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Abstract 

Deep learning, a subfield of machine learning, has proved its efficacy on a wide range of applications including 
but not limited to computer vision, text analysis and natural language processing, algorithm enhancement, 
computational biology, physical sciences, and medical diagnostics by producing results superior to the state-of-
the-art approaches. When it comes to the implementation of deep neural networks, there exist various state-of-the-
art platforms. Starting from this point of view, a qualitative and quantitative comparison of the state-of-the-art 
deep learning platforms is proposed in this study in order to shed light on which platform should be utilized for 
the implementations of deep neural networks. Two state-of-the-art deep learning platforms, namely, (𝑖𝑖) Keras, and 
(𝑖𝑖𝑖𝑖) PyTorch were included in the comparison within this study. The deep learning platforms were quantitatively 
examined through the models based on three most popular deep neural networks, namely, (𝑖𝑖) Feedforward Neural 
Network (FNN), (𝑖𝑖𝑖𝑖) Convolutional Neural Network (CNN), and (𝑖𝑖𝑖𝑖𝑖𝑖) Recurrent Neural Network (RNN). The 
models were evaluated on three evaluation metrics, namely, (𝑖𝑖) training time, (𝑖𝑖𝑖𝑖) testing time, and (𝑖𝑖𝑖𝑖𝑖𝑖) prediction 
accuracy. According to the experimental results, while Keras provided the best performance for both FNNs and 
CNNs, PyTorch provided the best performance for RNNs expect for one evaluation metric, which was the testing 
time. This experimental study should help deep learning engineers and researchers to choose the most suitable 
platform for the implementations of their deep neural networks. 

Keywords: deep learning, deep neural networks, feedforward neural networks, convolutional neural 
networks, recurrent neural networks 

En Gelişkin Derin Öğrenme Platformlarının Bir Karşılaştırması: 
Deneysel Bir Çalışma 

Öz 

Makine öğrenmesinin bir alt alanı olan derin öğrenme, bilgisayarlı görü, metin analizi ve doğal dil işleme, 
algoritma iyileştirme, hesaplamalı biyoloji, fen bilimleri ve hastalık teşhisi alanlarıyla sınırlı olmamak kaydıyla 
çok çeşitli uygulamalar üzerindeki etkinliğini en gelişkin yaklaşımlardan daha başarılı sonuçlar üreterek 
kanıtlamıştır. Derin sinir ağlarının gerçekleştiriminde çeşitli en gelişkin platformlar mevcuttur. Bu noktadan 
hareketle, derin sinir ağların gerçekleştiriminde hangi platformun kullanılması gerektiğine ışık tutmak amacıyla 
en gelişkin derin öğrenme platformlarının nitel ve nicel bir karşılaştırması bu çalışmada öne sürülmüştür. Bu 
çalışma kapsamındaki karşılaştırmaya iki en gelişkin derin öğrenme platformu, isim olarak, (𝑖𝑖) Keras ve (𝑖𝑖𝑖𝑖) 
PyTorch dahil edilmiştir. Derin öğrenme platformları en popüler üç derin sinir ağı olan (𝑖𝑖) İleri Beslemeli Sinir 
Ağı (FNN), (𝑖𝑖𝑖𝑖) Evrişimli Sinir Ağı (CNN) ve (𝑖𝑖𝑖𝑖𝑖𝑖) Tekrarlayan Sinir Ağı (RNN) temelli modeller üzerinden 
incelenmiştir. Modeller, (𝑖𝑖) eğitim süresi, (𝑖𝑖𝑖𝑖) test süresi ve (𝑖𝑖𝑖𝑖𝑖𝑖) tahmin doğruluğu olmak üzere üç değerlendirme 
kriteri kullanılarak değerlendirilmiştir. Elde edilen deneysel sonuçlara göre hem FNN hem de CNN’ler için en iyi 
performansı Keras sağlarken, RNN’ler için bir değerlendirme kriteri (test süresi) dışında en iyi performansı 
PyTorch sağlamıştır. Bu deneysel çalışma, derin öğrenme mühendisleri ve araştırmacılarının kendi derin öğrenme 
ağlarının gerçekleştiriminde en uygun platformun seçimi noktasında yardım etmesi gerekmektedir. 

Anahtar Kelimeler: derin öğrenme, derin sinir ağları, ileri beslemeli sinir ağları, evrişimli sinir ağları, 
tekrarlayan sinir ağları 
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1. Introduction 

Deep learning, a subfield of machine learning, is the application of multi-layered neural networks to 
perform learning tasks such as classification, regression, clustering, and auto-encoding. Deep learning 
has been a revolution for various learning tasks including but not limited to computer vision [1], medical 
diagnostics [2], text analysis and natural language processing (NLP) [3], algorithm enhancement, 
computational biology, and physical sciences [4] due to its efficacy in approximating and reducing huge 
datasets into highly accurate predictive and transformational output [5], [6]. Deep learning has even 
exceeded human abilities in areas such as handwriting and image recognition [7], [8]. Unlike the 
traditional machine learning techniques, deep learning architectures are flexible enough to be applied to 
different types of data, be they visual, audio, numerical, text, or some combination of them [4]. Despite 
that the fundamentals of the deep learning techniques were originally proposed in the 1980s, the rise in 
popularity of it can be traced back to only the last few years due to the following reasons: (𝑖𝑖) The greater 
availability of big data, which has significantly improved learning ability of deep neural networks, 
thanks to the rise of smartphones, social media applications, and embedded sensors, (𝑖𝑖𝑖𝑖) the efficient 
use of graphical processing units (GPUs), and (𝑖𝑖𝑖𝑖𝑖𝑖) the discovery of the new architectures as well as new 
techniques to improve the performance of models such as ReLU, Batch Normalization, and Dropout [4], 
[9]–[14]. When it comes to implementation of deep neural networks, there exist various highly-popular, 
state-of-the-art platforms, which do have similar qualitative abilities, such as Keras [15], PyTorch [16], 
Caffe [17], Theano [18], and the Microsoft Cognitive Toolkit (CNTK) [19]. Therefore, which one should 
be utilized to implement a deep neural network is a question that instinctively comes to mind for the 
researchers, and developers and is needed to be addressed. To this end, a comparison, that both 
quantitatively and qualitatively compare the state-of-the-art deep learning platforms, was proposed in 
this study. This experimental study should help deep learning engineers and researchers to choose the 
most suitable platform for the implementations of their deep neural networks. The rest of the paper is 
structured as follows: Section 2 describes the related work. Section 3 presents the material and method. 
Section 4 presents the experimental results and discussion. Finally, Section 5 concludes the paper with 
future directions. 

2. Related Work 

Liu et al. [20] benchmarked three state-of-the-art deep learning platforms, namely, TensorFlow [21], 
Caffe, and Torch [22]. The evaluation metrics they used were accuracy, runtime performance, and the 
model’s robustness against different datasets. They highlighted three observations from their 
experiments: (𝑖𝑖) The deep learning platforms are optimized for the built-in datasets with their default 
configuration. Hence, the efficacy might vary on a custom dataset. (𝑖𝑖𝑖𝑖) The efficacy might vary on the 
dataset that was used for the experiments. (𝑖𝑖𝑖𝑖𝑖𝑖) Benchmarking deep learning platforms is significantly 
more challenging than traditional performance-driven benchmarking. 

Bahrampour et al. [23] proposed a comparative study of Caffe, neon [24], Theano, and Torch for deep 
learning tasks. The three aspects they utilized were: (𝑖𝑖) extensibility, (𝑖𝑖𝑖𝑖) hardware utilization, and (𝑖𝑖𝑖𝑖𝑖𝑖) 
speed, which includes both gradient computation time (a.k.a. training time) and forward time (a.k.a. 
testing time). According to their experimental result, Torch provided the best performance for any deep 
neural network architecture on CPU. When it comes to performance on GPU, the conclusions were two-
fold: (𝑖𝑖) Torch provided the best performance for large convolutional and fully connected networks, and 
(𝑖𝑖𝑖𝑖) Theano provided the best performance for LSTM (Long Short-Term Memory) networks.  

Shi et al. [25] benchmarked four state-of-the-art deep learning platforms, namely, Caffe, CNTK, 
TensorFlow, and Torch for three types of neural networks, namely, (𝑖𝑖) Feedforward Neural Network 
(FNN), (𝑖𝑖𝑖𝑖) Convolutional Neural Network (CNN), and (𝑖𝑖𝑖𝑖𝑖𝑖) Recurrent Neural Network (RNN). They 
evaluated the aforementioned deep learning platforms based on their running time performance. 
According to their experiments, they concluded that there is no single platform that consistently 
outperforms others. For the FNNs, Torch provided the best performance on CPU. When it comes to the 
performances of FNNs on GPU, Caffe, and CNTK provided the best performance. For the CNNs, while 
Caffe provided the best performance on a quad-core desktop CPU with 4 threads, TensorFlow provided 
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the best performance on a server CPU with 16 threads. When it comes to the performances of CNNs on 
GPU, the best performance varies through the CNN model. For the RNNs, CNTK provided the best 
performance both on CPU and GPU. Also, they noted that the performances of the deep neural networks 
generally do not scale very well on many-core CPUs and 10 − 30X speedup was observed when the 
best GPU result was compared to the best CPU result. 

Chintala [26], an Artificial Intelligence (AI) research engineer at Facebook, proposed an extensive set 
of benchmarks for a variety of CNN models and benchmarked Torch, TensorFlow, and Caffe. The 
experiments were carried on a machine with the following hardware configuration: 6-core Intel Core 
i7-5930K @ 3.50GHz CPU, and NVIDIA Titan X GPU. According to the experimental result, Torch 
provided the best performance among the others for the AlexNet [7] CNN model. 

Theano development team [18] benchmarked the Theano with TensorFlow, and Torch on three LSTM 
models as follows: (𝑖𝑖) The small model consists of a single 200-unit hidden layer with a sequence length 
of 20, (𝑖𝑖𝑖𝑖) the medium model consists of a single 600-unit hidden layer with a sequence length of 40, 
and (𝑖𝑖𝑖𝑖𝑖𝑖) the large one consists of two 650-unit hidden layers with a sequence length of 50. The 
experiments were carried on a machine with the following hardware configuration: 6-core Intel Core 
i7-5930K @ 3.50GHz CPU, and NVIDIA Digits DevBox with 4 Titan X GPUs. All models were 
evaluated on the Penn Treebank dataset [27]. The evaluation metric was the processing speed, which 
includes both the forward and backward passes. According to the experimental result, while TensorFlow 
provided the best performance for the small LSTM model, Theano provided the best performance for 
both the medium and large LSTM models. Torch provided the worst performance for all models. 

Shatnawi et al. [28] benchmarked CNTK, TensorFlow, and Theano using CNNs on two gold standard 
datasets, namely, MNIST (Mixed National Institute of Standards and Technology) [29], and CIFAR-10 
[30]. According to the experimental result, CNTK provided the best performance among the others in 
terms of CPU and GPU multithreading, but in CIFAR-10 using 8, 16, and 32 threads in CPU, 
TensorFlow was found as faster than CNTK. Theano was found as the slowest among the others. 

Kovalev et al. [31] benchmarked Theano (with Keras wrapper), TensorFlow, Caffe, Torch, and 
Deeplearning4j [32] for FNNs. The evaluation metrics were processing speed, classification accuracy, 
and the number of lines of source code. According to the experimental result, the aforementioned deep 
learning platforms were ranked as follows: Theano, TensorFlow, Caffe, Torch, and Deeplearning4j. In 
addition to this, they reported that the employment of the non-linear activation function Rectified Linear 
Unit (ReLU) instead of the tanh activation function improved the performances of FNNs in terms of 
both training speed and classification accuracy. 

3. Material and Method 

In this section, the deep learning platforms and the benchmarking setup were described in the following 
subsections. 

3.1 Deep Learning Platforms 

The properties of deep learning platforms such as the programming languages they are implemented in, 
supported programming languages, NVIDIA CUDA Deep Neural Network (cuDNN) [33] support, which 
is a GPU-accelerated library of primitives for deep neural networks that provides significant speed and 
space benefits [34], and CPU and GPU support vary through the platforms. Table 1 lists the properties 
of the widely-used, state-of-the-art deep learning platforms, namely, Keras, PyTorch, Caffe, Theano, 
and CNTK. Each deep learning platform is briefly described in the following paragraphs. 

Keras. Keras is a widely-used, open-source deep learning library implemented in Python. Keras 
provides an easy-to-use, developer-friendly API to implement deep neural network architectures. Keras 
was originally developed by a Google engineer and aims easy and fast prototyping [15]. Unlike the other 
aforementioned platforms, Keras is not a standalone deep learning platform as it runs on the top of 
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various backends, namely, TensorFlow, Theano, and CNTK. TensorFlow was employed as the backend 
of Keras within this study since it is the recommended one by its developer [35]. 

PyTorch. PyTorch is another widely-used, open-source deep learning library implemented in Python. 
PyTorch is backed by Facebook AI Research and behaves like a Python API for the Torch engine, which 
is written in Lua programming language and initially only had bindings in Lua [36]. While PyTorch 
retains the flexibility of interfacing with C and the current speed of the Torch engine, it has some big 
advantages such as recurrent nets, weight sharing, and memory usage [37]. Another advantage of 
PyTorch compared to Torch comes from being a Python library as 78% of over 23,000 data scientists 
recommended Python for an aspiring data scientist to learn in a recent survey [38]. As a natural 
consequence of this, all the deep learning platforms, that are included in this study, provide a Python 
API. Moreover, some of them, namely, Keras, PyTorch, and Theano, are actually implemented in 
Python. 

Caffe. Caffe is an open-source deep learning library implemented in Python. Caffe is developed by the 
Berkeley Vision and Learning Center (BVLC) and is implemented in C++. It is reported that Caffe is 
able to process 40 million images per day which equals almost 2.5 ms per image when it is accelerated 
by a single NVIDIA K40 or Titan GPU [17]. It is worth to mention that the next version of Caffe, Caffe2, 
has become a part of PyTorch in 2018 [39]. 

Theano. Theano is an open-source deep learning library implemented in Python and developed by Mila 
Research Institute as a compiler for mathematical expressions that optimize and evaluate the expressions 
in the syntax of NumPy [40], which is a widely-used Python library that provides multi-dimensional 
arrays and matrices, and a large collection of high-level mathematical functions to operate on these data 
structures. Theano is in a maintenance mode as its developers declared that they stopped the 
development of new features [41]. 

CNTK. CNTK is an open-source deep learning library implemented in C++ and developed by Microsoft 
Research. The developers of CNTK report that CNTK efficiently removes the duplicated computations 
in forward and backward passes, uses minimal memory, and reduces memory reallocation by reusing 
them [42]. CNTK provides APIs in both Python and C# programming languages. It is worth to mention 
that, similar to Theano, there are no plans for new feature development for CNTK since its latest stable 
release, 2.7, which was released in April 2019 [43]. 

Table 1 The properties of the widely-used, state-of-the-art deep learning platforms 
Property Keras PyTorch Caffe Theano CNTK 

Core Python Python C++ Python C++ 

Multi-core CPU support Available Available Available Available Available 

Many-core GPU support Available Available Available Available Available 

NVIDIA cuDNN support Available Available Available Available Available 

Supported programming 
languages 

Python Python, 
C++, Java 

Python Python Python, C# 

Number of stars received 
on GitHub 

48.9𝑘𝑘 40.2𝑘𝑘 30.6𝑘𝑘 9.2𝑘𝑘 16.8𝑘𝑘 

 
The popularities of the aforementioned deep learning platforms were retrieved through Google Trends 
[44], which is a service by Google that analyzes the popularities of the given terms. As the worldwide 
trends of the deep learning platforms in the last 5 years were presented in Figure 1, the rank of the 
popularities of the deep learning platforms was found as follows: Keras, PyTorch, Caffe, Theano, and 
CNTK, whose average trend scores were obtained as 56, 33, 15, 5, and 2, respectively. For the sake of 
comparison, the two most popular deep learning frameworks in terms of (𝑖𝑖) the number of stars received 
on GitHub, and (𝑖𝑖𝑖𝑖) the trend scores which were obtained from Google Trends, namely, Keras, and 
PyTorch, were benchmarked within this study. The benchmarking experiments within this study were 
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carried out on the Google’s Colaboratory (a.k.a. Colab) [45] platform, which provides free powerful 
GPUs such as Nvidia Tesla K80 as high computational power is necessary to train deep neural networks 
with a large amount of data. Another advantage of utilizing the Colab is that many highly popular Python 
libraries including but not limited to TensorFlow, Keras, PyTorch, NumPy, Pandas, and scikit-learn are 
already pre-installed on this platform. The versions of Keras and PyTorch were 2.3.1 on the TensorFlow 
2.2.0 backend, and 1.6.0, respectively. The operating system of the host provided by Colab was 
GNU/Linux 4.19.104 x86_64 which was bundled with Python 3.6.9. 

 
Figure 1 The trend scores of the deep learning platforms which were obtained from Google Trends in the last 𝟓𝟓 

years 

3.2 Benchmarking Setup 

For the sake of benchmarking the deep learning platforms, models based the three most popular types 
of deep neural networks, namely, FNN, CNN, and RNN, were proposed and trained on the de-facto 
standard datasets since datasets play a critical role in the performance of deep neural networks [5], [46]–
[48]. 

Feedforward Neural Networks. In order to benchmark the performance of Keras and PyTorch on 
FNNs, a sample model, whose architecture’s block representation is presented in Figure 2, was 
implemented using these deep learning platforms. 

 
Figure 2 A block representation of the architecture of the proposed sample FNN model 

In order to train and test the network, a de-facto standard dataset, namely, MNIST, was utilized. MNIST 
is a large dataset of handwritten digits that were size-normalized and centered in a fixed-size as some 
examples of the images in the dataset are presented in Figure 3. Each digit in MNIST is represented as a 
28𝑥𝑥28 pixel grayscale image. This dataset is already provided by both Keras and PyTorch through the 
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, and 𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡ℎ𝑣𝑣𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑣𝑣 packages, respectively. To prevent any potential issues due to manual 
installation, the built-in versions of the MNIST were preferred. The Adaptive Moment Estimation (Adam) 
[49], which is an extension to the Stochastic Gradient Descent (SGD) [50], was employed as the 
optimization algorithm of the proposed sample FNN model with the intention of updating the network 
weights more efficiently by computing adaptive learning rates for each network parameter from 
estimates of first and second moments of the gradient [2]. The hyper-parameters of the proposed sample 
FNN model are listed in Table 2. 
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Figure 3 Some examples of the images in the MNIST dataset 

Table 2 The hyper-parameters of the proposed sample FNN model 
Hyper-parameter Value 
Optimization algorithm Adam 
Learning rate 𝑘𝑘−3 
Loss function Categorical Cross-Entropy 
Batch size 80 
Number of epochs 20 

 

Convolutional Neural Networks. In order to benchmark the performance of Keras and PyTorch on 
CNNs, a highly popular architecture, namely, VGG16 [51], was utilized which achieved 92.7% top-5 
accuracy for the gold standard ImageNet [1] dataset. Both Keras and PyTorch provide VGG16 
implementations through the 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, and 𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡ℎ𝑣𝑣𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑣𝑣 packages, respectively. A block representation 
of the architecture of the VGG16 is presented in Figure 4. 

 
Figure 4 A block representation of the architecture of the VGG16 

In order to train and test the network, a de-facto standard dataset, namely, CIFAR-10, was utilized. 
CIFAR-10 is a large database of color images in ten classes, namely, 𝑘𝑘𝑖𝑖𝑘𝑘𝑎𝑎𝑎𝑎𝑘𝑘𝑣𝑣𝑘𝑘, 𝑘𝑘𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡𝑎𝑎𝑖𝑖𝑎𝑎𝑘𝑘, 𝑎𝑎𝑖𝑖𝑘𝑘𝑏𝑏, 𝑡𝑡𝑘𝑘𝑡𝑡, 
𝑏𝑏𝑘𝑘𝑘𝑘𝑘𝑘, 𝑏𝑏𝑡𝑡𝑑𝑑, 𝑓𝑓𝑘𝑘𝑡𝑡𝑑𝑑, ℎ𝑡𝑡𝑘𝑘𝑘𝑘𝑘𝑘, 𝑘𝑘ℎ𝑖𝑖𝑎𝑎, and 𝑡𝑡𝑘𝑘𝑎𝑎𝑡𝑡𝑘𝑘. Each sample is represented as a 32𝑥𝑥32 pixel color image 
as some examples of the images in the dataset are presented in Figure 5. This dataset is already provided 
by both Keras and PyTorch through the 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, and 𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡ℎ𝑣𝑣𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡𝑣𝑣 packages, respectively. Similar to the 
experiment on FNNs, the built-in versions of the CIFAR-10 were preferred in order to prevent any 
potential issues due to manual installation. The employed hyper-parameters of the VGG16 are listed in 
Table 3. 
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Figure 5 Some examples of the images in the CIFAR-10 dataset 

Table 3 The employed hyper-parameters of the VGG16 
Hyper-parameter Value 
Optimization algorithm Adam 
Learning rate 𝑘𝑘−2 
Loss function Categorical Cross-Entropy 
Batch size 80 
Number of epochs 20 

 

Recurrent Neural Networks. LSTM is a special type of RNN that provides the following advantages 
comparing to RNNs: (𝑖𝑖) LSTM solves the general problem of gradient descent [52], and (𝑖𝑖𝑖𝑖) it has long-
term memory, which is a key necessity for sequence processing. In order to benchmark the performance 
of Keras and PyTorch on RNNs, a sample LSTM model, whose architecture’s block representation is 
presented in Figure 6, was implemented using these deep learning platforms. 

 
Figure 6 A block representation of the architecture of the proposed sample LSTM model 

 

In order to train and test the network, a de-facto standard dataset, namely, IMDb Movie Review [53] 
dataset, was utilized. This dataset consists of movie reviews from IMDb (Internet Movie Database), a 
widely-used online movie database. Each movie review in the dataset is encoded as a list of word 
indexes (𝑖𝑖𝑣𝑣𝑡𝑡𝑘𝑘𝑑𝑑𝑘𝑘𝑘𝑘𝑘𝑘) and is labeled with a sentiment class (𝑎𝑎𝑡𝑡𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑘𝑘/𝑣𝑣𝑘𝑘𝑑𝑑𝑘𝑘𝑡𝑡𝑖𝑖𝑣𝑣𝑘𝑘). Some samples from the 
IMDb Movie Review dataset are listed in Table 4. 

Table 4 Some samples from the IMDb Movie Review dataset 
Movie Review Sentiment Class 

“If you like original gut wrenching laughter you will like this movie. If you are young or 
old then you will love this movie, hell even my mom liked it. Great Camp!!!” 𝑎𝑎𝑡𝑡𝑘𝑘𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑘𝑘 

“This movie was terrible. The plot was terrible and unbelievable. I cannot recommend 
this movie. Where did this movie come from? This movie was not funny and wasted the 
talent of some great actors and actresses including: Gary Sinise, Kathy Bates, Joey 
Lauren Adams, and Jennifer Tilly.” 

𝑣𝑣𝑘𝑘𝑑𝑑𝑘𝑘𝑡𝑡𝑖𝑖𝑣𝑣𝑘𝑘 

 

The IMDb Movie Review dataset is already provided by both Keras and PyTorch through the 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 
and 𝑡𝑡𝑡𝑡𝑘𝑘𝑡𝑡ℎ𝑡𝑡𝑘𝑘𝑥𝑥𝑡𝑡 packages, respectively. Similar to the previous experiments, the built-in versions of the 
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IMDb Movie Review dataset were preferred in order to prevent any potential issues due to manual 
installation. The hyper-parameters of the proposed sample LSTM model are listed in Table 5. 
 

Table 5 The hyper-parameters of the proposed sample LSTM model 
Hyper-parameter Value 
Optimization algorithm Adam 
Learning rate 𝑘𝑘−2 
Loss function Binary Cross-Entropy 
Batch size 500 
Number of epochs 10 

4. Experimental Result and Discussion 

All the experiments were evaluated on the GPUs available on Colab since the significant processing 
speedup of deep neural networks as a result of the utilization of GPUs instead of CPUs is widely 
experimented [20], [23], [25], [28]. Evaluation metrics are critical for benchmarking studies. The 
following three evaluation metrics were used in this study: (𝑖𝑖) Training time, the time spent on training 
the network, (𝑖𝑖𝑖𝑖) testing time, the time spent on testing the trained network which is a clear indicator of 
any potential latency of deploying the model for prediction [20], and (𝑖𝑖𝑖𝑖𝑖𝑖) prediction accuracy, the 
accuracy of the model for predicting the unknown samples (a.k.a. testing set). It is worth to mention that 
these durations were calculated thanks to the built-in Python function 𝑡𝑡𝑖𝑖𝑎𝑎𝑘𝑘, which is available in the 
𝑡𝑡𝑖𝑖𝑎𝑎𝑘𝑘 package of the Python SDK and returns the current time in seconds since the Epoch, through the 
calculation of the time difference between the timestamps retrieved before and after each phase 
(training/testing) of the employed networks. Also, each experiment was repeated 10 times and the final 
values were determined through the cumulative averages of the trials. In the following paragraphs, the 
experimental result and discussion are presented for each neural network type. 

Feedforward Neural Networks. MNIST dataset was utilized to train and test the proposed FNN model 
for the sake of benchmarking the deep learning platforms on FNNs. MNIST consists of 𝟔𝟔𝟔𝟔,𝟔𝟔𝟔𝟔𝟔𝟔 training, 
and 𝟏𝟏𝟔𝟔,𝟔𝟔𝟔𝟔𝟔𝟔 test images. 𝟐𝟐𝟔𝟔% of the training images were employed as the validation set which is 
necessary to update the weights and tune the model. Keras was found as more accurate than PyTorch 
on prediction accuracy as the experimental result is listed in Table 6. When it comes to training time, 
Keras was found about 𝟑𝟑.𝟖𝟖 times faster than PyTorch. For the testing time, Keras was found about 𝟐𝟐.𝟒𝟒 
times faster than PyTorch. The calculated training and testing times of Keras and PyTorch for the 
proposed sample FNN model are presented in Figure 7. According to this experiment, it is safe to 
conclude that Keras is a better choice for the implementations of FNNs. 

Table 6 The calculated prediction accuracy of Keras and PyTorch for the proposed sample FNN model 
Platform Accuracy (%) 
Keras 97.24 
PyTorch 96.69 

 

 
Figure 7 The calculated training (left) and testing (right) times of Keras and PyTorch for the proposed sample 

FNN model 
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Convolutional Neural Networks. The CIFAR-10 dataset was utilized to train and test the employed 
VGG16 for the sake of benchmarking the deep learning platforms on CNNs. CIFAR-10 consists of 
𝟓𝟓𝟔𝟔,𝟔𝟔𝟔𝟔𝟔𝟔 training, and 𝟏𝟏𝟔𝟔,𝟔𝟔𝟔𝟔𝟔𝟔 test images. 𝟐𝟐𝟔𝟔% of the training images were employed as the validation 
set which is necessary to update the weights and tune the model during backpropagation. Keras was 
found as more accurate than PyTorch on prediction accuracy as the experimental result is listed in Table 
7. When it comes to training time, Keras was found about 𝟏𝟏.𝟗𝟗 times faster than PyTorch. For the testing 
time, Keras was found about 𝟏𝟏.𝟒𝟒 times faster than PyTorch. The calculated training and testing times 
of Keras and PyTorch for the employed VGG16 are presented in Figure 8. Consequently, it is safe to 
conclude from this experiment that Keras was found as a better choice for the implementations of CNNs. 
 

Table 7 The calculated prediction accuracy of Keras and PyTorch for the employed VGG16 
Platform Accuracy (%) 
Keras 78.43 
PyTorch 76.54 

 

 
Figure 8 The calculated training (left) and testing (right) times of Keras and PyTorch for the employed VGG16 

 

Recurrent Neural Networks. The IMDb Movie Review dataset was utilized to train and test the 
proposed sample LSTM model for the sake of benchmarking the deep learning platforms on RNNs. The 
IMDb Movie Review dataset consists of 𝟐𝟐𝟓𝟓,𝟔𝟔𝟔𝟔𝟔𝟔 movie reviews for training, and 𝟐𝟐𝟓𝟓,𝟔𝟔𝟔𝟔𝟔𝟔 movie reviews 
for testing, and only top (most frequent 𝟓𝟓,𝟔𝟔𝟔𝟔𝟔𝟔) words were kept. 𝟐𝟐𝟔𝟔% of the training images, 𝟓𝟓,𝟔𝟔𝟔𝟔𝟔𝟔 
movie reviews, were employed as the validation set. PyTorch was found as more accurate than Keras 
as the experimental result is listed in Table 8. When it comes to training time, PyTorch was found about 
𝟏𝟏.𝟑𝟑 times faster than Keras. Unlike training, Keras was found about 𝟏𝟏.𝟔𝟔 times faster than PyTorch for 
testing. The calculated training and testing times of Keras and PyTorch for the proposed sample LSTM 
model are presented in Figure 9. According to this experiment, it is safe to conclude that PyTorch was 
found as a better choice for the implementations of RNNs as Keras was found better at only one of the 
evaluation metrics, which was the testing time. 
 

Table 8 The calculated prediction accuracy of Keras and PyTorch for the proposed sample LSTM model 
Platform Accuracy (%) 
Keras 85.83 
PyTorch 87.08 

 

 
Figure 9 The calculated training (left) and testing (right) times of Keras and PyTorch for the employed VGG16 
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5. Conclusion 

Deep neural networks have proven their efficacy in many topics and their effectiveness is still being 
experimented on a wide range of topics thanks to the previous great success. Since there exist various 
highly-popular, state-of-the-art platforms for the implementation of deep neural networks, which one 
provides the best performance is a question that should be shed light on. To this end, five state-of-the-
art deep neural network platforms, namely, (𝑖𝑖) Keras, (𝑖𝑖𝑖𝑖) PyTorch, (𝑖𝑖𝑖𝑖𝑖𝑖) Caffe, (𝑖𝑖𝑣𝑣) Theano, and (𝑣𝑣) 
CNTK were compared in this study. The two most popular of these platforms, namely, Keras, and 
PyTorch, were both quantitatively and qualitatively compared. For the quantitative comparison, models 
that were based on three widely-used deep neural network types, namely, (𝑖𝑖) FNN, (𝑖𝑖𝑖𝑖) CNN, and (𝑖𝑖𝑖𝑖𝑖𝑖) 
RNN, were implemented using Keras and PyTorch. Three evaluation metrics, namely, (𝑖𝑖) training time, 
(𝑖𝑖𝑖𝑖) testing time, and (𝑖𝑖𝑖𝑖𝑖𝑖) prediction accuracy, were used for the performance comparison of the deep 
neural network platforms. According to the experimental result, Keras was found as a better choice both 
accuracy-wise and time-wise compared to PyTorch for the models based on FNNs and CNNs. When it 
comes to models based on RNNs, while PyTorch provided better accuracy and required less time to 
train the model, Keras was found as faster than PyTorch for the testing of RNNs. 
 

As future work, the proposed models can be employed on CPU to reveal their performances under CPU. 
Also, more deep neural network types and more deep neural network platforms can be included for the 
conducted experiments for a more comprehensive benchmark. In addition to this, the technical reasons 
behind the performance differences between the deep learning platforms can be further investigated by 
deeply investigating the implementations of these platforms. Finally, the qualities of deep neural 
network platforms can be evaluated with respect to distributed-execution. 
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