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Abstract 

The focus of this study is to provide a model to be used for the identification of sentiments of comments about 
education and profession life of software engineering in social media and microblogging sites. Such a pre-trained 
model can be useful to evaluate students’ and software engineers’ feedbacks about software engineering. This 
problem is considered as a supervised text classification problem, which thereby requires a dataset for the training 
process. To do so, a survey is conducted among students of a software engineering department. In the classification 
phase, we represent the corpus by using conventional and word-embedding text representation schemes and yield 
accuracy, recall and precision results by using conventional supervised machine learning classifiers and well-
known deep learning architectures. In the experimental analysis, first we focus on achieving classification results 
by using three conventional text representation schemes and three N-gram models in conjunction with five 
classifiers (i.e., naïve bayes, k-nearest neighbor algorithm, support vector machines, random forest and logistic 
regression). In addition, we evaluate the performances of three ensemble learners and three deep learning 
architectures (i.e. convolutional neural network, recurrent neural network, and long short-term memory). The 
empirical results indicate that deep learning architectures outperform conventional supervised machine learning 
classifiers and ensemble learners. 

Keywords: sentiment analysis, software engineering, machine learning, text mining, deep learning 

Yazılım Mühendisliği Alanında Türkçe Duygu Analizi  

Öz 

Bu çalışmanın amacı, sosyal medya ve mikroblog sitelerinde yazılım mühendisliğinin eğitim ve meslek yaşamıyla 
ilgili yorumların belirlenmesinde kullanılacak bir model sağlamaktır. Bu tür önceden eğitilmiş bir model, 
öğrencilerin ve yazılım mühendislerinin yazılım mühendisliği hakkındaki geri bildirimlerini değerlendirmek için 
yararlı olabilir. Bu problem, eğitim süreci için bir veri kümesi gerektiren bir metin sınıflandırma problemi olarak 
kabul edilmiştir. Veri kümesini oluşturmak için, yazılım mühendisliği bölümü öğrencileri arasında bir anket 
yapılmıştır. Sınıflandırma aşamasında, geleneksel ve kelime yerleştirme metin gösterme şemalarını kullanılarak 
ve geleneksel denetimli makine öğrenimi sınıflandırıcıları ve iyi bilinen derin öğrenme mimarilerini kullanılarak 
doğruluk sonuçları sağlanmıştır. Deneysel analizde, öncelikle beş sınıflandırıcı (Naïve Bayes, k-en yakın komşu 
algoritması, destek vektör makineleri, rastgele orman ve lojistik regresyon) ile birlikte üç geleneksel metin temsil 
şeması ve üç N-gram modeli kullanarak doğruluk sonuçları elde edilmiştir. Buna ek olarak, iki ensemble 
algoritması ve üç derin öğrenme mimarilerinin (convolutional neural network, recurrent neural network, and long 
short-term memory) performanslarını değerlendirilmiştir. Ampirik sonuçlarda derin öğrenme mimarilerinin 
geleneksel denetimli makine öğrenimi sınıflandırıcılarından ve ensemble algoritmalarından daha iyi performans 
gösterdiği tespit edilmiştir. 

Anahtar Kelimeler: duygu analizi, yazılım mühendisliği, makine öğrenme, metin madenciliği, derin 
öğrenme 

1. Introduction 

In today’s world, the enormous quantity of information is generated by users from all over the world 
with the developments in communication technologies on web. Social networks and microblogging 
websites are the main sources for people to share commonly for exchanging observations, thoughts, 
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feedbacks and comments about any kind of review. This generated informative data can be in many 
forms such as image, text, sound, video and so on. 

The user-generated text documents include many type of reviews such as product reviews, film reviews, 
hotel reviews, educational opinion reviews and profession reviews. In all these sources sentiments exist 
frequently. So it has become popular to extract sentiments out of user-generated text documents. 
Sentiment analysis in text is a process of identifying and classifying the views of users from text 
documents into different sentiments, such as, positive, negative and neutral [1]. This extracted 
informative knowledge can be very useful source to be used for decision support systems and individual 
decision makers [2]. 

The feedbacks composed of behaviors and comments of students and professionals about software 
engineering in social networks and microblogging websites can play an important role to inform people 
who seeks to find out useful insights about software engineering education and professional life. Thus, 
the automated extraction of these feedbacks in social networks and microblogging websites becomes a 
prominent task to accomplished. Sentiment analysis can be employed to find out useful insights to be 
used for recognizing students’ and professionals’ feedbacks on education and work life of software 
engineering. 

In this paper, we present a machine learning based approach for sentiment analysis on software 
engineering students’ feedbacks about software engineering education and professional life. To do so, 
we analyze a corpus composed of 4,896 student reviews in Turkish with the use of conventional text 
representation schemes for conventional classifiers and word embedding models for deep learning 
architectures. In the experimental analysis, we use three conventional text representation schemes (i.e., 
term-presence, term-frequency, TF-IDF) and three N-gram models (1-gram, 2-gram and 3-gram) in 
conjunction with the five classifiers (i.e., naïve bayes, k-nearest neighbor algorithm, support vector 
machines, random forest and logistic regression). We also evaluate the classification performances of 
three ensemble learners (i.e., AdaBoost, Bagging and Voting). In addition, we utilize three deep learning 
architectures (i.e. convolutional neural network, recurrent neural network, and long short-term memory) 
using Keras and pre-trained Word2vec word vector representations to compare their predictive 
performance to conventional machine learning classifiers. To do best of our knowledge, this is the first 
labeled dataset generated in Turkish for the identification of sentiments of comments about education 
and profession life of software engineering domain in social media and microblogging sites. 

The rest of this paper is structured as follows: In Section 2, related works are presented.  In Section 3, 
the methodology of the study is introduced (namely, dataset collection process, feature engineering and 
classification algorithms). In Section 4, experimental procedure and the empirical results are presented. 
Finally, Section 5 concludes the paper and provides a projection for further studies on this topic. 

2. Related Works 

In literature, sentiment analysis is employed to identify information about software engineering in 
several areas such as technical contents (issues and commit messages) and crowd-generated contents 
(forum messages and users’ reviews) [3]. 

Sentiment analysis can be used to extract information from developers’ expressions in issues and 
committed messages. Guzman et al. [4] focused on sentiment extraction of the developer-written 
comments in GitHub. They found that developers have higher positive comments when they work in 
projects having more distributed teams. On the contrary, the comments written on Mondays by the 
developers indicate more negative sentiments. Sinha et al. [5] extracted sentiments from the comments 
written in 28,466 projects. Based on the results, most of the comments classified as neutral. In addition, 
the comments written on Tuesdays by the developers indicate more negative sentiments. Ortu et al. [6] 
used the dataset JIRA [7], composed of 560K issue comments committed by the developers, to analyse 
the effectiveness of sentiments in comments for issue fixing time. As a result, they found that the issues 
related the positive comments tend to have shorter fixing time. In contrast, the issues related the negative 
comments tend to have longer fixing time. 
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The extraction process of the sentiments from the users’ reviews and forum messages play an important 
role in the evaluation process of the software applications. Goul et al. [8] focused on detecting 
bottlenecks in requirement engineering by employing sentiment analysis over 5,000 reviews. Carreno 
et al. [9] used a model unifying aspects and sentiments together to detect topics out of reviews of the 
applications. In addition, they also extracted users’ opinions from the detected topics. Guzman et al. 
[10] employed SentiStrength [11] for detect topics out of reviews of the applications and extracting 
users’ opinions from the detected topics. Panichella et al. [12] classified users’ reviews in three 
sentiment categories (namely, neutral, positive, and negative) by using Naïve Bayes classifier. In the 
study [13], the authors focused on analysing sentiments on tweets related to software projects. Calefato 
et al. [14] presented a sentiment analysis classifier named Senti4SD to be used for extracting the 
developers’ sentiments in communication channels. To do so, first they constructed a dataset from Stack 
Overflow questions, answers, and comments to be used for the training phase. After that, they manually 
validated the raw dataset. Senti4SD classifier utilizes from lexicon-based features, keyword-based 
features and semantic features based on word embedding. In the paper [15], the authors proposed a 
sentiment joint model framework to be used for analyzing user reviews automatically for product feature 
requirements evolution prediction. The joint model is constructed by combining supervised Long Short-
term Memory based Recurrent Neural Network and unsupervised hierarchical topic model.  

In literature, sentiment analysis is also used in several studies for identifying sentiments from Turkish 
text. Sağlam et al. [16] focused on constructing a sentiment lexicon for Turkish which is composed of 
37K words. The new lexicon is tested on a domain independent news dataset and the accuracy 
performance of the lexicon is calculated as 72.2%. Bayraktar et al. [17] proposed a holistic method to 
be used in Turkish for aspect-based sentiment analysis. The proposed method is based on statistical, 
linguistic and rule-based approaches. For evaluation phase, they used a Turkish restaurant dataset which 
is constructed within the scope of SemEval Aspect Based Sentiment Analysis 2016. They achieved 
52.05% accuracy and 56.28% f-score values. Rumelli et al. [18] applied lexicon-based methods and 
machine learning algorithms together to perform automated sentiment annotation in Turkish text. They 
achieved 73% accuracy rate as sentiment analysis result of the proposed model. In the study [19], the 
authors focused on sentiment analysis on Turkish shopping and movie websites. They compared the 
classification performances of the traditional machine learning algorithms and recurrent neural networks 
arhitectures. Karcioğlu and Aydin [20] focused on extracting sentiments from Turkish and English 
twitter posts collected from Twitter. They investigated the performances of BOW and Word2Vec 
models using Linear Support Vector Machine and Logistic Regression. Ayata et al. [21] applied 
sentiment analysis on four different sector tweets (namely banking, football, telecom and retail). To do 
so, they vectorized the datasets with word embedding model and achieved accuracy rates of 89.97%, 
84.02%, 73.86% and 63.68% for all sectors in sequence using Support Vector Machine and Random 
Forests classifiers.   

3. Methodology 

This section presents the methodology of the study. Namely, the dataset collection, pre-processing, 
feature extraction, classification algorithms, ensemble learners and deep learning architectures have 
been briefly presented. 

3.1 Dataset Collection and Preprocessing 

In this study, we conducted a survey among sophomore and senior students in the Software Engineering 
Department at Manisa Celal Bayar University in Turkey. In this survey, the students are asked to write 
five positive and five negative comments for software engineering education and profession life. In total, 
349 sophomores and 185 seniors attended in this survey. Here, we assumed the comments obtained from 
senior students as the source of the knowledge for work life for software engineering since all seniors 
do direct internship in software companies in the last semester of their education life. As a result of this 
survey, we managed to create a dataset named Software Engineering Survey Dataset (SESD) (the dataset 
can be downloaded from http://mansurtocoglu.cbu.edu.tr/). Table 1 shows the distribution of the 
comments collected among the students. A total of 5,242 documents are collected. 2,614 of these 
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documents are labeled as negative and the rest 2,628 documents are labeled as positive. To validate the 
dataset, we conducted an annotation process where two annotators annotated each document one by one. 
As the result of this annotation process, we eliminated 346 documents which are not labeled the same 
by two annotators. We calculated the Cohen’s kappa (K) metric as 0.97 which indicates a perfect 
agreement among the annotators [22], [23]. 

Table 1 The Distribution of the Comments in SESD 
# of comments before annotation # of comments after annotation 

5,242 (2,614 negative)( 2,628 positive) 4,896 (2,306 negative)( 2,590 positive) 

In the preprocess stage, we preprocessed SESD to use in the classification phase. In the first step, we 
converted all letters to lowercase and removed all punctuation marks, numeric characters, and extra 
spaces. Next, we identified stems of each word in the dataset. To do so, we used Snowball-stemmer 
(SS) algorithm [24]. At last, we removed stop-words by using the Turkish language stopword list 
provided in Python natural language toolkit [25]. 

3.2 Feature Extraction Schemes 

N-gram modelling is a popular feature representation scheme for language modelling and natural 
language processing tasks. An n-gram is a contiguous sequence of n items from a given instance of text 
document. In this scheme, items may be phonemes, syllables, letters, words or characters. In natural 
language processing tasks, word-based n-grams and character n-grams have been widely utilized. N-
gram of size 1 has been referred as “unigram”, N-gram of size 2 has been referred as “bigram” and N-
gram of size 3 has been referred as “trigram”. To model comments, we utilized word-based n-gram 
models, where unigrams, bigrams and trigrams have been taken into consideration. 

In the vector space model (VSM), we have considered three different schemes to represent comments, 
namely, term presence-based representation (TP), term frequency-based representation (TF) and term 
frequency - inverse document frequency (TF-IDF) based representation. In term frequency-based 
representation, the number of occurrence of words in the documents have been counted, namely, each 
document has been represented by an equal length vector with the corresponding word counts. In term 
presence-based representation, presence or absence of a word in a given document has been utilized to 
represent text documents. In TF-IDF representation two major equations are multiplied together which 
are term frequency and inverse document frequency. The inverse document frequency is calculated by 
taking the logarithm of the equation which is, the number of the total documents within the dataset, 
divided by the document frequency of the related term. 

The conventional text representation schemes, such as TP, TF and TF-IDF, are not able to identify 
semantic relationships between components in text. In addition, conventional text representation 
schemes have shortcomings due to high dimensionality and sparsity of feature vector [26]. Recently, 
neural language models have been successfully employed on natural language processing tasks [27]. In 
contrast to conventional text representation, neural language models repsesent words in low dimensional 
spaces by using distributed learning representation [28]. These models focus on capturing similarities 
between words and providing dense representation of documents with semantic properties with less 
manual preprocessing. 

3.3 Classification Algorithms 

In the classification stage, we used both conventional supervised machine learning algorithms (i.e., 
naïve bayes, k-nearest neighbor algorithm, support vector machines, random forest and logistic 
regression) and well-known deep learning architectures (namely, convolutional neural network, 
recurrent neural network and long short-term memory networks). 

Naïve Bayes algorithm (NB) is a probabilistic classification algorithm based on Bayes’ theorem. It has 
a simple structure due to the assumption of conditional independence. Despite its simple structure, it 
can be effectively utilized in a wide range of applications, including text mining and web mining [29]. 
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Support vector machines (SVM) are supervised learning algorithms that can be utilized to solve 
classification and regression problems. They can be applied effectively to classify both linear and non-
linear data [30]. Support vector machines build a hyperplane in a higher dimensional space to solve 
classification or regression problem. The hyperplane aims to make a good separation by achieving the 
largest distance to the nearest training data points of classes (known as functional margin). 

Random Forest (RF) is a supervised learning algorithm, combining bagging algorithm and random 
method of subspace [31]. Decision trees were used as the base learning algorithm in this algorithm. Each 
tree was constructed based on training data bootstrap samples. A random selection of features was used 
to provide the variety among the base learners. In response, the model can yield promising learning 
models on datasets with noisy or irrelevant data. 

K-nearest neighbor (KNN) is a learning algorithm for supervised learning tasks, including classification 
and regression tasks [32]. In this scheme, the class label for an instance has been determined based on 
the similarity of the instance to its nearest neighbors in the training set. In this scheme, all the instances 
have been stored and at the time of classification, the class label has been identified based on the 
examination of the k-nearest neighbors. 

Logistic regression (LR) is a supervised learning algorithm. The algorithm provides a scheme to apply 
linear regression to classication tasks. It employs a linear regression model and transformed target 
variables have been utilized to construct a linear classication scheme [32]. 

Convolutional Neural Network (CNN) is type deep neural networks which is widely used in image and 
video recognition, recommender systems and natural language processing. CNN architecture composes 
of layers which are embedding, convolution, pooling, flattening and fully connected artificial neural 
network [33]. 

Recurrent Neural Network (RNN) is a type of feedforward artificial neural network which can handle 
variable-length sequence inputs [34]. Unlike traditional feedforward neural networks, RNN uses 
feedback loops to process sequences in order to maintain memory over time. In the traditional RNN 
algorithm, recurrent units have very simple structures that have no memory units and additional gates. 
There is only a simple multiplication of inputs and previous outputs, which is passed through the 
corresponding activation function. RNN is applicable to tasks of unsegmented, connected handwriting 
recognition or speech recognition. 

Long Short Term Memory (LSTM) is an artificial neural network. Unlike simple RNN, an LSTM 
recurrent unit contains gates, which are used to maintain memory for long periods of time [35]. 

3.4 Ensemble Learners 

Ensemble learning refers to the process of combing the predictions of multiple supervised learning 
algorithms and treating the algorithms as a committee of decision makers [36]. Ensemble learning 
schemes seek to identify a more accurate classification model. In this study, we used the ensembles of 
the five supervised learning algorithms with two well-known ensemble learning methods which are, 
AdaBoost and Bagging. 

AdaBoost Algorithm 

AdaBoost is an ensemble learning algorithm based on boosting [37]. The base learning algorithms were 
trained sequentially in the algorithm and at each round a new learning model was built. The weight 
values allocated to misclassified samples will be increased at each round, while the weight values 
allocated to properly categorized cases will be reduced. In reaction, the algorithm aims to devote more 
rounds to cases that are more difficult to learn and to compensate for classification mistakes produced 
in previous models. 
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Bagging Algorithm 

Bagging (Bootstrap aggregating) [38] is another technique of constructing the ensemble. In this system, 
from the initial training set by bootstrap sampling, distinct training subsets were acquired. The 
projections produced by the 1 algorithms of base learning were combined with the use of majority 
voting. 

4. Experimental Procedure and Results 

In this section, experimental procedure and experimental results have been presented. 

4.1 Experimental Procedure 

In the empirical analysis, we utilized 10-fold cross validation in all cases. In the empirical analysis, three 
different feature extraction methods (namely, TF, TP and TF-IDF weighting schemes) and three N-gram 
models (unigram, bigram and trigram) have been considered in conjunction with five conventional 
machine learning classifiers (namely, naïve bayes, k-nearest neighbor algorithm, support vector 
machines, random forest and logistic regression) and two ensemble learners (namely, AdaBoost and 
Bagging). We also achieved results of Voting ensemble learner by ensembling the four classifiers 
(namely, SVM, NB, LR and RF). In these experiments, we considered using feature size value as 1,000. 
In addition, the performances of three well-known deep learning architectures (namely, convolutional 
neural network, recurrent neural network, and long short-term memory) are compared to each other and 
to conventional machine learning classifiers. In the experiments based on deep learning architectures, 
the dataset is represented by using Keras and Word2vec [39] embedding layers. We used the Word2vec 
pre-trained word representation model which is created from a Turkish corpus named Turkish CoNLL17 
with a vocabulary size of 3.6M [40]. We used manual tuning for hyper-parameters for all machine 
learning algorithms. Unless otherwise stated, we stemmed each term using Snowball-stemmer in all 
experiments. 

Figure 1 shows the comparison of accuracy values of five different machine learning algorithms based 
on two forms (raw and labeled) of SESD dataset. In the classification process of this empirical 
experiment, TF-IDF weighting scheme is used as feature extraction method. Regarding the two forms 
of SESD dataset, the performance of the most classifiers, using labeled form of the dataset, provided 
higher results than using the raw form of SESD. These results indicate that, annotation process of the 
SESD dataset increased the results in the empirical experiments as noisy documents are eliminated. 
Therefore, we used the labeled form of SESD for the remaining experiments.  

 
Figure 1 Comparison of Accuracy Values of Five Different Machine Learning Algorithms Based on Two Forms 

of SESD Dataset 

Figure 2 shows the comparison of the accuracy values of five different machine learning algorithms 
based on the three different conventional text representation schemes (namely, TF-IDF, TF and TP) 
using unigram model. In all cases, the results obtained by using TF-IDF weighting scheme slightly 
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outperformed the other schemes indicating that considering document frequency of each feature enhance 
the accuracy performances.  

 
Figure 2 Comparison of the Accuracy Values of Five Different Machine Learning Algorithms Based on Three 

Different Conventional Feature Extraction Methods 

Figure 3 presents the performance comparison of the three N-gram models (namely, unigram, bigram 
and trigram) in conjunction with five machine learning classifiers. SVM and LR classifiers provided the 
highest accuracy results among all classifiers in all N-gram models. In contrast, KNN algorithm 
performed the lowest classification results. Regarding the predictive performance between all three N-
gram models, the utilization of unigram for feature set slightly outperformed the other two models. 
Therefore, we decided to use unigram modeling for the remaining experiments. 

 
Figure 3 Comparison of Accuracy Values of Five Different Machine Learning Algorithms Based on Three 

Different N-gram Models 

Table 2 shows the classification results of five machine learning algorithms in terms of accuracy, 
precision and recall measurement values using TF-IDF weighting scheme and unigram feature 
modeling. We achieved the highest predictive performance as 0.8074 in terms of accuracy by using LR 
as the classifier. SVM performed the second highest performance with an accuracy value of 0.8041. In 
contrary, we achieved the lowest accuracy value using KNN with a value of 0.6883. Regarding the 
precision performance of the classifiers, SVM achieved the highest precision value of 0.8011 which is 
followed by RF and LR in sequence. Regarding the recall performance of the classifiers, LR slightly 
outperformed the others with a value 0.8463. SVM achieved the second highest recall value which is 
followed by NB algorithm. In all cases, KNN algorithm performed the lowest results. This could be due 
to high dimensional feature size of the dataset and the elimination of the noisy documents. 
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Table 2 Comparison of Accuracy, Precision and Recall Classification Results of Five Different Machine 
Learning Algorithms 

 SVM NB LR RF KNN 
Accuracy 0.8041 0.7788 0.8074 0.7802 0.6883 

Precision 0.8011 0.7858 0.7950 0.7984 0.7703 

Recall 0.8424 0.8027 0.8463 0.7766 0.5748 

Figure 4 shows the predictive performances of four machine learning classifiers in conjunction with two 
ensemble learners using unigram features in all cases. As it can be observed from the results presented 
in Figure 4, we cannot obtain any significant performance enhancement in classification accuracy values 
with the use of ensemble learners. Beside these results, we also achieved 0.8115 accuracy value by 
combining the predictions of four machine learning classifiers (namely, SVM, RF, NB and LR) using 
the voting ensemble learner in which there is also no performance enhancement compared to other two 
ensemble learners. 

 
Figure 4. Comparison of Unigram Accuracy Values of Four Different Machine Learning Algorithms Based on 

Two Ensemble Learners 

The performances of the conventional classifiers are extremely related to whether datasets are composed 
of noisy data labelled by overlapped target classes. However, in this study we eliminated the noisy data 
from the SESD dataset by conducting an annotation process. This provided a chance for SVM and LR 
classifiers to achieve higher result compared to others as both of them work relatively well when there 
is a clear separation between classes. In addition, the higher performances of the classifiers SVM and 
LR might be due to their high performances against high-dimensional datasets. 

Tables 3, 4 and 5 present the accuracy, precision and recall results in sequence which are obtained by 
using three deep learning architectures (i.e., CNN, LSTM and RNN) with Keras embedding layer in 
different combination of vector and filter sizes. Regarding the accuracy results, we achieved the highest 
predictive performance as 0.8315 by using CNN. LSTM performed the second highest performance 
with a value of 0.8219, which is followed by RNN with 0.8056. Regarding the precision performance 
of the architectures, CNN achieved the highest precision value of 0.8357 which is followed by LSTM 
and RNN with results 0.8309 and 0.8070 respectively. For recall performance of the architectures, CNN 
outperformed others with a value of 0.8587. LSTM achieved the second highest recall value 0.8398 
which is followed by RNN with 0.8367. On the other hand, we could not obtain any significant 
performance enhancement in different combinations of vector and filter sizes.  

Generally speaking, CNN outperforms at extracting position invariant features which makes it a better 
choice for sentiment analysis problems as sentiment extraction is usually based on key phrase. On the 
other side, RNNs architectures are suitable for problems related to sequence modeling tasks as they 
require flexible modeling of context dependencies [41]. However, in literature, there is no clear 
conclusion as there are also studies provided results vice-versa [42], [43]. In brief, the classification 
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results among deep learning architectures depend on the condition of the content of the dataset and the 
optimization of the parameters of the model. 

Table 3 Comparison of Accuracy Classification Results of Three Deep Learning Architectures Based on 
Different Values of Vector Size and Filter Parameters 

Vector size Filter CNN RNN LSTM 
100 100 0.8205 0.7933 0.8219 
200 100 0.8315 0.7953 0.8211 
100 200 0.8256 0.8056 0.8156 
200 200 0.8290 0.8017 0.8211 

 
Table 4 Comparison of Precision Classification Results of Three Deep Learning Architectures Based on 

Different Values of Vector Size and Filter Parameters 
Vector size Filter CNN RNN LSTM 

100 100 0.8189 0.7924 0.8275 
200 100 0.8294 0.7929 0.8268 
100 200 0.8320 0.8070 0.8303 
200 200 0.8357 0.8068 0.8309 

Table 5 Comparison of Recall Classification Results of Three Deep Learning Architectures Based on Different 
Values of Vector Size and Filter Parameters 

Vector size Filter CNN RNN LSTM 
100 100 0.8491 0.8263 0.8398 
200 100 0.8587 0.8313 0.8382 
100 200 0.8402 0.8367 0.8216 
200 200 0.8440 0.8255 0.8332 

Table 6 shows the accuracy results of the three deep learning architectures (i.e., CNN, LSTM and RNN) 
using pre-trained word vector representation named Word2vec. Regarding the performances of the 
architectures, LSTM slightly outperformed others with a value of 0.8572. The results indicate that using 
Word2vec as an embedding layer compared to Keras provided higher results for all of the three 
architectures. This could be due to the range of vocabulary in Word2vec model (3.6M).  
Table 6 Comparison of Accuracy Classification Results of Three Deep Learning Architectures Using Pre-trained 

Word2Vec Embedding Layer Based on Different Filter Parameters 
Vector size Filter CNN RNN LSTM 

100 100 0.8564 0.8458 0.8550 
100 200 0.8564 0.8456 0.8572 

5. Conclusion 

In this paper, we focused on developing a model to be used for identifying sentiments of the comments 
in software engineering-related social media and microblogging sites as a guidance for people who are 
willing to learn positive and negative aspects of software engineering education and work life. So this 
model can be plugged in any application which is implemented for crawling software engineering-
related positive and negative information from any text data source.  

To generate the dataset, first we conducted a survey to collect labeled documents among software 
engineering students (349 sophomores and 185 seniors) where we asked them to write five positive and 
five negative comments about software engineering. Then, we validated the raw dataset with an 
annotation process which has the Cohen’s kappa (K) metric as 0.97 indicating a perfect agreement 
among the annotators. After the corpus creation phase, we implemented empirical analysis to compare 
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predictive performances of five conventional classifiers (SVM, NB, RF, LR and KNN), three ensemble 
learners (namely, AdaBoost, Bagging and Voting) and three well-known deep learning architectures 
(CNN, RNN and LSTM). In addition, we also compared classification results obtained by using different 
feature extraction methods (namely, TF, TP and TF-IDF) and three N-gram models (unigram, bigram 
and trigram) in conjunction with conventional classifiers. TF-IDF scheme and unigram model generally 
outperformed others. In general, the empirical results indicate that SVM and LR classifiers provided the 
highest predictive performances among other conventional classifiers. This case can be explained with 
the documents which are clearly separated between classes as a result of the annotation process. 
Regarding the performances of the ensemble learners, we could not achieve significant performance 
enhancement using three different ensemble learners on SVM, RF, LR and NB classifiers. Regarding 
deep learning architectures, CNN provided the highest predictive performance values in almost all 
compared configurations among other architectures. This might be due to optimization of the parameters 
of the models and the higher performance of the CNN architecture on sentiment analysis problems as 
sentiment extraction is usually based on key phrase. Deep learning architectures also performed higher 
classification results compared to conventional classifiers as they utilize deep neural networks and 
embedding models. In addition, we also evaluated the proposed deep learning architectures with pre-
trained embedding layer Word2vec where we achieved higher accuracy values compared to Keras 
embedding layer. This case might be due to the range of vocabulary in Word2vec pre-trained model.  

For future work, we might extend the size of the dataset by conveying a survey among graduated 
software engineering students. In addition, different feature extraction methods and embedding schemes 
can be used to examine performance enhancements. 
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