluster i,  
xj : feature vector for data point j,  
d2(xj, vi) : Euclidean distances between prototype vi and the data point xj,  
uij : fuzzy membership degree of data point j to the cluster i, 
m : weighthing exponent for fuzziness, 
c : an integer defining the number of clusters to be used in clustering. 

A possibilistic algorithm, i.e. PCM, produces only typicality degrees but not membership degrees. Since 
PCM is free for the row sum constraint in Equation 5, the fuzzy indices in Table 2 become completely 
useless and do not work properly for typicality degrees. In a pioneer study to validate possibilistic 
results, Yang and Wu [6] proposed an approach based on normalization of typicality used with the 
existing fuzzy validity indices. 

𝑢𝑢′𝑖𝑖𝑖𝑖 =
𝑡𝑡𝑖𝑖𝑖𝑖

∑ 𝑡𝑡𝑖𝑖𝑖𝑖𝑐𝑐
𝑖𝑖=1

 ;  ∀𝑖𝑖, 𝑗𝑗 (19) 

This technique so-called the generalized index makes the typicality degrees suitable for processing with 
all of the fuzzy internal indices, as demonstrated for the validity index PE in Equation 20. 

𝐺𝐺𝐼𝐼𝑃𝑃𝑃𝑃(𝑼𝑼′) =
∑ ∑ 𝑢𝑢′𝑖𝑖𝑖𝑖  𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏(𝑢𝑢′𝑖𝑖𝑖𝑖)𝑛𝑛

𝑖𝑖=1
𝑐𝑐
𝑖𝑖=1

𝑛𝑛
 (20) 

The use of normalized T values with existing internal indices is an option to validate possibilistic 
clustering results. But other solutions are needed for the results from the mixed c-means algorithms, 
such as PFCM and UPFC that generate both membership and typicality degrees simultaneously. A 
limited number of solutions have been proposed for validation of the results from mixed c-means 
algorithms. For having an idea, here, an example is given for the extended use of XB index in Equation 
21. As exemplified for the index XB in Equation 21, the fuzzy indices are extended by using the element-
wise sum of U and T instead using the matrix U only. The extended versions of the fuzzy validity indices 
have already been introduced in detail in a comparative study by Cebeci et al [29]. 

𝐸𝐸𝐼𝐼𝑋𝑋𝑋𝑋(𝑿𝑿,𝑼𝑼,𝑻𝑻,𝑽𝑽) =
∑ ∑ �𝑢𝑢𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑡𝑡𝑖𝑖𝑖𝑖

𝜂𝜂 ��𝒙𝒙𝑖𝑖 − 𝒗𝒗𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1
𝑐𝑐
𝑖𝑖=1

𝑛𝑛 � min
𝑖𝑖 ≠ 𝑘𝑘{‖𝒗𝒗𝑖𝑖 − 𝒗𝒗𝑖𝑖‖2}�

 (21) 
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4. Demonstration of the Functionality of the Package 'fcvalid' 

The package 'fcvalid' includes the functions which are the implementations of a broad collection of the 
internal indices which are formulated in Table 2 in the previous section.  The names of the functions in 
the package are given in the first column of Table 1. Additionally the package contains two functions 
named as allindexes for listing the values of all of the indices plus the function named ws for 
weighted summation index, which is an ensemble index combining the other indices with certain 
weights. As usual for every R package, the package 'fcvalid' has also a package manual and vignette 
describing its functions with the examples.  

The recent version of the package 'fcvalid' is distributed on Github repository. In order to install the 
package from GitHub, at first the 'devtools' package [30] from CRAN should be installed in the local 
system. Then the package 'fcvalid' is installed by using install_github of devtools package as 
shown in the following code chunk in R environment [31]. 
> if(!require(devtools)) {install.packages('devtools'); library(devtools)} 
> install_github('zcebeci/fcvalid') 

In order to get a compiled version of the vignettes of the package, the package 'fcvalid' alternatively is 
installed by running install_github with build_vignettes argument set to TRUE. For 
rendering of the vignette during installation, the package 'rmarkdown' [31] should also be already 
installed into the local system from CRAN as follows: 
> install.packages('rmarkdown') 

After installation of the package 'fcvalid', it is loaded into R working space using library or 
require as seen below. 
> library(fcvalid) 

In this study, some functionalities of the package is demonstrated with the validation for fuzzy clustering 
on the iris dataset [33], a well-known real dataset consisting of four features ('Sepal.Length', 
'Sepal.Width', 'Petal.Length' and 'Petal.Width')  plus a class variable named 'Species' shows the  natural 
classes of three Iris species in the last column. This four-dimensional dataset contains totally 150 data 
objects, 50 in each class. After loading the dataset into R working space, its last column is removed for 
applying partitioning clustering on it. 
> data(iris) 
> x <- iris[,-5] 
> pairs(x, col=iris[,5]) 

The pairs function in the package stats of R can be used to display the scatterplots between the 
pairs of features in dataset. Figure 1 illustrates the natural cluster structure in iris dataset. This 
pairwise-scatterplots may also be helpful to compare the existing pattern with the clustering structures 
obtained with runs of the partitioning algorithms.  
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Figure 1 Cluster Structure in Iris Dataset 

In R environment, several dozen of R packages are available for almost every kind of clustering 
methods. In this study, since it has many functions for probabilistic and possibilistic clustering, the R 
package 'ppclust' [34] are used to get the outputs from the clustering algorithms in order to test the 
internal indices. If the package 'ppclust has been already installed in the local system, it can be loaded 
to R working space with the commands require or library as follows: 
> library(ppclust) 

The functions fcm, pcm and upfc of the package 'ppclust were used to demonstrate the validation of 
the results of FCM, PCM and UPFC algorithms, respectively. For this purpose, these functions were 
called as follows: 
> resfcm <- fcm(x,centers=3,m=2,nstart=5) 
> respcm <- pcm(x,centers=resfcm$v,memberships=resfcm$u, eta=2,nstart=5) 
> resupfc <- upfc(x,centers=3,m=2,eta=2,nstart=5) 

In all of the function calls above, x denotes the name of data frame. The fuzziness parameter m and the 
typicality parameter eta were set to 2. All of the functions were started 5 times with the nstart 
argument, and the number of clusters centers were set to 3. The clustering results obtained from the 
runs of the functions fcm, pcm and upfc can be displayed with summary function of the ppclust 
package. This function can be called for displaying resfcm, respcm and resupfc, which are the 
cluster objects obtained as the results of the FCM, PCM and UPFC runs in the above examples. 

The cluster structure from a clustering analysis can be visually be inspected by using plotcluster 
function of the 'ppclust' package. 
> plotcluster(resfcm, trans=TRUE) 
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Figure 2 Clusters Found with the FCM Runs on the Dataset Iris for Three Clusters  

In addition to visual inspection, clustering results can be displayed using summary function. In the 
following output a small part of clustering result from the object resfcm is given for as an example.  
> summary(resfcm) 
Summary for 'resfcm' 
Number of data objects:  150  
Number of clusters:  3  
Crisp clustering vector: 
  [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
 [38] 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 [75] 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 3 3 3 3 1 3 3 3 3 
[112] 3 3 1 3 3 3 3 3 1 3 1 3 1 3 3 1 1 3 3 3 3 3 1 3 3 3 3 1 3 3 3 1 3 3 3 1 3 
[149] 3 1 
 
Initial cluster prototypes: 
          Sepal.Length Sepal.Width Petal.Length Petal.Width 
Cluster 1          6.6         2.9          4.6         1.3 
Cluster 2          4.8         3.4          1.6         0.2 
Cluster 3          7.6         3.0          6.6         2.1 
 
Final cluster prototypes: 
          Sepal.Length Sepal.Width Petal.Length Petal.Width 
Cluster 1     5.888932    2.761069     4.363952   1.3973150 
Cluster 2     5.003966    3.414089     1.482816   0.2535463 
Cluster 3     6.775011    3.052382     5.646782   2.0535467 
… 
Certainly, a ppclust cluster object consists of many other components, which are listed by using 
names function of R as follows:   
> names(resfcm) 

 [1] "u"          "v"          "v0"         "d"          "x"          
 [6] "cluster"    "csize"      "sumsqrs"    "k"          "m"          
[11] "iter"       "best.start" "func.val"   "comp.time"  "inpargs"    
[16] "algorithm"  "call"       
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The functions associated with the internal indices in the package 'fcvalid' uses the matrices u, v and x 
in clustering objects returned by the clustering algorithms. In order to validate the clustering results 
obtained in the runs of FCM, PCM and UPFC, the related function of a cluster validity indices can be 
called individually as shown for the indices XB and Kwon in the following code chunk. In the example 
x is name of dataset, u is the matrix of fuzzy membership degrees, v is the matrix of final cluster centres, 
m is the fuzziness amount, and finally tidx is the type of internal index. The default value of tidx is 
"f", stands for fuzzy indices. 
> xb(x=resfcm$x, u=resfcm$u, v=resfcm$v, m=resfcm$m, tidx="f")   
       xb  
0.1369082  
> kwon(x=resfcm$x, u=resfcm$u, v=resfcm$v, m=2, tidx="f")   
    kwon  
21.95462 

Although, the function calls exemplified above can be applied with the results from the other clustering 
packages of R, they are also more practically called for the results from the package ppclust as 
follows: 
> xb(resfcm)   
       xb  
0.1369082  
> kwon(resfcm) 
    kwon  
21.95462 

However, the clustering quality with a couple of interested internal indices can usually be evaluated as 
demonstrated above, the validity measures of all of the indices might also be obtained altogether. For 
this purpose, the function allindexes of the package 'fcvalid' can be used as follows: 
> allindexes(resfcm) 
$pc 
[1] 0.7833975 
$mpc 
[1] 0.6750962 
$pe 
[1] 0.3954916 
$xb 
[1] 0.1369082 
$kwon 
[1] 21.95462 
$tss 
[1] 2.502368 
$fs 
[1] -1732.456 
$pbm 
[1] 33.09688 
$kpbm 
[1] 0.04379026 
$awcd 
[1] 0.5381878 
$cl 
[1] 0.7374719 
$fhv 
[1] 0.04722804 
$apd 
[1] 3275.88 
$sc 
[1] 3.205439 
$si 
[1] 0.8091446 
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$cwb 
[1] 0.1126691 
$cs 
[1] 30.34248 

Since the algorithm UPFC produces both the fuzzy and possibilistic partitions of datasets the internal 
fuzzy validation indices cannot be directly applied to validate clustering results from this algorithm. The 
generalized and extended versions of the internal validity indices can be used for validation of the 
possibilistic clustering results [29]. In the following example, the generalized index values of a UPFC 
run are computed for the indices XB and Kwon. 
> xb(resupfc, tidx="g") 
    xb.g  
0.247465  
> kwon(resupfc, tidx="g") 
  kwon.g  
39.11381 

Alternatively, the extended index values can be computed to validate the fuzzy and possibilistic 
clustering results. An extended index value is obtained by summation of fuzzy and possibilistic 
membership degrees (typicalities) for the algorithms producing both types of partitions. In the package 
fcvalid, the extended index value for an index is calculated by setting the index type argument tidx 
to "e". An extended index values is labeled with an ".e" postfix in the validation results. The following 
code example demonstrates how to obtain the extended values for the indices XB and Kwon. 
> xb(resupfc, tidx="e") 
     xb.e  
0.1613088  
> kwon(resupfc, tidx="e") 
  kwon.e  
50.38669 

Outputs from the functions of 'fcvalid' can be used to compare the performances of several clustering 
algorithms, as well as to determine the optimal performance when an algorithm is run with different 
parameters. It can even be used to compare the efficiencies of the internal validity indices in finding a 
previously known number of clusters for a given dataset. In order to decide to an optimal clustering 
result or to find an optimal value of number of clusters in datasets, cluster analysis should be repeated 
for a range of number of clusters. In the code chunk below, FCM algorithm is run for five different 
levels of c (range from 2 to 6). The index values obtained by using the matrices U and V from the run, 
which has the smallest objective function value among the three starts of FCM is seen as the output of 
after the code chunk. 
> options(scipen=100, digits=3, width=120) 
> c1 <- 2 
> c2 <- 5 
> indnames <- c("PC","MPC","PE","XB","K", "TSS", "CL", "FS",  
+   "PBMF","FSIL","FHV", "APD") 
> indvals <- matrix(ncol=length(indnames), nrow=c2-c1+1) 
> colnames(indvals) <- indnames  
> rownames(indvals) <- paste0("c=",c1:c2)  
> i <- 1 
> for(c in c1:c2){ 
+  resfcm <- fcm(x=x, centers=c, nstart=3) 
+  indvals[i,1] <- pc(resfcm) 
+  indvals[i,2] <- mpc(resfcm) 
+  indvals[i,3] <- pe(resfcm) 
+  indvals[i,4] <- xb(resfcm) 
+  indvals[i,5] <- kwon(resfcm) 
+  indvals[i,6] <- tss(resfcm) 
+  indvals[i,7] <- cl(resfcm) 
+  indvals[i,8] <- fs(resfcm) 



Sakarya University Journal of Computer and Information Sciences 
 

Zeynel Cebeci 

23 
 

+  indvals[i,9] <- pbm(resfcm) 
+  indvals[i,10] <- si(resfcm)$sif 
+  indvals[i,11] <- fhv(resfcm) 
+  indvals[i,12] <- apd(resfcm) 
+  i <- i+1 
+ } 
> print(t(indvals)) 
 
            c=2        c=3        c=4        c=5 
PC       0.8922     0.7834     0.7068     0.6658 
MPC      0.7844     0.6751     0.6091     0.5822 
PE       0.1957     0.3955     0.5611     0.6751 
XB       0.0542     0.1369     0.1953     0.2277 
K        8.3762    21.9546    31.9776    38.2385 
TSS      7.8778     5.4255    24.9135    24.5540 
CL       0.8657     0.7375     0.6560     0.6202 
FS   -1864.9751 -1732.4557 -1607.7954 -1581.0464 
PBMF    50.4147    63.7654    68.9058    51.4233 
FSIL     0.8845     0.8091     0.7704     0.7632 
FHV      0.0357     0.0472     0.0657     0.0906 
APD   5220.8579  4012.6392  3119.0546  2588.1829 

The index values in each row of the matrix above are checked to find the optimal number of clusters. 
The number of cluster for the value fits to the lower or upper limits for an index, which are listed in the 
last column of Table 1, is determined as the optimal number of clusters giving the best clustering 
configuration. These values are marked in bold in the matrix above. For example, since the maximum 
value is 0.8922 for the index PC the optimal number of clusters is determined as 2 (column c=2 in the 
matrix) for this index. According to the results in the matrix of index values, most of the indices proposes 
2 as the optimal number of clusters for Iris dataset. There are three classes in iris dataset. But the class 
'setosa' is linearly separable from the other two classes while the classes 'versicolor' and 'virginica' are 
not. Thus most of the internal indices propose the optimal number of clusters as 2 while a few indices 
can propose as 3. For this reason, a result of 3 shows the good performance of the examined internal 
validity index. Although it is not an objective of this study, the results show that only the index TSS was 
discriminated the overlapped clusters while the index PBMF proposed the number of cluster as 4 that is 
overestimation of the actual number of clusters in the iris dataset.  

The computed index values can be visually inspected by using barplots, line graphs or other kinds of 
graphics. In order to visual inspection of the increasing or decreasing trend of the index values, the code 
chunk below plots the line graphs of the computed index values as seen in Figure 3. 
> par(mfrow=c(4,3), mar=c(2,2,1.5,1.5), cex.main=1.2) 
> for(i in 1:length(indnames)){ 
+   plot(0,0, type = "n",   
+ cex.lab=0.8, cex.axis=0.8, cex.main=1.2, cex.sub=0.8,  
+ xlim = c(1, nrow(indvals)),  
+      ylim = c(min(indvals[,i]),max(indvals[,i])),  
+ xaxt='n', xlab="number of clusters", ylab="index value", 
+ main=indnames[i], sub=" ") 
+   axis(side=1, at=seq(1, nrow(indvals), by=1),  
+     labels=paste0("c=",c1:c2), col.axis="black", las=1) 
+   lines(indvals[,i], type="b", col="blue", lty=1, lwd=2) 
+ } 
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Figure 3 Plots for the Values of Some Internal Indices from the FCM Runs on the Iris Dataset 

 
Barplots are the graphics for easier inspection of the magnitudes of index values. So the following code 
chunk can be used to plot the barplots of index values as seen in Figure 4. 
> par(mfrow=c(4,3), mar=c(2,2,1.5,1.5), cex.main=1.5) 
> for(i in 1:length(indnames)) 
+  barplot(indvals[,i], col="dodgerblue", main=indnames[i]) 

 

 
Figure 4 Barplots of the Values of Some Internal Indices from the FCM Runs on the Iris Dataset 
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5. Conclusions 

As demonstrated in the previous sections, the R package 'fcvalid' is an all-in-one tool in order to validate 
the results from the probabilistic and possibilistic clustering algorithms. It provides the implementations 
of most of the available internal indices for fuzzy clustering validation. Additionally, for evaluation of 
the possibilistic clustering, the options to compute the generalized and extended versions of the internal 
indices are also included in the package.  

The functionalities of the package makes the researcher to concentrate on substantive issues, without 
being thinking about the constraints or limitations imposed by the software. Consequently, the package 
can be used as a test tool for evaluating the performances of partitioning algorithms as well as for finding 
the optimal number of clusters in fuzzy datasets. 
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