
SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES
VOL. 3, NO. 3, DECEMBER 2020
DOI: 10.35377/saucis.03.03.776573

A Comparison of the State-of-the-Art Deep Learning Platforms: An
Experimental Study

Abdullah Talha Kabakus1
1Corresponding Author; Duzce University; talhakabakus@duzce.edu.tr; +90 380 542 10 36

Received 03 August 2020; Revised 15 September 2020; Accepted 18 September 2020; Published online 30 December 2020

Abstract

Deep learning, a subfield of machine learning, has proved its efficacy on a wide range of applications including
but not limited to computer vision, text analysis and natural language processing, algorithm enhancement,
computational biology, physical sciences, and medical diagnostics by producing results superior to the state-of-
the-art approaches. When it comes to the implementation of deep neural networks, there exist various state-of-the-
art platforms. Starting from this point of view, a qualitative and quantitative comparison of the state-of-the-art
deep learning platforms is proposed in this study in order to shed light on which platform should be utilized for
the implementations of deep neural networks. Two state-of-the-art deep learning platforms, namely, (𝑖𝑖) Keras, and
(𝑖𝑖𝑖𝑖) PyTorch were included in the comparison within this study. The deep learning platforms were quantitatively
examined through the models based on three most popular deep neural networks, namely, (𝑖𝑖) Feedforward Neural
Network (FNN), (𝑖𝑖𝑖𝑖) Convolutional Neural Network (CNN), and (𝑖𝑖𝑖𝑖𝑖𝑖) Recurrent Neural Network (RNN). The
models were evaluated on three evaluation metrics, namely, (𝑖𝑖) training time, (𝑖𝑖𝑖𝑖) testing time, and (𝑖𝑖𝑖𝑖𝑖𝑖) prediction
accuracy. According to the experimental results, while Keras provided the best performance for both FNNs and
CNNs, PyTorch provided the best performance for RNNs expect for one evaluation metric, which was the testing
time. This experimental study should help deep learning engineers and researchers to choose the most suitable
platform for the implementations of their deep neural networks.

Keywords: deep learning, deep neural networks, feedforward neural networks, convolutional neural
networks, recurrent neural networks

En Gelişkin Derin Öğrenme Platformlarının Bir Karşılaştırması:
Deneysel Bir Çalışma

Öz

Makine öğrenmesinin bir alt alanı olan derin öğrenme, bilgisayarlı görü, metin analizi ve doğal dil işleme,
algoritma iyileştirme, hesaplamalı biyoloji, fen bilimleri ve hastalık teşhisi alanlarıyla sınırlı olmamak kaydıyla
çok çeşitli uygulamalar üzerindeki etkinliğini en gelişkin yaklaşımlardan daha başarılı sonuçlar üreterek
kanıtlamıştır. Derin sinir ağlarının gerçekleştiriminde çeşitli en gelişkin platformlar mevcuttur. Bu noktadan
hareketle, derin sinir ağların gerçekleştiriminde hangi platformun kullanılması gerektiğine ışık tutmak amacıyla
en gelişkin derin öğrenme platformlarının nitel ve nicel bir karşılaştırması bu çalışmada öne sürülmüştür. Bu
çalışma kapsamındaki karşılaştırmaya iki en gelişkin derin öğrenme platformu, isim olarak, (𝑖𝑖) Keras ve (𝑖𝑖𝑖𝑖)
PyTorch dahil edilmiştir. Derin öğrenme platformları en popüler üç derin sinir ağı olan (𝑖𝑖) İleri Beslemeli Sinir
Ağı (FNN), (𝑖𝑖𝑖𝑖) Evrişimli Sinir Ağı (CNN) ve (𝑖𝑖𝑖𝑖𝑖𝑖) Tekrarlayan Sinir Ağı (RNN) temelli modeller üzerinden
incelenmiştir. Modeller, (𝑖𝑖) eğitim süresi, (𝑖𝑖𝑖𝑖) test süresi ve (𝑖𝑖𝑖𝑖𝑖𝑖) tahmin doğruluğu olmak üzere üç değerlendirme
kriteri kullanılarak değerlendirilmiştir. Elde edilen deneysel sonuçlara göre hem FNN hem de CNN’ler için en iyi
performansı Keras sağlarken, RNN’ler için bir değerlendirme kriteri (test süresi) dışında en iyi performansı
PyTorch sağlamıştır. Bu deneysel çalışma, derin öğrenme mühendisleri ve araştırmacılarının kendi derin öğrenme
ağlarının gerçekleştiriminde en uygun platformun seçimi noktasında yardım etmesi gerekmektedir.

Anahtar Kelimeler: derin öğrenme, derin sinir ağları, ileri beslemeli sinir ağları, evrişimli sinir ağları,
tekrarlayan sinir ağları

http://doi.org/10.35377/saucis.03.03.776573
https://orcid.org/0000-0003-2181-4292

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

170

1. Introduction

Deep learning, a subfield of machine learning, is the application of multi-layered neural networks to
perform learning tasks such as classification, regression, clustering, and auto-encoding. Deep learning
has been a revolution for various learning tasks including but not limited to computer vision [1], medical
diagnostics [2], text analysis and natural language processing (NLP) [3], algorithm enhancement,
computational biology, and physical sciences [4] due to its efficacy in approximating and reducing huge
datasets into highly accurate predictive and transformational output [5], [6]. Deep learning has even
exceeded human abilities in areas such as handwriting and image recognition [7], [8]. Unlike the
traditional machine learning techniques, deep learning architectures are flexible enough to be applied to
different types of data, be they visual, audio, numerical, text, or some combination of them [4]. Despite
that the fundamentals of the deep learning techniques were originally proposed in the 1980s, the rise in
popularity of it can be traced back to only the last few years due to the following reasons: (𝑖𝑖) The greater
availability of big data, which has significantly improved learning ability of deep neural networks,
thanks to the rise of smartphones, social media applications, and embedded sensors, (𝑖𝑖𝑖𝑖) the efficient
use of graphical processing units (GPUs), and (𝑖𝑖𝑖𝑖𝑖𝑖) the discovery of the new architectures as well as new
techniques to improve the performance of models such as ReLU, Batch Normalization, and Dropout [4],
[9]–[14]. When it comes to implementation of deep neural networks, there exist various highly-popular,
state-of-the-art platforms, which do have similar qualitative abilities, such as Keras [15], PyTorch [16],
Caffe [17], Theano [18], and the Microsoft Cognitive Toolkit (CNTK) [19]. Therefore, which one should
be utilized to implement a deep neural network is a question that instinctively comes to mind for the
researchers, and developers and is needed to be addressed. To this end, a comparison, that both
quantitatively and qualitatively compare the state-of-the-art deep learning platforms, was proposed in
this study. This experimental study should help deep learning engineers and researchers to choose the
most suitable platform for the implementations of their deep neural networks. The rest of the paper is
structured as follows: Section 2 describes the related work. Section 3 presents the material and method.
Section 4 presents the experimental results and discussion. Finally, Section 5 concludes the paper with
future directions.

2. Related Work

Liu et al. [20] benchmarked three state-of-the-art deep learning platforms, namely, TensorFlow [21],
Caffe, and Torch [22]. The evaluation metrics they used were accuracy, runtime performance, and the
model’s robustness against different datasets. They highlighted three observations from their
experiments: (𝑖𝑖) The deep learning platforms are optimized for the built-in datasets with their default
configuration. Hence, the efficacy might vary on a custom dataset. (𝑖𝑖𝑖𝑖) The efficacy might vary on the
dataset that was used for the experiments. (𝑖𝑖𝑖𝑖𝑖𝑖) Benchmarking deep learning platforms is significantly
more challenging than traditional performance-driven benchmarking.

Bahrampour et al. [23] proposed a comparative study of Caffe, neon [24], Theano, and Torch for deep
learning tasks. The three aspects they utilized were: (𝑖𝑖) extensibility, (𝑖𝑖𝑖𝑖) hardware utilization, and (𝑖𝑖𝑖𝑖𝑖𝑖)
speed, which includes both gradient computation time (a.k.a. training time) and forward time (a.k.a.
testing time). According to their experimental result, Torch provided the best performance for any deep
neural network architecture on CPU. When it comes to performance on GPU, the conclusions were two-
fold: (𝑖𝑖) Torch provided the best performance for large convolutional and fully connected networks, and
(𝑖𝑖𝑖𝑖) Theano provided the best performance for LSTM (Long Short-Term Memory) networks.

Shi et al. [25] benchmarked four state-of-the-art deep learning platforms, namely, Caffe, CNTK,
TensorFlow, and Torch for three types of neural networks, namely, (𝑖𝑖) Feedforward Neural Network
(FNN), (𝑖𝑖𝑖𝑖) Convolutional Neural Network (CNN), and (𝑖𝑖𝑖𝑖𝑖𝑖) Recurrent Neural Network (RNN). They
evaluated the aforementioned deep learning platforms based on their running time performance.
According to their experiments, they concluded that there is no single platform that consistently
outperforms others. For the FNNs, Torch provided the best performance on CPU. When it comes to the
performances of FNNs on GPU, Caffe, and CNTK provided the best performance. For the CNNs, while
Caffe provided the best performance on a quad-core desktop CPU with 4 threads, TensorFlow provided

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

171

the best performance on a server CPU with 16 threads. When it comes to the performances of CNNs on
GPU, the best performance varies through the CNN model. For the RNNs, CNTK provided the best
performance both on CPU and GPU. Also, they noted that the performances of the deep neural networks
generally do not scale very well on many-core CPUs and 10 − 30X speedup was observed when the
best GPU result was compared to the best CPU result.

Chintala [26], an Artificial Intelligence (AI) research engineer at Facebook, proposed an extensive set
of benchmarks for a variety of CNN models and benchmarked Torch, TensorFlow, and Caffe. The
experiments were carried on a machine with the following hardware configuration: 6-core Intel Core
i7-5930K @ 3.50GHz CPU, and NVIDIA Titan X GPU. According to the experimental result, Torch
provided the best performance among the others for the AlexNet [7] CNN model.

Theano development team [18] benchmarked the Theano with TensorFlow, and Torch on three LSTM
models as follows: (𝑖𝑖) The small model consists of a single 200-unit hidden layer with a sequence length
of 20, (𝑖𝑖𝑖𝑖) the medium model consists of a single 600-unit hidden layer with a sequence length of 40,
and (𝑖𝑖𝑖𝑖𝑖𝑖) the large one consists of two 650-unit hidden layers with a sequence length of 50. The
experiments were carried on a machine with the following hardware configuration: 6-core Intel Core
i7-5930K @ 3.50GHz CPU, and NVIDIA Digits DevBox with 4 Titan X GPUs. All models were
evaluated on the Penn Treebank dataset [27]. The evaluation metric was the processing speed, which
includes both the forward and backward passes. According to the experimental result, while TensorFlow
provided the best performance for the small LSTM model, Theano provided the best performance for
both the medium and large LSTM models. Torch provided the worst performance for all models.

Shatnawi et al. [28] benchmarked CNTK, TensorFlow, and Theano using CNNs on two gold standard
datasets, namely, MNIST (Mixed National Institute of Standards and Technology) [29], and CIFAR-10
[30]. According to the experimental result, CNTK provided the best performance among the others in
terms of CPU and GPU multithreading, but in CIFAR-10 using 8, 16, and 32 threads in CPU,
TensorFlow was found as faster than CNTK. Theano was found as the slowest among the others.

Kovalev et al. [31] benchmarked Theano (with Keras wrapper), TensorFlow, Caffe, Torch, and
Deeplearning4j [32] for FNNs. The evaluation metrics were processing speed, classification accuracy,
and the number of lines of source code. According to the experimental result, the aforementioned deep
learning platforms were ranked as follows: Theano, TensorFlow, Caffe, Torch, and Deeplearning4j. In
addition to this, they reported that the employment of the non-linear activation function Rectified Linear
Unit (ReLU) instead of the tanh activation function improved the performances of FNNs in terms of
both training speed and classification accuracy.

3. Material and Method

In this section, the deep learning platforms and the benchmarking setup were described in the following
subsections.

3.1 Deep Learning Platforms

The properties of deep learning platforms such as the programming languages they are implemented in,
supported programming languages, NVIDIA CUDA Deep Neural Network (cuDNN) [33] support, which
is a GPU-accelerated library of primitives for deep neural networks that provides significant speed and
space benefits [34], and CPU and GPU support vary through the platforms. Table 1 lists the properties
of the widely-used, state-of-the-art deep learning platforms, namely, Keras, PyTorch, Caffe, Theano,
and CNTK. Each deep learning platform is briefly described in the following paragraphs.

Keras. Keras is a widely-used, open-source deep learning library implemented in Python. Keras
provides an easy-to-use, developer-friendly API to implement deep neural network architectures. Keras
was originally developed by a Google engineer and aims easy and fast prototyping [15]. Unlike the other
aforementioned platforms, Keras is not a standalone deep learning platform as it runs on the top of

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

172

various backends, namely, TensorFlow, Theano, and CNTK. TensorFlow was employed as the backend
of Keras within this study since it is the recommended one by its developer [35].

PyTorch. PyTorch is another widely-used, open-source deep learning library implemented in Python.
PyTorch is backed by Facebook AI Research and behaves like a Python API for the Torch engine, which
is written in Lua programming language and initially only had bindings in Lua [36]. While PyTorch
retains the flexibility of interfacing with C and the current speed of the Torch engine, it has some big
advantages such as recurrent nets, weight sharing, and memory usage [37]. Another advantage of
PyTorch compared to Torch comes from being a Python library as 78% of over 23,000 data scientists
recommended Python for an aspiring data scientist to learn in a recent survey [38]. As a natural
consequence of this, all the deep learning platforms, that are included in this study, provide a Python
API. Moreover, some of them, namely, Keras, PyTorch, and Theano, are actually implemented in
Python.

Caffe. Caffe is an open-source deep learning library implemented in Python. Caffe is developed by the
Berkeley Vision and Learning Center (BVLC) and is implemented in C++. It is reported that Caffe is
able to process 40 million images per day which equals almost 2.5 ms per image when it is accelerated
by a single NVIDIA K40 or Titan GPU [17]. It is worth to mention that the next version of Caffe, Caffe2,
has become a part of PyTorch in 2018 [39].

Theano. Theano is an open-source deep learning library implemented in Python and developed by Mila
Research Institute as a compiler for mathematical expressions that optimize and evaluate the expressions
in the syntax of NumPy [40], which is a widely-used Python library that provides multi-dimensional
arrays and matrices, and a large collection of high-level mathematical functions to operate on these data
structures. Theano is in a maintenance mode as its developers declared that they stopped the
development of new features [41].

CNTK. CNTK is an open-source deep learning library implemented in C++ and developed by Microsoft
Research. The developers of CNTK report that CNTK efficiently removes the duplicated computations
in forward and backward passes, uses minimal memory, and reduces memory reallocation by reusing
them [42]. CNTK provides APIs in both Python and C# programming languages. It is worth to mention
that, similar to Theano, there are no plans for new feature development for CNTK since its latest stable
release, 2.7, which was released in April 2019 [43].

Table 1 The properties of the widely-used, state-of-the-art deep learning platforms
Property Keras PyTorch Caffe Theano CNTK

Core Python Python C++ Python C++

Multi-core CPU support Available Available Available Available Available

Many-core GPU support Available Available Available Available Available

NVIDIA cuDNN support Available Available Available Available Available

Supported programming
languages

Python Python,
C++, Java

Python Python Python, C#

Number of stars received
on GitHub

48.9𝑘𝑘 40.2𝑘𝑘 30.6𝑘𝑘 9.2𝑘𝑘 16.8𝑘𝑘

The popularities of the aforementioned deep learning platforms were retrieved through Google Trends
[44], which is a service by Google that analyzes the popularities of the given terms. As the worldwide
trends of the deep learning platforms in the last 5 years were presented in Figure 1, the rank of the
popularities of the deep learning platforms was found as follows: Keras, PyTorch, Caffe, Theano, and
CNTK, whose average trend scores were obtained as 56, 33, 15, 5, and 2, respectively. For the sake of
comparison, the two most popular deep learning frameworks in terms of (𝑖𝑖) the number of stars received
on GitHub, and (𝑖𝑖𝑖𝑖) the trend scores which were obtained from Google Trends, namely, Keras, and
PyTorch, were benchmarked within this study. The benchmarking experiments within this study were

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

173

carried out on the Google’s Colaboratory (a.k.a. Colab) [45] platform, which provides free powerful
GPUs such as Nvidia Tesla K80 as high computational power is necessary to train deep neural networks
with a large amount of data. Another advantage of utilizing the Colab is that many highly popular Python
libraries including but not limited to TensorFlow, Keras, PyTorch, NumPy, Pandas, and scikit-learn are
already pre-installed on this platform. The versions of Keras and PyTorch were 2.3.1 on the TensorFlow
2.2.0 backend, and 1.6.0, respectively. The operating system of the host provided by Colab was
GNU/Linux 4.19.104 x86_64 which was bundled with Python 3.6.9.

Figure 1 The trend scores of the deep learning platforms which were obtained from Google Trends in the last 𝟓𝟓

years

3.2 Benchmarking Setup

For the sake of benchmarking the deep learning platforms, models based the three most popular types
of deep neural networks, namely, FNN, CNN, and RNN, were proposed and trained on the de-facto
standard datasets since datasets play a critical role in the performance of deep neural networks [5], [46]–
[48].

Feedforward Neural Networks. In order to benchmark the performance of Keras and PyTorch on
FNNs, a sample model, whose architecture’s block representation is presented in Figure 2, was
implemented using these deep learning platforms.

Figure 2 A block representation of the architecture of the proposed sample FNN model

In order to train and test the network, a de-facto standard dataset, namely, MNIST, was utilized. MNIST
is a large dataset of handwritten digits that were size-normalized and centered in a fixed-size as some
examples of the images in the dataset are presented in Figure 3. Each digit in MNIST is represented as a
28𝑥𝑥28 pixel grayscale image. This dataset is already provided by both Keras and PyTorch through the
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, and 𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡ℎ𝑣𝑣𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑣𝑣 packages, respectively. To prevent any potential issues due to manual
installation, the built-in versions of the MNIST were preferred. The Adaptive Moment Estimation (Adam)
[49], which is an extension to the Stochastic Gradient Descent (SGD) [50], was employed as the
optimization algorithm of the proposed sample FNN model with the intention of updating the network
weights more efficiently by computing adaptive learning rates for each network parameter from
estimates of first and second moments of the gradient [2]. The hyper-parameters of the proposed sample
FNN model are listed in Table 2.

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

174

Figure 3 Some examples of the images in the MNIST dataset

Table 2 The hyper-parameters of the proposed sample FNN model
Hyper-parameter Value
Optimization algorithm Adam
Learning rate 𝑘𝑘−3
Loss function Categorical Cross-Entropy
Batch size 80
Number of epochs 20

Convolutional Neural Networks. In order to benchmark the performance of Keras and PyTorch on
CNNs, a highly popular architecture, namely, VGG16 [51], was utilized which achieved 92.7% top-5
accuracy for the gold standard ImageNet [1] dataset. Both Keras and PyTorch provide VGG16
implementations through the 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, and 𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡ℎ𝑣𝑣𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑣𝑣 packages, respectively. A block representation
of the architecture of the VGG16 is presented in Figure 4.

Figure 4 A block representation of the architecture of the VGG16

In order to train and test the network, a de-facto standard dataset, namely, CIFAR-10, was utilized.
CIFAR-10 is a large database of color images in ten classes, namely, 𝑘𝑘𝑖𝑖𝑘𝑘𝑎𝑎𝑎𝑎𝑘𝑘𝑣𝑣𝑘𝑘, 𝑘𝑘𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎𝑖𝑖𝑎𝑎𝑘𝑘, 𝑎𝑎𝑖𝑖𝑘𝑘𝑏𝑏, 𝑡𝑡𝑘𝑘𝑡𝑡,
𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑡𝑡𝑑𝑑, 𝑓𝑓𝑘𝑘𝑡𝑡𝑑𝑑, ℎ𝑡𝑡𝑘𝑘𝑘𝑘𝑘𝑘, 𝑘𝑘ℎ𝑖𝑖𝑎𝑎, and 𝑡𝑡𝑘𝑘𝑎𝑎𝑡𝑡𝑘𝑘. Each sample is represented as a 32𝑥𝑥32 pixel color image
as some examples of the images in the dataset are presented in Figure 5. This dataset is already provided
by both Keras and PyTorch through the 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, and 𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡ℎ𝑣𝑣𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑣𝑣 packages, respectively. Similar to the
experiment on FNNs, the built-in versions of the CIFAR-10 were preferred in order to prevent any
potential issues due to manual installation. The employed hyper-parameters of the VGG16 are listed in
Table 3.

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

175

Figure 5 Some examples of the images in the CIFAR-10 dataset

Table 3 The employed hyper-parameters of the VGG16
Hyper-parameter Value
Optimization algorithm Adam
Learning rate 𝑘𝑘−2
Loss function Categorical Cross-Entropy
Batch size 80
Number of epochs 20

Recurrent Neural Networks. LSTM is a special type of RNN that provides the following advantages
comparing to RNNs: (𝑖𝑖) LSTM solves the general problem of gradient descent [52], and (𝑖𝑖𝑖𝑖) it has long-
term memory, which is a key necessity for sequence processing. In order to benchmark the performance
of Keras and PyTorch on RNNs, a sample LSTM model, whose architecture’s block representation is
presented in Figure 6, was implemented using these deep learning platforms.

Figure 6 A block representation of the architecture of the proposed sample LSTM model

In order to train and test the network, a de-facto standard dataset, namely, IMDb Movie Review [53]
dataset, was utilized. This dataset consists of movie reviews from IMDb (Internet Movie Database), a
widely-used online movie database. Each movie review in the dataset is encoded as a list of word
indexes (𝑖𝑖𝑣𝑣𝑡𝑡𝑘𝑘𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘) and is labeled with a sentiment class (𝑎𝑎𝑡𝑡𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑘𝑘/𝑣𝑣𝑘𝑘𝑑𝑑𝑘𝑘𝑡𝑡𝑖𝑖𝑣𝑣𝑘𝑘). Some samples from the
IMDb Movie Review dataset are listed in Table 4.

Table 4 Some samples from the IMDb Movie Review dataset
Movie Review Sentiment Class

“If you like original gut wrenching laughter you will like this movie. If you are young or
old then you will love this movie, hell even my mom liked it. Great Camp!!!” 𝑎𝑎𝑡𝑡𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑘𝑘

“This movie was terrible. The plot was terrible and unbelievable. I cannot recommend
this movie. Where did this movie come from? This movie was not funny and wasted the
talent of some great actors and actresses including: Gary Sinise, Kathy Bates, Joey
Lauren Adams, and Jennifer Tilly.”

𝑣𝑣𝑘𝑘𝑑𝑑𝑘𝑘𝑡𝑡𝑖𝑖𝑣𝑣𝑘𝑘

The IMDb Movie Review dataset is already provided by both Keras and PyTorch through the 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,
and 𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡ℎ𝑡𝑡𝑘𝑘𝑥𝑥𝑡𝑡 packages, respectively. Similar to the previous experiments, the built-in versions of the

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

176

IMDb Movie Review dataset were preferred in order to prevent any potential issues due to manual
installation. The hyper-parameters of the proposed sample LSTM model are listed in Table 5.

Table 5 The hyper-parameters of the proposed sample LSTM model
Hyper-parameter Value
Optimization algorithm Adam
Learning rate 𝑘𝑘−2
Loss function Binary Cross-Entropy
Batch size 500
Number of epochs 10

4. Experimental Result and Discussion

All the experiments were evaluated on the GPUs available on Colab since the significant processing
speedup of deep neural networks as a result of the utilization of GPUs instead of CPUs is widely
experimented [20], [23], [25], [28]. Evaluation metrics are critical for benchmarking studies. The
following three evaluation metrics were used in this study: (𝑖𝑖) Training time, the time spent on training
the network, (𝑖𝑖𝑖𝑖) testing time, the time spent on testing the trained network which is a clear indicator of
any potential latency of deploying the model for prediction [20], and (𝑖𝑖𝑖𝑖𝑖𝑖) prediction accuracy, the
accuracy of the model for predicting the unknown samples (a.k.a. testing set). It is worth to mention that
these durations were calculated thanks to the built-in Python function 𝑡𝑡𝑖𝑖𝑎𝑎𝑘𝑘, which is available in the
𝑡𝑡𝑖𝑖𝑎𝑎𝑘𝑘 package of the Python SDK and returns the current time in seconds since the Epoch, through the
calculation of the time difference between the timestamps retrieved before and after each phase
(training/testing) of the employed networks. Also, each experiment was repeated 10 times and the final
values were determined through the cumulative averages of the trials. In the following paragraphs, the
experimental result and discussion are presented for each neural network type.

Feedforward Neural Networks. MNIST dataset was utilized to train and test the proposed FNN model
for the sake of benchmarking the deep learning platforms on FNNs. MNIST consists of 𝟔𝟔𝟔𝟔,𝟔𝟔𝟔𝟔𝟔𝟔 training,
and 𝟏𝟏𝟔𝟔,𝟔𝟔𝟔𝟔𝟔𝟔 test images. 𝟐𝟐𝟔𝟔% of the training images were employed as the validation set which is
necessary to update the weights and tune the model. Keras was found as more accurate than PyTorch
on prediction accuracy as the experimental result is listed in Table 6. When it comes to training time,
Keras was found about 𝟑𝟑.𝟖𝟖 times faster than PyTorch. For the testing time, Keras was found about 𝟐𝟐.𝟒𝟒
times faster than PyTorch. The calculated training and testing times of Keras and PyTorch for the
proposed sample FNN model are presented in Figure 7. According to this experiment, it is safe to
conclude that Keras is a better choice for the implementations of FNNs.

Table 6 The calculated prediction accuracy of Keras and PyTorch for the proposed sample FNN model
Platform Accuracy (%)
Keras 97.24
PyTorch 96.69

Figure 7 The calculated training (left) and testing (right) times of Keras and PyTorch for the proposed sample

FNN model

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

177

Convolutional Neural Networks. The CIFAR-10 dataset was utilized to train and test the employed
VGG16 for the sake of benchmarking the deep learning platforms on CNNs. CIFAR-10 consists of
𝟓𝟓𝟔𝟔,𝟔𝟔𝟔𝟔𝟔𝟔 training, and 𝟏𝟏𝟔𝟔,𝟔𝟔𝟔𝟔𝟔𝟔 test images. 𝟐𝟐𝟔𝟔% of the training images were employed as the validation
set which is necessary to update the weights and tune the model during backpropagation. Keras was
found as more accurate than PyTorch on prediction accuracy as the experimental result is listed in Table
7. When it comes to training time, Keras was found about 𝟏𝟏.𝟗𝟗 times faster than PyTorch. For the testing
time, Keras was found about 𝟏𝟏.𝟒𝟒 times faster than PyTorch. The calculated training and testing times
of Keras and PyTorch for the employed VGG16 are presented in Figure 8. Consequently, it is safe to
conclude from this experiment that Keras was found as a better choice for the implementations of CNNs.

Table 7 The calculated prediction accuracy of Keras and PyTorch for the employed VGG16
Platform Accuracy (%)
Keras 78.43
PyTorch 76.54

Figure 8 The calculated training (left) and testing (right) times of Keras and PyTorch for the employed VGG16

Recurrent Neural Networks. The IMDb Movie Review dataset was utilized to train and test the
proposed sample LSTM model for the sake of benchmarking the deep learning platforms on RNNs. The
IMDb Movie Review dataset consists of 𝟐𝟐𝟓𝟓,𝟔𝟔𝟔𝟔𝟔𝟔 movie reviews for training, and 𝟐𝟐𝟓𝟓,𝟔𝟔𝟔𝟔𝟔𝟔 movie reviews
for testing, and only top (most frequent 𝟓𝟓,𝟔𝟔𝟔𝟔𝟔𝟔) words were kept. 𝟐𝟐𝟔𝟔% of the training images, 𝟓𝟓,𝟔𝟔𝟔𝟔𝟔𝟔
movie reviews, were employed as the validation set. PyTorch was found as more accurate than Keras
as the experimental result is listed in Table 8. When it comes to training time, PyTorch was found about
𝟏𝟏.𝟑𝟑 times faster than Keras. Unlike training, Keras was found about 𝟏𝟏.𝟔𝟔 times faster than PyTorch for
testing. The calculated training and testing times of Keras and PyTorch for the proposed sample LSTM
model are presented in Figure 9. According to this experiment, it is safe to conclude that PyTorch was
found as a better choice for the implementations of RNNs as Keras was found better at only one of the
evaluation metrics, which was the testing time.

Table 8 The calculated prediction accuracy of Keras and PyTorch for the proposed sample LSTM model
Platform Accuracy (%)
Keras 85.83
PyTorch 87.08

Figure 9 The calculated training (left) and testing (right) times of Keras and PyTorch for the employed VGG16

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

178

5. Conclusion

Deep neural networks have proven their efficacy in many topics and their effectiveness is still being
experimented on a wide range of topics thanks to the previous great success. Since there exist various
highly-popular, state-of-the-art platforms for the implementation of deep neural networks, which one
provides the best performance is a question that should be shed light on. To this end, five state-of-the-
art deep neural network platforms, namely, (𝑖𝑖) Keras, (𝑖𝑖𝑖𝑖) PyTorch, (𝑖𝑖𝑖𝑖𝑖𝑖) Caffe, (𝑖𝑖𝑣𝑣) Theano, and (𝑣𝑣)
CNTK were compared in this study. The two most popular of these platforms, namely, Keras, and
PyTorch, were both quantitatively and qualitatively compared. For the quantitative comparison, models
that were based on three widely-used deep neural network types, namely, (𝑖𝑖) FNN, (𝑖𝑖𝑖𝑖) CNN, and (𝑖𝑖𝑖𝑖𝑖𝑖)
RNN, were implemented using Keras and PyTorch. Three evaluation metrics, namely, (𝑖𝑖) training time,
(𝑖𝑖𝑖𝑖) testing time, and (𝑖𝑖𝑖𝑖𝑖𝑖) prediction accuracy, were used for the performance comparison of the deep
neural network platforms. According to the experimental result, Keras was found as a better choice both
accuracy-wise and time-wise compared to PyTorch for the models based on FNNs and CNNs. When it
comes to models based on RNNs, while PyTorch provided better accuracy and required less time to
train the model, Keras was found as faster than PyTorch for the testing of RNNs.

As future work, the proposed models can be employed on CPU to reveal their performances under CPU.
Also, more deep neural network types and more deep neural network platforms can be included for the
conducted experiments for a more comprehensive benchmark. In addition to this, the technical reasons
behind the performance differences between the deep learning platforms can be further investigated by
deeply investigating the implementations of these platforms. Finally, the qualities of deep neural
network platforms can be evaluated with respect to distributed-execution.

References

[1] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput.
Vis., vol. 115, pp. 211–252, 2015, doi: 10.1007/s11263-015-0816-y.

[2] N. Brancati, G. De Pietro, M. Frucci, and D. Riccio, “A Deep Learning Approach for Breast
Invasive Ductal Carcinoma Detection and Lymphoma Multi-Classification in Histological
Images,” IEEE Access, vol. 7, pp. 44709–44720, 2019, doi: 10.1109/ACCESS.2019.2908724.

[3] Y. Weng, F. Bell, H. Zheng, and G. Tur, “OCC: A Smart Reply System for Efficient In-App
Communications,” in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD ’19), 2019, pp. 1–8, doi:
10.1145/3292500.3330694.

[4] W. G. Hatcher and W. Yu, “A Survey of Deep Learning: Platforms, Applications and Emerging
Research Trends,” IEEE Access, vol. 6, pp. 24411–24432, 2018, doi:
10.1109/ACCESS.2018.2830661.

[5] X. W. Chen and X. Lin, “Big Data Deep Learning: Challenges and Perspectives,” IEEE Access,
vol. 2, pp. 514–525, 2014, doi: 10.1109/ACCESS.2014.2325029.

[6] N. D. Nguyen, T. Nguyen, and S. Nahavandi, “System Design Perspective for Human-Level
Agents Using Deep Reinforcement Learning: A Survey,” IEEE Access, vol. 5, pp. 27091–27102,
2017, doi: 10.1109/ACCESS.2017.2777827.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Proceedings of the 25th International Conference on

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

179

Neural Information Processing Systems - Volume 1 (NIPS’12), 2012, pp. 1097–1105.

[8] M. Nielsen, “Neural Networks and Deep Learning,” 2019.
http://neuralnetworksanddeeplearning.com (accessed Sep. 03, 2020).

[9] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple
way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–
1958, 2014.

[10] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines,” in
Proceedings of the 27th International Conference on Machine Learning (ICML 2010), 2010, pp.
807–814.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nat. Methods, vol. 521, pp. 436–444,
2015, doi: 10.1038/nmeth.3707.

[12] P. Goldsborough, “A Tour of TensorFlow,” arXiv Prepr., vol. 1610.01178, pp. 1–16, 2016.

[13] L. Rampasek and A. Goldenberg, “TensorFlow: Biology’s Gateway to Deep Learning?,” Cell
Syst., vol. 2, no. 1, pp. 12–14, 2016, doi: 10.1016/j.cels.2016.01.009.

[14] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift,” in Proceedings of the 32nd International Conference on
Machine Learning (ICML 2015), 2015, pp. 448–456.

[15] F. Chollet, “Keras: the Python deep learning API,” 2015. https://keras.io (accessed Sep. 03,
2020).

[16] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in
Proceedings of the Thirty-third Conference on Neural Information Processing Systems (NIPS
2019), 2019, pp. 8026–8037.

[17] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Embedding,” in Proceedings of
the 22nd ACM International Conference on Multimedia (MM 2014), 2014, pp. 675–678, doi:
10.1145/2647868.2654889.

[18] R. Al-Rfou, “Theano: A Python framework for fast computation of mathematical expressions,”
arXiv Prepr., vol. 1605.02688, pp. 1–19, 2016.

[19] “The Microsoft Cognitive Toolkit,” Microsoft, 2017. https://docs.microsoft.com/en-
us/cognitive-toolkit/ (accessed Aug. 02, 2020).

[20] L. Liu, Y. Wu, W. Wei, W. Cao, S. Sahin, and Q. Zhang, “Benchmarking Deep Learning
Frameworks: Design Considerations, Metrics and Beyond,” in Proceedings of the 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS 2018), 2018, pp.
1258–1269, doi: 10.1109/ICDCS.2018.00125.

[21] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning,” in Proceedings of

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

180

the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016),
2016, pp. 265–283.

[22] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-like Environment for
Machine Learning,” in Proceedings of the Twenty-fifth Conference on Neural Information
Processing Systems (NIPS 2011), 2011, pp. 1–6.

[23] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Comparative Study of Caffe, Neon,
Theano, and Torch for Deep Learning,” in Proceedings of the 4th International Conference on
Learning Representations (ICLR 2016), 2016, pp. 1–11, doi:
10.1227/01.NEU.0000297044.82035.57.

[24] “NervanaSystems/neon: Intel® NervanaTM reference deep learning framework committed to
best performance on all hardware,” Intel, 2015. https://github.com/NervanaSystems/neon
(accessed Aug. 02, 2020).

[25] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking State-of-the-Art Deep Learning Software
Tools,” in Proceedings of the 2016 7th International Conference on Cloud Computing and Big
Data (CCBD 2016), 2016, pp. 99–104, doi: 10.1109/CCBD.2016.029.

[26] S. Chintala, “Easy benchmarking of all publicly accessible implementations of convnets,” 2017.
https://github.com/soumith/convnet-benchmarks (accessed Aug. 02, 2020).

[27] M. Marcus, B. Santorini, and M. Marcinkiewicz, “Building a Large Annotated Corpus of
English: The Penn Treebank,” Comput. Linguist., vol. 19, no. 2, pp. 313–330, 1993.

[28] A. Shatnawi, G. Al-Bdour, R. Al-Qurran, and M. Al-Ayyoub, “A Comparative Study of Open
Source Deep Learning Frameworks,” in Proceedings of the 2018 9th International Conference
on Information and Communication Systems (ICICS 2018), 2018, pp. 72–77, doi:
10.1109/IACS.2018.8355444.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998, doi: 10.1109/5.726791.

[30] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” 2009. doi:
10.1.1.222.9220.

[31] V. Kovalev, A. Kalinovsky, and S. Kovalev, “Deep Learning with Theano, Torch, Caffe,
TensorFlow, and Deeplearning4J: Which One Is the Best in Speed and Accuracy?,” in
Proceedings of the 13th International Conference on Pattern Recognition and Information
Processing (PRIP 2016), 2016, pp. 99–103.

[32] “Deeplearning4j: Deep Learning for Java,” Konduit, 2020. https://deeplearning4j.org (accessed
Aug. 02, 2020).

[33] “NVIDIA cuDNN,” NVIDIA, 2020. https://developer.nvidia.com/cudnn (accessed Aug. 02,
2020).

[34] A. Vedaldi and K. Lenc, “MatConvNet: Convolutional Neural Networks for MATLAB,” in

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

181

Proceedings of the 23rd ACM International Conference on Multimedia (MM’15), 2015, pp. 689–
692.

[35] F. Chollet, Deep Learning with Python. Manning Publications, 2017.

[36] N. Ketkar, Deep Learning with Python. Springer, 2017.

[37] S. Chintala, “Roadmap for torch and pytorch,” 2017. https://discuss.pytorch.org/t/roadmap-for-
torch-and-pytorch/38/2 (accessed Aug. 02, 2020).

[38] B. Hayes, “Programming Languages Most Used and Recommended by Data Scientists,”
Business Over Broadway, 2019. https://businessoverbroadway.com/2019/01/13/programming-
languages-most-used-and-recommended-by-data-scientists/ (accessed Aug. 02, 2020).

[39] “Caffe2 and PyTorch join forces to create a Research + Production platform PyTorch 1.0,” 2018.
https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html (accessed Aug. 02, 2020).

[40] T. E. Oliphant, A Guide to NumPy. Trelgol Publishing, 2006.

[41] Y. Bengio, “MILA and the future of Theano,” 2017.
https://groups.google.com/forum/#!msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ
(accessed Aug. 02, 2020).

[42] D. Yu et al., “An Introduction to Computational Networks and the Computational Network
Toolkit,” 2015. [Online]. Available: https://www.microsoft.com/en-us/research/wp-
content/uploads/2014/08/CNTKBook-20160217.pdf.

[43] “CNTK v2.7 Release Notes,” Microsoft Research, 2019. https://docs.microsoft.com/en-
us/cognitive-toolkit/releasenotes/cntk_2_7_release_notes (accessed Aug. 02, 2020).

[44] “Google Trends,” Google, 2020. https://trends.google.com/trends (accessed Aug. 02, 2020).

[45] “Colaboratory,” Google, 2020. https://colab.research.google.com (accessed Sep. 03, 2020).

[46] O. Y. Al-Jarrah, P. D. Yoo, S. Muhaidat, G. K. Karagiannidis, and K. Taha, “Efficient Machine
Learning for Big Data: A Review,” Big Data Res., vol. 2, no. 3, pp. 87–93, 2015, doi:
10.1016/j.bdr.2015.04.001.

[47] T. Condie, P. Mineiro, N. Polyzotis, and M. Weimer, “Machine learning on Big Data,” in
Proceedings of the 2013 IEEE 29th International Conference on Data Engineering (ICDE 2013),
2013, pp. 1242–1244.

[48] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, Big, Simple Neural
Nets for Handwritten Digit Recognition,” Neural Comput., vol. 22, no. 12, pp. 3207–3220, 2010,
doi: 10.1162/NECO_a_00052.

[49] D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” in Proceeding of
the 3rd International Conference on Learning Representations (ICLR 2015), 2015, pp. 1–15.

Sakarya University Journal of Computer and Information Sciences

Abdullah Talha Kabakus

182

[50] H. Robbins and S. Monro, “A Stochastic Approximation Method,” Ann. Math. Stat., vol. 22, no.
3, pp. 400–407, 1951, doi: 10.1214/aoms/1177729586.

[51] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image
Recognition,” arXiv Prepr., pp. 1–14, 2014, [Online]. Available: http://arxiv.org/abs/1409.1556.

[52] H. Wang, Y. Zhang, and X. Yu, “An Overview of Image Caption Generation Methods,” Comput.
Intell. Neurosci., vol. 2020, pp. 1–13, 2020, doi: 10.1155/2020/3062706.

[53] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning Word Vectors
for Sentiment Analysis,” 2011.

