
SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES
VOL. 3, NO. 3, DECEMBER 2020
DOI: 10.35377/saucis.03.03.769969

Sentiment Analysis for Software Engineering Domain in Turkish

Mansur Alp Tocoglu1
1Manisa Celal Bayar University, Department of Software Engineering, Turgutlu 45400, Manisa, Turkey;

mansur.tocoglu@cbu.edu.tr; +90 236 314 10 10

Received 15 July 2020; Revised 12 November 2020; Accepted 07 December 2020; Published online 30 December 2020

Abstract

The focus of this study is to provide a model to be used for the identification of sentiments of comments about
education and profession life of software engineering in social media and microblogging sites. Such a pre-trained
model can be useful to evaluate students’ and software engineers’ feedbacks about software engineering. This
problem is considered as a supervised text classification problem, which thereby requires a dataset for the training
process. To do so, a survey is conducted among students of a software engineering department. In the classification
phase, we represent the corpus by using conventional and word-embedding text representation schemes and yield
accuracy, recall and precision results by using conventional supervised machine learning classifiers and well-
known deep learning architectures. In the experimental analysis, first we focus on achieving classification results
by using three conventional text representation schemes and three N-gram models in conjunction with five
classifiers (i.e., naïve bayes, k-nearest neighbor algorithm, support vector machines, random forest and logistic
regression). In addition, we evaluate the performances of three ensemble learners and three deep learning
architectures (i.e. convolutional neural network, recurrent neural network, and long short-term memory). The
empirical results indicate that deep learning architectures outperform conventional supervised machine learning
classifiers and ensemble learners.

Keywords: sentiment analysis, software engineering, machine learning, text mining, deep learning

Yazılım Mühendisliği Alanında Türkçe Duygu Analizi

Öz

Bu çalışmanın amacı, sosyal medya ve mikroblog sitelerinde yazılım mühendisliğinin eğitim ve meslek yaşamıyla
ilgili yorumların belirlenmesinde kullanılacak bir model sağlamaktır. Bu tür önceden eğitilmiş bir model,
öğrencilerin ve yazılım mühendislerinin yazılım mühendisliği hakkındaki geri bildirimlerini değerlendirmek için
yararlı olabilir. Bu problem, eğitim süreci için bir veri kümesi gerektiren bir metin sınıflandırma problemi olarak
kabul edilmiştir. Veri kümesini oluşturmak için, yazılım mühendisliği bölümü öğrencileri arasında bir anket
yapılmıştır. Sınıflandırma aşamasında, geleneksel ve kelime yerleştirme metin gösterme şemalarını kullanılarak
ve geleneksel denetimli makine öğrenimi sınıflandırıcıları ve iyi bilinen derin öğrenme mimarilerini kullanılarak
doğruluk sonuçları sağlanmıştır. Deneysel analizde, öncelikle beş sınıflandırıcı (Naïve Bayes, k-en yakın komşu
algoritması, destek vektör makineleri, rastgele orman ve lojistik regresyon) ile birlikte üç geleneksel metin temsil
şeması ve üç N-gram modeli kullanarak doğruluk sonuçları elde edilmiştir. Buna ek olarak, iki ensemble
algoritması ve üç derin öğrenme mimarilerinin (convolutional neural network, recurrent neural network, and long
short-term memory) performanslarını değerlendirilmiştir. Ampirik sonuçlarda derin öğrenme mimarilerinin
geleneksel denetimli makine öğrenimi sınıflandırıcılarından ve ensemble algoritmalarından daha iyi performans
gösterdiği tespit edilmiştir.

Anahtar Kelimeler: duygu analizi, yazılım mühendisliği, makine öğrenme, metin madenciliği, derin
öğrenme

1. Introduction

In today’s world, the enormous quantity of information is generated by users from all over the world
with the developments in communication technologies on web. Social networks and microblogging
websites are the main sources for people to share commonly for exchanging observations, thoughts,

http://doi.org/10.35377/saucis.03.03.769969
https://orcid.org/0000-0003-1784-9003
mailto:mansur.tocoglu@cbu.edu.tr

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

297

feedbacks and comments about any kind of review. This generated informative data can be in many
forms such as image, text, sound, video and so on.

The user-generated text documents include many type of reviews such as product reviews, film reviews,
hotel reviews, educational opinion reviews and profession reviews. In all these sources sentiments exist
frequently. So it has become popular to extract sentiments out of user-generated text documents.
Sentiment analysis in text is a process of identifying and classifying the views of users from text
documents into different sentiments, such as, positive, negative and neutral [1]. This extracted
informative knowledge can be very useful source to be used for decision support systems and individual
decision makers [2].

The feedbacks composed of behaviors and comments of students and professionals about software
engineering in social networks and microblogging websites can play an important role to inform people
who seeks to find out useful insights about software engineering education and professional life. Thus,
the automated extraction of these feedbacks in social networks and microblogging websites becomes a
prominent task to accomplished. Sentiment analysis can be employed to find out useful insights to be
used for recognizing students’ and professionals’ feedbacks on education and work life of software
engineering.

In this paper, we present a machine learning based approach for sentiment analysis on software
engineering students’ feedbacks about software engineering education and professional life. To do so,
we analyze a corpus composed of 4,896 student reviews in Turkish with the use of conventional text
representation schemes for conventional classifiers and word embedding models for deep learning
architectures. In the experimental analysis, we use three conventional text representation schemes (i.e.,
term-presence, term-frequency, TF-IDF) and three N-gram models (1-gram, 2-gram and 3-gram) in
conjunction with the five classifiers (i.e., naïve bayes, k-nearest neighbor algorithm, support vector
machines, random forest and logistic regression). We also evaluate the classification performances of
three ensemble learners (i.e., AdaBoost, Bagging and Voting). In addition, we utilize three deep learning
architectures (i.e. convolutional neural network, recurrent neural network, and long short-term memory)
using Keras and pre-trained Word2vec word vector representations to compare their predictive
performance to conventional machine learning classifiers. To do best of our knowledge, this is the first
labeled dataset generated in Turkish for the identification of sentiments of comments about education
and profession life of software engineering domain in social media and microblogging sites.

The rest of this paper is structured as follows: In Section 2, related works are presented. In Section 3,
the methodology of the study is introduced (namely, dataset collection process, feature engineering and
classification algorithms). In Section 4, experimental procedure and the empirical results are presented.
Finally, Section 5 concludes the paper and provides a projection for further studies on this topic.

2. Related Works

In literature, sentiment analysis is employed to identify information about software engineering in
several areas such as technical contents (issues and commit messages) and crowd-generated contents
(forum messages and users’ reviews) [3].

Sentiment analysis can be used to extract information from developers’ expressions in issues and
committed messages. Guzman et al. [4] focused on sentiment extraction of the developer-written
comments in GitHub. They found that developers have higher positive comments when they work in
projects having more distributed teams. On the contrary, the comments written on Mondays by the
developers indicate more negative sentiments. Sinha et al. [5] extracted sentiments from the comments
written in 28,466 projects. Based on the results, most of the comments classified as neutral. In addition,
the comments written on Tuesdays by the developers indicate more negative sentiments. Ortu et al. [6]
used the dataset JIRA [7], composed of 560K issue comments committed by the developers, to analyse
the effectiveness of sentiments in comments for issue fixing time. As a result, they found that the issues
related the positive comments tend to have shorter fixing time. In contrast, the issues related the negative
comments tend to have longer fixing time.

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

298

The extraction process of the sentiments from the users’ reviews and forum messages play an important
role in the evaluation process of the software applications. Goul et al. [8] focused on detecting
bottlenecks in requirement engineering by employing sentiment analysis over 5,000 reviews. Carreno
et al. [9] used a model unifying aspects and sentiments together to detect topics out of reviews of the
applications. In addition, they also extracted users’ opinions from the detected topics. Guzman et al.
[10] employed SentiStrength [11] for detect topics out of reviews of the applications and extracting
users’ opinions from the detected topics. Panichella et al. [12] classified users’ reviews in three
sentiment categories (namely, neutral, positive, and negative) by using Naïve Bayes classifier. In the
study [13], the authors focused on analysing sentiments on tweets related to software projects. Calefato
et al. [14] presented a sentiment analysis classifier named Senti4SD to be used for extracting the
developers’ sentiments in communication channels. To do so, first they constructed a dataset from Stack
Overflow questions, answers, and comments to be used for the training phase. After that, they manually
validated the raw dataset. Senti4SD classifier utilizes from lexicon-based features, keyword-based
features and semantic features based on word embedding. In the paper [15], the authors proposed a
sentiment joint model framework to be used for analyzing user reviews automatically for product feature
requirements evolution prediction. The joint model is constructed by combining supervised Long Short-
term Memory based Recurrent Neural Network and unsupervised hierarchical topic model.

In literature, sentiment analysis is also used in several studies for identifying sentiments from Turkish
text. Sağlam et al. [16] focused on constructing a sentiment lexicon for Turkish which is composed of
37K words. The new lexicon is tested on a domain independent news dataset and the accuracy
performance of the lexicon is calculated as 72.2%. Bayraktar et al. [17] proposed a holistic method to
be used in Turkish for aspect-based sentiment analysis. The proposed method is based on statistical,
linguistic and rule-based approaches. For evaluation phase, they used a Turkish restaurant dataset which
is constructed within the scope of SemEval Aspect Based Sentiment Analysis 2016. They achieved
52.05% accuracy and 56.28% f-score values. Rumelli et al. [18] applied lexicon-based methods and
machine learning algorithms together to perform automated sentiment annotation in Turkish text. They
achieved 73% accuracy rate as sentiment analysis result of the proposed model. In the study [19], the
authors focused on sentiment analysis on Turkish shopping and movie websites. They compared the
classification performances of the traditional machine learning algorithms and recurrent neural networks
arhitectures. Karcioğlu and Aydin [20] focused on extracting sentiments from Turkish and English
twitter posts collected from Twitter. They investigated the performances of BOW and Word2Vec
models using Linear Support Vector Machine and Logistic Regression. Ayata et al. [21] applied
sentiment analysis on four different sector tweets (namely banking, football, telecom and retail). To do
so, they vectorized the datasets with word embedding model and achieved accuracy rates of 89.97%,
84.02%, 73.86% and 63.68% for all sectors in sequence using Support Vector Machine and Random
Forests classifiers.

3. Methodology

This section presents the methodology of the study. Namely, the dataset collection, pre-processing,
feature extraction, classification algorithms, ensemble learners and deep learning architectures have
been briefly presented.

3.1 Dataset Collection and Preprocessing

In this study, we conducted a survey among sophomore and senior students in the Software Engineering
Department at Manisa Celal Bayar University in Turkey. In this survey, the students are asked to write
five positive and five negative comments for software engineering education and profession life. In total,
349 sophomores and 185 seniors attended in this survey. Here, we assumed the comments obtained from
senior students as the source of the knowledge for work life for software engineering since all seniors
do direct internship in software companies in the last semester of their education life. As a result of this
survey, we managed to create a dataset named Software Engineering Survey Dataset (SESD) (the dataset
can be downloaded from http://mansurtocoglu.cbu.edu.tr/). Table 1 shows the distribution of the
comments collected among the students. A total of 5,242 documents are collected. 2,614 of these

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

299

documents are labeled as negative and the rest 2,628 documents are labeled as positive. To validate the
dataset, we conducted an annotation process where two annotators annotated each document one by one.
As the result of this annotation process, we eliminated 346 documents which are not labeled the same
by two annotators. We calculated the Cohen’s kappa (K) metric as 0.97 which indicates a perfect
agreement among the annotators [22], [23].

Table 1 The Distribution of the Comments in SESD
of comments before annotation # of comments after annotation

5,242 (2,614 negative)(2,628 positive) 4,896 (2,306 negative)(2,590 positive)

In the preprocess stage, we preprocessed SESD to use in the classification phase. In the first step, we
converted all letters to lowercase and removed all punctuation marks, numeric characters, and extra
spaces. Next, we identified stems of each word in the dataset. To do so, we used Snowball-stemmer
(SS) algorithm [24]. At last, we removed stop-words by using the Turkish language stopword list
provided in Python natural language toolkit [25].

3.2 Feature Extraction Schemes

N-gram modelling is a popular feature representation scheme for language modelling and natural
language processing tasks. An n-gram is a contiguous sequence of n items from a given instance of text
document. In this scheme, items may be phonemes, syllables, letters, words or characters. In natural
language processing tasks, word-based n-grams and character n-grams have been widely utilized. N-
gram of size 1 has been referred as “unigram”, N-gram of size 2 has been referred as “bigram” and N-
gram of size 3 has been referred as “trigram”. To model comments, we utilized word-based n-gram
models, where unigrams, bigrams and trigrams have been taken into consideration.

In the vector space model (VSM), we have considered three different schemes to represent comments,
namely, term presence-based representation (TP), term frequency-based representation (TF) and term
frequency - inverse document frequency (TF-IDF) based representation. In term frequency-based
representation, the number of occurrence of words in the documents have been counted, namely, each
document has been represented by an equal length vector with the corresponding word counts. In term
presence-based representation, presence or absence of a word in a given document has been utilized to
represent text documents. In TF-IDF representation two major equations are multiplied together which
are term frequency and inverse document frequency. The inverse document frequency is calculated by
taking the logarithm of the equation which is, the number of the total documents within the dataset,
divided by the document frequency of the related term.

The conventional text representation schemes, such as TP, TF and TF-IDF, are not able to identify
semantic relationships between components in text. In addition, conventional text representation
schemes have shortcomings due to high dimensionality and sparsity of feature vector [26]. Recently,
neural language models have been successfully employed on natural language processing tasks [27]. In
contrast to conventional text representation, neural language models repsesent words in low dimensional
spaces by using distributed learning representation [28]. These models focus on capturing similarities
between words and providing dense representation of documents with semantic properties with less
manual preprocessing.

3.3 Classification Algorithms

In the classification stage, we used both conventional supervised machine learning algorithms (i.e.,
naïve bayes, k-nearest neighbor algorithm, support vector machines, random forest and logistic
regression) and well-known deep learning architectures (namely, convolutional neural network,
recurrent neural network and long short-term memory networks).

Naïve Bayes algorithm (NB) is a probabilistic classification algorithm based on Bayes’ theorem. It has
a simple structure due to the assumption of conditional independence. Despite its simple structure, it
can be effectively utilized in a wide range of applications, including text mining and web mining [29].

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

300

Support vector machines (SVM) are supervised learning algorithms that can be utilized to solve
classification and regression problems. They can be applied effectively to classify both linear and non-
linear data [30]. Support vector machines build a hyperplane in a higher dimensional space to solve
classification or regression problem. The hyperplane aims to make a good separation by achieving the
largest distance to the nearest training data points of classes (known as functional margin).

Random Forest (RF) is a supervised learning algorithm, combining bagging algorithm and random
method of subspace [31]. Decision trees were used as the base learning algorithm in this algorithm. Each
tree was constructed based on training data bootstrap samples. A random selection of features was used
to provide the variety among the base learners. In response, the model can yield promising learning
models on datasets with noisy or irrelevant data.

K-nearest neighbor (KNN) is a learning algorithm for supervised learning tasks, including classification
and regression tasks [32]. In this scheme, the class label for an instance has been determined based on
the similarity of the instance to its nearest neighbors in the training set. In this scheme, all the instances
have been stored and at the time of classification, the class label has been identified based on the
examination of the k-nearest neighbors.

Logistic regression (LR) is a supervised learning algorithm. The algorithm provides a scheme to apply
linear regression to classication tasks. It employs a linear regression model and transformed target
variables have been utilized to construct a linear classication scheme [32].

Convolutional Neural Network (CNN) is type deep neural networks which is widely used in image and
video recognition, recommender systems and natural language processing. CNN architecture composes
of layers which are embedding, convolution, pooling, flattening and fully connected artificial neural
network [33].

Recurrent Neural Network (RNN) is a type of feedforward artificial neural network which can handle
variable-length sequence inputs [34]. Unlike traditional feedforward neural networks, RNN uses
feedback loops to process sequences in order to maintain memory over time. In the traditional RNN
algorithm, recurrent units have very simple structures that have no memory units and additional gates.
There is only a simple multiplication of inputs and previous outputs, which is passed through the
corresponding activation function. RNN is applicable to tasks of unsegmented, connected handwriting
recognition or speech recognition.

Long Short Term Memory (LSTM) is an artificial neural network. Unlike simple RNN, an LSTM
recurrent unit contains gates, which are used to maintain memory for long periods of time [35].

3.4 Ensemble Learners

Ensemble learning refers to the process of combing the predictions of multiple supervised learning
algorithms and treating the algorithms as a committee of decision makers [36]. Ensemble learning
schemes seek to identify a more accurate classification model. In this study, we used the ensembles of
the five supervised learning algorithms with two well-known ensemble learning methods which are,
AdaBoost and Bagging.

AdaBoost Algorithm

AdaBoost is an ensemble learning algorithm based on boosting [37]. The base learning algorithms were
trained sequentially in the algorithm and at each round a new learning model was built. The weight
values allocated to misclassified samples will be increased at each round, while the weight values
allocated to properly categorized cases will be reduced. In reaction, the algorithm aims to devote more
rounds to cases that are more difficult to learn and to compensate for classification mistakes produced
in previous models.

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

301

Bagging Algorithm

Bagging (Bootstrap aggregating) [38] is another technique of constructing the ensemble. In this system,
from the initial training set by bootstrap sampling, distinct training subsets were acquired. The
projections produced by the 1 algorithms of base learning were combined with the use of majority
voting.

4. Experimental Procedure and Results

In this section, experimental procedure and experimental results have been presented.

4.1 Experimental Procedure

In the empirical analysis, we utilized 10-fold cross validation in all cases. In the empirical analysis, three
different feature extraction methods (namely, TF, TP and TF-IDF weighting schemes) and three N-gram
models (unigram, bigram and trigram) have been considered in conjunction with five conventional
machine learning classifiers (namely, naïve bayes, k-nearest neighbor algorithm, support vector
machines, random forest and logistic regression) and two ensemble learners (namely, AdaBoost and
Bagging). We also achieved results of Voting ensemble learner by ensembling the four classifiers
(namely, SVM, NB, LR and RF). In these experiments, we considered using feature size value as 1,000.
In addition, the performances of three well-known deep learning architectures (namely, convolutional
neural network, recurrent neural network, and long short-term memory) are compared to each other and
to conventional machine learning classifiers. In the experiments based on deep learning architectures,
the dataset is represented by using Keras and Word2vec [39] embedding layers. We used the Word2vec
pre-trained word representation model which is created from a Turkish corpus named Turkish CoNLL17
with a vocabulary size of 3.6M [40]. We used manual tuning for hyper-parameters for all machine
learning algorithms. Unless otherwise stated, we stemmed each term using Snowball-stemmer in all
experiments.

Figure 1 shows the comparison of accuracy values of five different machine learning algorithms based
on two forms (raw and labeled) of SESD dataset. In the classification process of this empirical
experiment, TF-IDF weighting scheme is used as feature extraction method. Regarding the two forms
of SESD dataset, the performance of the most classifiers, using labeled form of the dataset, provided
higher results than using the raw form of SESD. These results indicate that, annotation process of the
SESD dataset increased the results in the empirical experiments as noisy documents are eliminated.
Therefore, we used the labeled form of SESD for the remaining experiments.

Figure 1 Comparison of Accuracy Values of Five Different Machine Learning Algorithms Based on Two Forms

of SESD Dataset

Figure 2 shows the comparison of the accuracy values of five different machine learning algorithms
based on the three different conventional text representation schemes (namely, TF-IDF, TF and TP)
using unigram model. In all cases, the results obtained by using TF-IDF weighting scheme slightly

0.6

0.65

0.7

0.75

0.8

0.85

SVM NB LR RF KNN

Raw Labeled

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

302

outperformed the other schemes indicating that considering document frequency of each feature enhance
the accuracy performances.

Figure 2 Comparison of the Accuracy Values of Five Different Machine Learning Algorithms Based on Three

Different Conventional Feature Extraction Methods

Figure 3 presents the performance comparison of the three N-gram models (namely, unigram, bigram
and trigram) in conjunction with five machine learning classifiers. SVM and LR classifiers provided the
highest accuracy results among all classifiers in all N-gram models. In contrast, KNN algorithm
performed the lowest classification results. Regarding the predictive performance between all three N-
gram models, the utilization of unigram for feature set slightly outperformed the other two models.
Therefore, we decided to use unigram modeling for the remaining experiments.

Figure 3 Comparison of Accuracy Values of Five Different Machine Learning Algorithms Based on Three

Different N-gram Models

Table 2 shows the classification results of five machine learning algorithms in terms of accuracy,
precision and recall measurement values using TF-IDF weighting scheme and unigram feature
modeling. We achieved the highest predictive performance as 0.8074 in terms of accuracy by using LR
as the classifier. SVM performed the second highest performance with an accuracy value of 0.8041. In
contrary, we achieved the lowest accuracy value using KNN with a value of 0.6883. Regarding the
precision performance of the classifiers, SVM achieved the highest precision value of 0.8011 which is
followed by RF and LR in sequence. Regarding the recall performance of the classifiers, LR slightly
outperformed the others with a value 0.8463. SVM achieved the second highest recall value which is
followed by NB algorithm. In all cases, KNN algorithm performed the lowest results. This could be due
to high dimensional feature size of the dataset and the elimination of the noisy documents.

0

0.2

0.4

0.6

0.8

1

SVM NB LR RF KNN

Tfidf TF TP

0.6

0.65

0.7

0.75

0.8

0.85

SVM NB LR RF KNN

unigrams bigrams trigrams

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

303

Table 2 Comparison of Accuracy, Precision and Recall Classification Results of Five Different Machine
Learning Algorithms

 SVM NB LR RF KNN
Accuracy 0.8041 0.7788 0.8074 0.7802 0.6883

Precision 0.8011 0.7858 0.7950 0.7984 0.7703

Recall 0.8424 0.8027 0.8463 0.7766 0.5748

Figure 4 shows the predictive performances of four machine learning classifiers in conjunction with two
ensemble learners using unigram features in all cases. As it can be observed from the results presented
in Figure 4, we cannot obtain any significant performance enhancement in classification accuracy values
with the use of ensemble learners. Beside these results, we also achieved 0.8115 accuracy value by
combining the predictions of four machine learning classifiers (namely, SVM, RF, NB and LR) using
the voting ensemble learner in which there is also no performance enhancement compared to other two
ensemble learners.

Figure 4. Comparison of Unigram Accuracy Values of Four Different Machine Learning Algorithms Based on

Two Ensemble Learners

The performances of the conventional classifiers are extremely related to whether datasets are composed
of noisy data labelled by overlapped target classes. However, in this study we eliminated the noisy data
from the SESD dataset by conducting an annotation process. This provided a chance for SVM and LR
classifiers to achieve higher result compared to others as both of them work relatively well when there
is a clear separation between classes. In addition, the higher performances of the classifiers SVM and
LR might be due to their high performances against high-dimensional datasets.

Tables 3, 4 and 5 present the accuracy, precision and recall results in sequence which are obtained by
using three deep learning architectures (i.e., CNN, LSTM and RNN) with Keras embedding layer in
different combination of vector and filter sizes. Regarding the accuracy results, we achieved the highest
predictive performance as 0.8315 by using CNN. LSTM performed the second highest performance
with a value of 0.8219, which is followed by RNN with 0.8056. Regarding the precision performance
of the architectures, CNN achieved the highest precision value of 0.8357 which is followed by LSTM
and RNN with results 0.8309 and 0.8070 respectively. For recall performance of the architectures, CNN
outperformed others with a value of 0.8587. LSTM achieved the second highest recall value 0.8398
which is followed by RNN with 0.8367. On the other hand, we could not obtain any significant
performance enhancement in different combinations of vector and filter sizes.

Generally speaking, CNN outperforms at extracting position invariant features which makes it a better
choice for sentiment analysis problems as sentiment extraction is usually based on key phrase. On the
other side, RNNs architectures are suitable for problems related to sequence modeling tasks as they
require flexible modeling of context dependencies [41]. However, in literature, there is no clear
conclusion as there are also studies provided results vice-versa [42], [43]. In brief, the classification

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

SVM NB LR RF

AdaBoost Bagging NoEnsemble

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

304

results among deep learning architectures depend on the condition of the content of the dataset and the
optimization of the parameters of the model.

Table 3 Comparison of Accuracy Classification Results of Three Deep Learning Architectures Based on
Different Values of Vector Size and Filter Parameters

Vector size Filter CNN RNN LSTM
100 100 0.8205 0.7933 0.8219
200 100 0.8315 0.7953 0.8211
100 200 0.8256 0.8056 0.8156
200 200 0.8290 0.8017 0.8211

Table 4 Comparison of Precision Classification Results of Three Deep Learning Architectures Based on

Different Values of Vector Size and Filter Parameters
Vector size Filter CNN RNN LSTM

100 100 0.8189 0.7924 0.8275
200 100 0.8294 0.7929 0.8268
100 200 0.8320 0.8070 0.8303
200 200 0.8357 0.8068 0.8309

Table 5 Comparison of Recall Classification Results of Three Deep Learning Architectures Based on Different
Values of Vector Size and Filter Parameters

Vector size Filter CNN RNN LSTM
100 100 0.8491 0.8263 0.8398
200 100 0.8587 0.8313 0.8382
100 200 0.8402 0.8367 0.8216
200 200 0.8440 0.8255 0.8332

Table 6 shows the accuracy results of the three deep learning architectures (i.e., CNN, LSTM and RNN)
using pre-trained word vector representation named Word2vec. Regarding the performances of the
architectures, LSTM slightly outperformed others with a value of 0.8572. The results indicate that using
Word2vec as an embedding layer compared to Keras provided higher results for all of the three
architectures. This could be due to the range of vocabulary in Word2vec model (3.6M).
Table 6 Comparison of Accuracy Classification Results of Three Deep Learning Architectures Using Pre-trained

Word2Vec Embedding Layer Based on Different Filter Parameters
Vector size Filter CNN RNN LSTM

100 100 0.8564 0.8458 0.8550
100 200 0.8564 0.8456 0.8572

5. Conclusion

In this paper, we focused on developing a model to be used for identifying sentiments of the comments
in software engineering-related social media and microblogging sites as a guidance for people who are
willing to learn positive and negative aspects of software engineering education and work life. So this
model can be plugged in any application which is implemented for crawling software engineering-
related positive and negative information from any text data source.

To generate the dataset, first we conducted a survey to collect labeled documents among software
engineering students (349 sophomores and 185 seniors) where we asked them to write five positive and
five negative comments about software engineering. Then, we validated the raw dataset with an
annotation process which has the Cohen’s kappa (K) metric as 0.97 indicating a perfect agreement
among the annotators. After the corpus creation phase, we implemented empirical analysis to compare

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

305

predictive performances of five conventional classifiers (SVM, NB, RF, LR and KNN), three ensemble
learners (namely, AdaBoost, Bagging and Voting) and three well-known deep learning architectures
(CNN, RNN and LSTM). In addition, we also compared classification results obtained by using different
feature extraction methods (namely, TF, TP and TF-IDF) and three N-gram models (unigram, bigram
and trigram) in conjunction with conventional classifiers. TF-IDF scheme and unigram model generally
outperformed others. In general, the empirical results indicate that SVM and LR classifiers provided the
highest predictive performances among other conventional classifiers. This case can be explained with
the documents which are clearly separated between classes as a result of the annotation process.
Regarding the performances of the ensemble learners, we could not achieve significant performance
enhancement using three different ensemble learners on SVM, RF, LR and NB classifiers. Regarding
deep learning architectures, CNN provided the highest predictive performance values in almost all
compared configurations among other architectures. This might be due to optimization of the parameters
of the models and the higher performance of the CNN architecture on sentiment analysis problems as
sentiment extraction is usually based on key phrase. Deep learning architectures also performed higher
classification results compared to conventional classifiers as they utilize deep neural networks and
embedding models. In addition, we also evaluated the proposed deep learning architectures with pre-
trained embedding layer Word2vec where we achieved higher accuracy values compared to Keras
embedding layer. This case might be due to the range of vocabulary in Word2vec pre-trained model.

For future work, we might extend the size of the dataset by conveying a survey among graduated
software engineering students. In addition, different feature extraction methods and embedding schemes
can be used to examine performance enhancements.

References

[1] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Found. Trends Inf. Retr., pp.1–
135, 2008.

[2] E. Fersini, E. Messina, and F. A. Pozzi, “Sentiment analysis: Bayesian Ensemble Learning,”
Decis. Support Syst., vol. 68, pp.26–38, 2014.

[3] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto, “Sentiment Analysis
for Software Engineering: How Far CanWe Go?”, Proc. - 40th International Conference on
Software Engineering, pp. 94–104, 2018.

[4] E. Guzman, D. Azócar, and Y. Li, “Sentiment Analysis of Commit Comments in GitHub: An
Empirical Study,” Proc. - 11thWorking Conference on Mining Software Repositories, pp. 352–
355, 2014.

[5] M. Goul, O. Marjanovic, S. Baxley, and K. Vizecky, “Managing the Enterprise Business
Intelligence App Store: Sentiment Analysis Supported Requirements Engineering,” Proc. -
45th Hawaii International Conference on System Sciences, pp. 4168–4177, 2012.

[6] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and R. Tonelli, “Are Bullies More
Productive? Empirical Study of Affectiveness vs. Issue Fixing Time,” Proc. - 12th Working
Conference on Mining Software Repositories, pp. 303–313, 2015.

[7] F. Calefato, F. Lanubile, and N. Novielli, “EmoTxt: A Toolkit for Emotion Recognition from
Text,” Proc. - 7th International Conference on Affective Computing and Intelligent Interaction,
pp. 79–80, 2017.

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

306

[8] M. Goul, O. Marjanovic, S. Baxley, and K. Vizecky, “Managing the Enterprise Business
Intelligence App Store: Sentiment Analysis Supported Requirements Engineering,” Proc. -
45th Hawaii International Conference on System Sciences, pp. 4168–4177, 2012.

[9] L. V. G. Carreno and K. Winbladh, “Analysis of User Comments: An Approach for Software
Requirements Evolution,” Proc. - 35th International Conference on Software Engineering, pp.
582–591, 2013.

[10] E. Guzman, O. Aly, and B. Bruegge, “Retrieving Diverse Opinions from App Reviews”, Proc.
- 9th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, pp.21–30, 2015.

[11] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas, “Sentiment in short strength
detection informal text,” J. Am. Soc. Inf. Sci. Technol., vol. 61, no. 12, pp. 2544–2558, 2010.

[12] S. Panichella, A. D. Sorbo, E. Guzman, C. A. Visaggio,G. Canfora, and . C. Gall, “How Can I
Improve My App? Classifying User Reviews for Software Maintenance and Evolution,” Proc.
- 31st International Conference on Software Maintenance and Evolution, pp. 281–290, 2015.

[13] E. Guzman, R. Alkadhi, and N. Seyff, “An exploratory study of Twitter messages about
software applications,” Requir. Eng., vol. 22, pp. 387–412, 2017.

[14] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment polarity detection for
software development,” Empir. Software Eng., vol. 23, pp. 1352–1382, 2018.

[15] L. Zhao, and A Zhao, “Sentiment analysis based requirement evolution prediction,” Future
Internet, vol. 11, no. 2, article no. 5, 2019.

[16] F. Sağlam, H. Sever and B. Genç, “Developing Turkish Sentiment Lexicon for Sentiment
Analysis using Online News Media,” Proc. - 13th International Conference of Computer
Systems and Applications, pp. 1–5, 2016.

[17] K. Bayraktar, U. Yavanoglu and A. Ozbilen, “A Rule-Based Holistic Approach for Turkish
Aspect-Based Sentiment Analysis,” Proc. - IEEE International Conference on Big Data, pp.
2154–2158, 2019.

[18] M. Rumelli, D. Akkuş, Ö. Kart and Z. Isik, “Sentiment Analysis in Turkish Text with Machine
Learning Algorithms,” Proc. - Innovations in Intelligent Systems and Applications Conference,
pp. 1–5, 2019.

[19] B. Ciftci and M. S. Apaydin, “A Deep Learning Approach to Sentiment Analysis in Turkish,”
Proc. - International Conference on Artificial Intelligence and Data Processing, pp. 1–5, 2018.

[20] A. A. Karcioğlu and T. Aydin, “Sentiment Analysis of Turkish and English Twitter Feeds
Using Word2Vec Model,” Proc. - 27th Signal Processing and Communications Applications
Conference, pp. 1–4, 2019.

[21] D. Ayata, M. Saraçlar and A. Özgür, “Turkish Tweet Sentiment Analysis with Word
Embedding and Machine Learning,” Proc. - 25th Signal Processing and Communications

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

307

Applications Conference, pp. 1–4, 2017.

[22] A. Onan, “Mining opinions from instructor evaluation reviews: A deep learning approach,”
Comput. Appl. Eng. Educ., vol. 28, no. 1, pp. 117–138, 2020.

[23] E. Stamatatos, “A survey of modern authorship attribution methods,” J. Am. Soc. Inf. Sci.
Technol., vol. 60, no. 3, pp. 538–556, 2009.

[24] M. F. Porter, “Snowball: A language for stemming algorithms,” 2001.

[25] S. Bird, and E. Loper, “NLTK : The Natural Language Toolkit NLTK : The Natural Language
Toolkit,” Proc. - Workshop on Effective Tools and Methodologies for Teaching Natural
Language Processing and Computational Linguistics, pp. 63–70, 2016.

[26] C. C. Aggarwal and C. X. Zhai, “A survey of text clustering algorithms,” in Mining Text Data,
pp.77–128, 2012.

[27] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representations of
words and phrases and their compositionality,” Proc. - Advances in Neural Information
Processing Systems, pp. 3111–3119, 2013.

[28] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural Probabilistic Language
Model,” 2003. J. Mach. Learn. Research, vol. 3, pp. 1137–1155, 2003.

[29] H. Zhang, “The Optimality of Naive Bayes,” Proc. - 17th International Florida Artificial
Intelligence Research Society Conference, pp. 562–567, 2004.

[30] C. Cortes and V. Vapnik, “Support-Vector Networks,” Mach. Learn., vol. 20, no. 3, pp. 273–
297, 1995.

[31] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001.

[32] M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms: Second Edition.
Wiley, Hoboken, 2011.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” Proc. - 25th International Conference on Neural Information
Processing Systems, pp. 1097-1105, 2012.

[34] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8,
pp. 1735–1780, 1997.

[35] X. Li et al., “Long short-term memory neural network for air pollutant concentration
predictions: Method development and evaluation,” Environ. Pollut., vol. 231, pp. 997–1004,
2017.

[36] A. Onan, S. Korukoǧlu, and H. Bulut, “Ensemble of keyword extraction methods and
classifiers in text classification,” Expert Syst. Appl., vol. 57, pp. 232–247, 2016.

Sakarya University Journal of Computer and Information Sciences

Mansur Alp Tocoglu

308

[37] Z.H. Zhou, “Ensemble Methods: Foundations and Algorithm,” UK: CRC Press, 2012.

[38] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, pp. 123–140, 1996.

[39] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in
vector space,” arXiv preprint arXiv:1301.3781, 2013.

[40] NLPL word embeddings repository, “word embeddings repository homepage,” 2017. [Online].
Available: http://vectors.nlpl.eu/repository/. [Accessed: 25-Nov-2020].

[41] W. Yin, K. Kann, M. Yu, and H. Schutze, “Comparative study of CNN and RNN for natural
language processing,” arXiv preprint arXiv:1702.01923, 2017.

[42] D. Tang, B. Qin, and T. Liu, “Document Modeling with Gated Recurrent Neural Network for
Sentiment Classification,” Proc. - Conference on Empirical Methods in Natural Language
Processing, pp. 1422–1432, 2015.

[43] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language Modeling with Gated
Convolutional Networks,” arXiv preprint arXiv:1612.08083, 2016.

MANSUR ALP TOCOGLU received the B.Sc. degree in Software Engineering, and the M.Sc. degree in Artificial
Intelligent Systems from Izmir University of Economics, Izmir, Turkey, in 2008 and 2013, respectively. In 2018, he
received the Ph.D. degree in computer engineering from Dokuz Eylul University, Izmir, Turkey. He is currently an
Assistant Professor in Software Engineering Department in Manisa Celal Bayar University, Manisa, Turkey. His
research interests include information extraction from text using machine learning techniques.

