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 Machine learning (ML) refers to the processes that enable computers to think based on various 

learning methods. It can be also called domain which is a subset of Artificial Intelligence (AI). 

Deep learning (DL) has been a promising, new and modern technique for data analysis in recent 

years. It can be shown as the improved version of Artificial Neural Networks (ANN) which is one 

of the popular AI methods of today. The population of the world is increasing day by day and the 

importance of agriculture is also increasing in parallel. Because of this, many researchers have 

focused on this issue and have tried to apply machine learning and deep learning methods in 

agriculture under the name of smart farm technologies both to increase agricultural production and 

to solve some challenges of agriculture. In this study, it is aimed to give detailed information about 

these up-to-date studies. 77 articles based on machine learning and deep learning algorithms in the 

agriculture field and published in IEEE Xplore, ScienceDirect, Web of Science and Scopus 

publication databases between 2016 and 2020 years were reviewed. The articles were classified 

under five categories as plant recognition, disease detection, weed and pest detection, soil 

mapping-drought index, and yield forecast. They were examined in detail in terms of machine 

learning/deep learning architectures, data sets, performance metrics (Accuracy, Precision, Recall, 

F-Score, R2, MAPE, RMSE, MAE), and the obtained experimental results. Based on the examined 

articles, the most popular methods, used data sets/types, chosen performance criteria, and 

performance results among the existing studies are presented. It is seen that the number of AI-

based applications related to agriculture is increasing compared to the past and the sustainability 

in productivity is so promising.  
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1. Introduction 

The mind is formed by the combination of thinking, 

comprehension, understanding, decision-making, 

reasoning, and knowledge power [1]. Intelligence 

combines all these goals and making them suitable for the 

situation [2]. Artificial intelligence brings in all these 

abilities to the machine. Artificial intelligence is an effort 

to make the computer do what people do [3]. Today, 

artificial intelligence studies conducted in many fields are 

also carried out in the field of agriculture. Given the fact 

that the world population is increasing rapidly, agricultural 

products and nutrition are critical for the continuation of 

human life. People have made radical changes in 

agricultural products by the discovery of modern 

agriculture [4]. Besides, the supply and production of 

agricultural products have a great importance in the global 

economy [5]. The decrease in agricultural production due 

to the effect of global warming, drying of wetlands, 

unconscious irrigation and unconscious agriculture poses 

a great danger to world population. Because of these 

effects, the amount of nutrition is increasing in parallel 

with the rapid increase in the world. Looking at the 

developments, it seems that smart farming has become 

critical to overcome the challenges [6].  
Machine learning (ML) has emerged with big data and 

high performance and is actively used in many areas of the 

industrial environment such as entertainment and 

commerce [7]. Machine learning has started to create 

opportunities in agricultural fields by using the learning 
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abilities of measuring and understanding data. Deep 

learning (DL) is a branch of machine learning that tries to 

model abstractions with a series of algorithms by using a 

deep layer with multiple processing layers [8]. Deep 

learning, which is of great interest in the field of artificial 

intelligence, has come to the fore in natural language 

processing and image classification. In this study, previous 

studies on deep learning and machine learning in 

agriculture applications were examined. Articles 

published between 2016 and 2020 in the most well-known 

and used databases (IEEE Xplore, Science Direct, Web of 

Science, Scopus) were searched using the keywords 

“Machine Learning in Agriculture” and “Deep Learning in 

Agriculture”. 7 studies from 2016, 9 studies from 2017, 14 

studies from 2018, 29 studies from 2019, and 18 studies 

from 2020 were examined. While 71% (55 articles) of the 

77 articles were related to the United States, United 

Kingdom, China, India, Spain and Australia, 29% of them 

(22 articles) were related to other countries.  

While ML and the most used ML methods were defined 

in the second section, DL and the most used DL methods 

were defined in the third section. Articles and applications 

related to ML and DL in agriculture were reviewed in the 

fourth section.  

 

2. Machine Learning 

ML refers to the process of creating a mathematical 

model on sample data sets called training data to make 

predictions and decisions [9]. ML, a sub-branch of 

artificial intelligence [90] and developed based on learning 

models, is a system that investigates the working principle 

of algorithms that can make predictions through data 

(Figure 1). The data to be used for prediction is trained and 

classified (Dataset) with a ML algorithm. The test 

(sample) data are appropriately classified according to the 

data being trained (Figure 2). Depending on their learning 

skills, ML algorithms are divided into three separate 

categories as Supervised, Unsupervised and 

Reinforcement Learning. Classification and Regression 

Models are examined in the supervised learning category. 

Clustering and Dimensionality Reduction are examined in 

the unsupervised learning category and Real-Time 

Decisions models are examined in the reinforcement 

learning category. Supervised learning makes predictions 

over the designed model by using input data. Unsupervised 

learning performs more complex processing tasks. 

Dimension reduction is a method that can be analyzed with 

both supervised and unsupervised learning methods. PCA 

(Principal Component Analysis), PLSR (Partial Least 

Squares Regression) and LDA (Linear Discriminant 

Analysis) are the most known and used dimensional 

reduction algorithms. ML techniques are generally used to 

analyze human behavior benefiting from available data, 

enable businesses to carry out production accordingly, and 

also to create business models and decision support 

systems. Especially, behaviors of individuals are analyzed 

through online shopping, social media, e-mail contents, 

etc. and characteristics of human behavior can be 

determined. Today, many cellphones, laptops and 

electronic devices use various ML-based applications for 

different purposes. 

 

3. Deep Learning 

Deep learning (DL), first pronounced by Igor Aizenberg 

in the early 2000s, became more popular in 2016 [10]. DL 

gives more depth and complexity to the model and 

improves the classic ML model through transforming data 

into various levels of abstraction by using artificial neural 

network (ANN) or similar ML algorithms [11]. 

DL is a much more advanced model of ANNs. While 

ANNs consist of three layers (input, output and hidden 

layers), networks with more than one hidden layer number 

are called deep learning. DL produces an output by self-

learning the information passed through hidden layers as 

seen in Figure 3. It has algorithms such as Convolutional 

Neural Networks, Recurrent Neural Networks, Restricted 

Boltzmann Machine, and Deep Belief Network [12]. DL 

has the advantages of processing unstructured data at the 

maximum level, producing high quality results, and 

avoiding unnecessary costs. On the other hand, it has some 

disadvantages such as needing much larger amount of data 

and high cost for software and hardware. It is used in a 

wide range of areas including natural language processing, 

driverless vehicles, image processing, face recognition, 

and personalized shopping planning. 

 

 

Figure 1. Relationship between DL and ML 

 

 

Figure 2. Machine Learning Architecture  
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4. Methodology 

We carried out literature review of academic articles 

indexed on the Scopus, Web of Science, Science Direct 

and IEEE Xplore to asses the extent to which ML and DL 

features with in the agriculture. We have analyzed and 

classified articles in two fields which are ML and DL. 

These articles have been explored in details based on 

various features such as years of the studies, aim of the 

studies (plant recognition, disease detection, weed and pest 

detection, soil mapping-drought index and yield 

forecasting), properties of the datasets used in the studies, 

architectures, performance criteria examined in the studies 

and received results.  

4.1. Data 

As mentioned in methodology, the study containes 

articles from four well-known databases such as Scopus, 

Science  

Direct, Web of Science and IEEE Xplore. The main 

reason for selection of these databases is that they are 

considered to include the highest quality and up-to-date 

publications. In order to list the up-to-date publications to 

readers, data used for this study were collected from 

January to June 2020 for the years from 2016 to 2020 with 

the keywords “Machine Learning in Agriculture”, “Deep 

Learning in Agriculture”. The study was conducted as a 

doctoral thesis. As the final dataset, 77 articles within the 

scope of studies similar to doctoral thesis have been 

reviewed. Of the total 77 articles reviewed, 10 were on 

plant recognition, 16 were on disease detection, 9 were on 

weed and pest detection, 26 were on yield forecasting and 

16 were on soil mapping, drought index and other studies.  

 

4.2. Studies on ML and DL 

In this section studies related to ML and DL are 

classified according to their fields. Of the total 77 articles 

reviewed, 10 were on Plan Recognition, 16 were on 

Disease Detection in Plants, 9 were on Weed and Pest 

Detection, 26 were on Yield Forecasting categories, and 

16 were on Soil Mapping, Drought Index and Other 

Studies. 

 

Figure 3. Deep Learning Architecture [8] 

4.2.1. Plant Recognition 

Identification of the plant species has been realized with 

ML and DL methods depending on classification 

algorithms in smart agriculture applications based on 

artificial intelligence (Table A.1 in Appendix). 126 citrus 

images obtained in different sizes and under various 

lighting conditions were trained with ML algorithms and a 

study was carried out to determine the green citrus fruit 

[13]. Plant species were classified using DL algorithms on 

many images obtained from 1200 Turkey TARBIL station 

[14]. Similarly, a various plant type was classified with DL 

algorithms by using the half-hour images obtained from 

the Turkey TARBIL system [15]. Coffee leaf rust was 

modeled with images obtained using a hand-made 

spectroradiometer [16]. Product type recognition was 

carried out with ML algorithms using 126 Rice, Corn and 

Soybean plant images obtained from 2017 Sentinel-II 

satellite [17]. Determination of wheat nitrogen and water 

status was carried out using data combined with annual 

rainfall data [18]. Using DL algorithm, 450 images of 

Lycopersicon were classified into three different level as 

mature, semi-mature, and immature [19]. In order to detect 

Convolvulus Sepium plant in sugar beet fields and to 

detect changes in the appearance of sugar beet plants, 

necessary detection process was performed on 2271 

synthetic images of 452 areas [20]. A hybrid algorithm was 

developed to estimate size of rice kernels, and data sets 

containing long, medium and short grain rice images were 

used in three separate data sets for training model [21]. 

Flaws of the lemon fruit were detected by using ML and 

DL methods on 341 images (185 healthy shaped, 156 

damaged shaped) of sour lemon with different shapes, and 

accordingly lemons were classified [22]. 

 

4.2.2. Disease Detection in Plants 

One of the most important problems in agriculture and 

the production of agricultural products is plant diseases. 

To prevent this, pesticides are sprayed homogeneously on 

the crops, or weeds are cleaned with the help of manpower 

to prevent and control harmful organisms. However, while 

doing this, labor, financial issues and time costs are high. 

In order to prevent these diseases and reduce time and cost, 

studies have been carried out on smart farming systems 

with ML and DL-based algorithms (Table A.2 in 

Appendix). In literature; the hybrid model developed for 

multi-class classification problems was applied on the 

traits that trigger oilseed disease [23]. Multicolor 

fluorescent imaging was applied together with 

thermography in order to detect soft rot caused by Dickeya 

Dadantii (Negative Bacteria) in the pumpkin plant [24]. 

An improved moth flame approach was proposed to detect 

tomato diseases, and the proposed algorithm ensured the 

highest classification accuracy [25]. A technique for 

disease detection and classification was explained with the 



 

 
aid of ML mechanisms and image processing tools [26]. 

Symptomatic recognition of four diseases of cucumber 

(anthracnose, downy mildew, powdery mildew, leaf spots) 

was tried to be detected using DL algorithms [27]. 

Detection of diseased melon leaves was performed using 

ML-based algorithms on numerical data provided through 

various imaging techniques [28]. It was aimed to develop 

an automated proof of concept by using images of A. Psidii 

disease in lemon tree [29]. A new Exponential Spider 

Monkey Optimization, which was used to fix important 

features from high dimensional features created by SPAM, 

and supported by SVM was developed, and it was 

compared with other ML algorithms to classify plants as 

healthy and diseased images [30]. It was aimed to detect 

diseases in red vine leaves by using yellowing and severe 

symptoms of grape leaves on color images of Grapevine 

Yellow leaves [31]. A multi-layer DL algorithm was 

developed to identify anthracnose disease and symptoms 

in mango leaves [32]. A model using the ML algorithm 

was proposed to detect rice blast disease in the early stages 

of cultivation [33]. A method was developed to detect 

diseases through plant leaf images by using the 

TensorFlow object detection API [34]. An automatic 

identification method was developed for diseases, such as 

healthy, downy mildew, powdery mildew and rot, in 

various leaf sample images corresponding to different 

product types [35]. An onion area was regularly monitored 

through the established monitoring system and the 

symptoms of the disease were tried to be determined by 

creating four different models based on the images 

obtained [36]. Disease detection was performed with DL 

algorithms over a data set containing various disease 

images in order to detect disease types in tomato, potato, 

corn, and apple plants [37]. Cassava plant diseases have 

been tried to be determined by using the category of 

cassava leaf disease [38].  

 

4.2.3. Weed and Past Detection 

Weed and pest detection is one of the major problems 

in agriculture for crop production and has turned into a 

serious problem for many producers. Weed and pest 

detection is crucial for sustainable agriculture. For this 

purpose, in studies related to smart agriculture, detection 

studies have been carried out by using ML and DL 

methods (Table A.3 in Appendix). In literature; a hybrid 

algorithm consisting of Deep-CNN and SVM was used to 

identify and classify 22 different Lepidoptera (Butterfly) 

species on 1301 images [39]. Anastrepha fruit fly species 

were determined by using ML algorithms in order to avoid 

insect analysis time and economic losses related to 

agricultural pests [40]. For pest detection, a DL-based 

algorithm was proposed for the development of an 

agricultural pest identification system based on computer 

vision technology [41]. A DL-based approach aimed at 

weed specific herbicide application was proposed to detect 

weeds on soybean images and classify weeds [42]. The 

characteristics of the pest images were determined from a 

large number of unlabeled image structures by using 

unsupervised learning methods [43]. Spanish 

phytosanitary products were classified using four separate 

ML algorithm methods in order to classify pesticide 

regulations correctly [44]. An ML-based algorithm was 

developed for weed and crop separation, and their 

accuracies were compared with NDVI values [45]. A 

large-scale study was conducted at 336 French sites to 

determine crop damage caused by the presence of 

wireworm and raiding species [46]. DL-based approaches 

were used for foreign object analysis through images 

obtained with UAV at four different times in two different 

rice fields [47].  

 

4.2.4. Soil Mapping, Drought Index and Determining 

Agricultural Vehicles 

It is important to determine suitable soil types for 

agriculture and to prepare drought index. In this context, 

studies conducted for soil mapping and determination of 

drought index were analyzed. The reviewed articles related 

to weed and pest detection are presented Table A.4 (in 

Appendix); A variance-based solution was proposed to 

identify the central pivot irrigation system and position the 

center of each central pivot system at a more effective 

point [48]. A geoparser-based soil mapping was proposed, 

and by applying ML methods, establishing the relationship 

between the phosphorus in the soil and the environment 

was tried [49]. SDAP model was proposed to predict 

drought areas without meteorological data and assuming 

no rainfall. This study was carried out for short-term 

drought prediction [50]. The temporal behavior of the soil 

ground was estimated using two separate ML algorithms, 

and Meteorological data were used as input [51]. A DL-

based model named AMTNet was designed for the 

identification and classification of agricultural machinery 

[52]. A medium resolution imaging spectroradiometer was 

used to measure the surface temperature of the land up to 

90 meters and to make a comparison between ML-based 

algorithms by scaling the image [53]. Neural networks 

offer real-time computational flow. The load on the neural 

network was restrained and the pretreatment by removing 

the plants from the background was briefly discussed [54]. 

A hybrid heuristic method was developed to estimate the 

irrigation time and find the most suitable decision tree to 

model the farmers’ behavior [55]. To monitor agricultural 

drought data in Southeast Australia, an attempt was made 

to estimate drought over wheat yield by using SPEI data 

sensed remotely by the Tropical Rainfall Measuring 

Mission and MODIS satellite [56]. ML algorithms were 

used to define the relationships between soil properties and 

multiple common variables that can be detected in the 
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landscape, and the most appropriate ML algorithm was 

selected for digital soil mapping (DSM) [57]. New 

approaches were proposed to map the agricultural drought 

hazard by using machine learning methods [58]. The 

potential of the DL approach to automatically draw 

agricultural plot boundaries from orthophoto images in 

large areas with a heterogeneous landscape was explored 

[59]. The crop drought mapping system was implemented 

by evaluating crop stress with RGB images obtained from 

UAV vehicles [60]. DL-based models were examined to 

calculate the crop water stress index (CWSI) which is one 

of the parameters obtained from the vegetation 

temperature and measured in open irrigation [61]. A new 

drought index (IDI) that defines the multivariate 

relationship between agricultural drought conditions was 

proposed [62]. A hybrid model was developed by 

combining the global climate model and ML-based model 

to forecast 90-day weather on field scale [63].  
 

4.2.5. Yield Forecasting 

Depending on the increasing world population, 

increasing agricultural productivity has come to a very 

important point. The reviewed articles related to yield 

forecasting are presented in Table A.5 (in Appendix). It 

was tried to predict wheat yield through images obtained 

from different soil and crop sensors by using an 

unsupervised learning algorithm [64]. An ML-based 

model was applied to estimate the NDVI values of large 

pastures in the USA. The prediction model consisted of 

data on vegetation index and meteorological factors [65]. 

A hybrid approach was proposed to perform yield 

classification of sugarcane based on various soil and 

climate parameters [66]. A classification model was 

developed to predict the production in an orchard and 

determine the effects of ML-based models and factors on 

production [67]. Two separate artificial intelligence 

models were developed to predict ET0 

(Evapotranspiration) by using only temperature data in 

Sichuan region of China [68]. ML-based models were used 

to define the importance of remotely sensed image 

variables in the spatial prediction of soil and maize yield 

[69]. A collection of 76 regressors was proposed for the 

estimation of soil organic carbon productivity indices of 

four important soil nutrients [70]. An ML-based prediction 

model was developed to determine and map cotton lint 

yield in a 73-hectare field in Tennessee, USA [71]. Three 

separate DL-based simulation models were carried out to 

predict the rapeseed (canola) plant before harvest and to 

determine the most important independent variables 

affecting the yield of rapeseed [72]. The possibility of 

using ML algorithms was examined on the satellite images 

obtained to evaluate the spatial variation of corn grain 

yield in cropland scale, and the measured yield was 

analyzed [73]. An attempts was made to estimate wheat 

yield in Australia by looking at time series-based climate 

records and satellite images [74]. A DL-based model was 

developed to estimate the number of seeds from soybean 

images [75]. Participants were asked to predict their yield 

performance using data from 2017, and a model based on 

DL algorithms was developed at the Syngenta Crop 

Competition in 2018 [76]. Yield estimation study was 

carried out using data on wheat, barley and canola crops as 

a case study on a large farm in Western Australia [77]. 

Phenotype characteristics of trees belonging to 25 different 

rootstock varieties on orange yield were determined using 

high-type phenotyping system on images obtained by 

UAV [78]. A software called AirSurf, which was an open-

source hybrid system, was developed to automatically 

measure yield related phenotypes on ultra-large aerial 

images for lettuce [79]. A ML-based model was developed 

to estimate the amount of carbamazepine (CBA) and 

diclofenac (DCF) in tissues of lettuce plants irrigated with 

water recovered from water treatment plants [80]. ML 

methods were used to estimate interpolation accuracy by 

using greenhouse environment data, and the results were 

compared with each other [81]. An ML approach was used 

to increase crop yields based on crop planting dates and to 

estimate the annual crop planting date [82]. ML 

approaches were used to estimate ET0 

(Evapotranspiration) by using data from the Verde Grande 

River basin [83]. A new criterion was introduced to 

determine daily ET0, improve classification efficiency, 

educate, and validate for the regions of Hoshiarpur and 

Patiala, Punjab state of India [84]. A segmentation method 

based on DL model was implemented to automatically 

perform the segmentation task [85]. A case study on maize 

production was conducted to predict global warming and 

eutrophication effects, and ML algorithms were compared 

to determine the most efficient and accurate model [86]. 

An ML-based prediction model was developed to measure 

global warming and eutrophication effects on the life cycle 

of corn production [87]. ML-based models were used to 

evaluate moisture content and fruit quality for apple and 

mango plants [88]. An architectural model was developed 

to assess soil fertility and productivity and to make 

farming more efficient and productive with minimal 

impact on the environment [89]. 
 

5. Results and Discussions 

It was determined that while 50% of the reviewed 

studies on plant recognition involved DL models, other 

studies involved the use of ML methods and the 

comparison of the results of the performance metrics of 

these methods. While the most preferred DL models were 

CNN-based models, SVM and ANN algorithms were used 

more in ML methods. It was seen that 10% of the studies 

on plant recognition were carried out by implementing a 

hybrid model using ML algorithms. The hybrid model was 
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created with the combination of five different ML 

algorithms (SVM, ANN, RF, KRR, and KNN). It was 

observed that models were mainly evaluated by looking at 

accuracy, precision, recall, and F1-Score metric values in 

the studies performed using both methods (ML and DL). 

The most studied agricultural product was rice in plant 

recognition. 

While 37% of the examined studies on disease detection 

in plants were carried out with DL models, 50% of them 

were realized with ML algorithms and 13% were carried 

out by using hybrid models. While studies on DL were 

carried out with CNN and CNN-based models, ML studies 

were carried out using SVM and ANN algorithms. While 

one of the two studies created using hybrid models was 

performed with DL, CNN-based models were used as a 

model. Another hybrid model was realized with ML 

methods and this model was a combination of logistic 

regression and naive bayes algorithms. The most studied 

agricultural product was tomato. 

While 55% of the studies on weed and pest detection in 

plants were carried out on pest detection, 45% was carried 

out on weed detection. 50% of the studies carried out with 

pest detection was realized with DL methods, the other 

50% was realized with ML methods. CNN and CNN based 

AlexNet, ResNet-50, and ResNet-101 models were used 

as ML methods. MLP, SVM, LR and RF algorithms were 

used as ML algorithms. While CNN and CNN-based 

FCNN and AlexNet were preferred as DL methods in 

studies carried out with weed detection, SVM, LR and RF 

algorithms were preferred as ML algorithms. The results 

obtained by all methods were compared with each other's 

performance criteria and the best model was selected. 

While 11 of 16 studies on soil mapping, drought index 

and determination of agricultural vehicles were carried 

out for the detection of agricultural drought, 4 of them 

were for soil mapping, and 1 of them was for identification 

of agricultural vehicles. Of the 11 studies conducted for 

the detection of agricultural drought, 4 were carried out 

with DL methods, 5 were carried out with ML methods, 

and 2 were implemented with hybrid models developed 

with ML methods. CNN and CNN based LeNet, AlexNet, 

VGGNet, SegNet models were used as DL models. ANN, 

RF, SVM, MLP algorithms were used as ML models. 

While one of the implemented hybrid models consisted of 

the combination of decision tree and genetic algorithm, the 

other hybrid model was created by combining ELM and 

GloSea5GC2 climate model. Of 4 studies conducted for 

soil mapping, 1 was carried out with DL methods, the 

others were carried out with ML methods. CNN 

algorithms were used as DL model, ANN, SVM and RF 

algorithms were used as ML models. Only one study was 

carried out for determining agricultural vehicles, and 

Google Inception v3 and ResNet-50 models were used for 

that study.  Accuracy, precision and error averages of 

models and algorithms were examined throughout the 

studies and algorithms, and models were compared based 

on these values. 

73% of the applications realized for yield forecasting 

were carried out with ML methods. The most used ML 

algorithms were ANN, SVM, Decision Tree, LR, RF, and 

MLP. CNN and CNN-based model, which was SegNet, 

were used as a DL method. MAE, R2, RMSE, and 

correlation coefficient values were checked to compare the 

results of the algorithms and models in general. The most 

studied agricultural products in terms of yield were corn, 

wheat, lettuce crop amount, and Evapotranspiration value. 

It is seen that the use of image data obtained from 

different sources is widespread thanks to the advances in 

image processing methods in ML and DL. Especially CNN 

based architectures are so popular. 

The articles reviewed in the presented paper has been 

classified according to the aims of the studies and shown 

in Table 1. And another classification according to the 

years of studies in publication databases and shown in 

Table 2 below. When the two tables are examined, it is 

seen that most of the presented studies aims on yield 

forecasting. Most of the papers about agriculture has been 

listed in Scopus. As the end of the article collection process 

was June of 2020, number of listed studies in 2020 is 

smaller than 2019. But it is generally seen that the number 

of studies are increasing in recent years. It is thought that 

scientific studies in agriculture have increased due to the 

increasing importance of agriculture.   
 

Table 1. Classification of Studies by Years and Aims 
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T
o

ta
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2016 2 2 0 0 3 7 

2017 1 2 4 0 2 9 

2018 1 4 4 2 3 14 

2019 3 5 0 8 13 29 

2020 3 3 1 6 5 18 

Total 10 16 9 16 26 77 

 

Table 2. Reviewed Articles in Academic Databases by 

Years (WOS: Web of Science, SD: Science Direct, IEEE: 

IEEE Xplore, SCO: Scopus)  

Years WOS SD IEEE SCO Total 

2016 0 1 0 6 7 

2017 0 0 0 9 9 

2018 0 4 0 10 14 

2019 4 4 5 16 29 

2020 9 6 1 2 18 

Total 13 15 6 43 77 
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6. Conclusion 

ML and DL are two of the popular subsets of today’s AI 

technology and used in various areas such as health, 

manufacturing, network, etc. As importance of agriculture 

is increasing in parallel with the population of the world, 

the scientists have focused on increasing the productivity 

in agriculture. Many studies about this topic have been 

conducted in the literature. For the purpose of providing 

up-to-date information to researchers, ML and DL-based 

articles about agriculture published in well-known 

publication databases, such as IEEE Xplore, 

ScienceDirect, Web of Science and Scopus, between 2016 

and 2020 years were reviewed and presented in this study.  

The articles were classified according to their main 

purposes, such as plant recognition, disease detection, 

weed and pest detection, soil mapping-drought index-

determining agricultural vehicles, and yield forecasting. 

The review of the studies showed that while the most 

preferred ML models were SVM, ANN, and RF, the most 

preferred DL models were CNN-based models which were 

AlexNet, LeNet, and ResNet-50. However, hybrid models 

of DL and ML were also used. Generally used 

performance criteria for both ML and DL models were 

accuracy, precision, F1-score, and recall. The most 

popular plant and agricultural products used in 

experiments were wheat, corn, rice, tomato, sugarcane, 

and soybean. Although most of the studies used images 

taken from drones or satellites, some studies also used 

meteorological data.   

It is seen that the number of AI based-applications in 

agriculture is increasing compared to the past and this is 

very promising in terms of the sustainability in 

productivity. 
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Nomenclature 

AlexNet  : An another model of CNN (Designed by  

  Alex Krizhevsky) 

AMTNet  : A version of Inception_v3 Network 

ANFIS  : Adaptive Network Based Fuzzy Inference  

  System 

ANN  : Artificial Neural Networks 

API  : Application Programming Interface 

BP Network : Back Propagation Network 

BRT  : Boosted Regression Tree 

CART  : Classification and Regression Trees 

CNN  : Convolutional Neural Networks 

CWSI  : Crop Water Stress Index 

D-CNN  : Deep CNN 

DL  : Deep Learning 

DSM  : Digital Soil Mapping 

D-Tree  : Decision Tree 

ELM  : Extreme Learning Machine 

ET0  : Evapotranspiration 

FCNN  : Fully Convolutional Neural Networks 

KNN  : K-Nearest Neighbors 

KRR  : Kernel Ridge Regression 

LDA  : Latent Dirichlet Algorithms 

LeNet  : An another model of CNN (Designed by  

  Yann LeCun) 

LR  : Logistic Regression 

MAE  : Mean Absolute Error 

MAPE  : Mean Absolute Percentage Error 

MARS  : Multivariate Adaptive Regression Spline 

ML  : Machine Learning 

MLP  : Multi-Layer Perceptron 

MODIS  : Moderate Resolution Imaging  

  Spectroradiometer 

NB  : Naive Bayes 

NDVI  : Normalized Difference Vegetation Index 

PLSR  : Partial Least Squared Regression 

PSO  : Partial Swarm Optimization 

RBF  : Radial Basis Function 

RF  : Random Forest 

RGB  : Red-Green-Blue colors 

RMSE  : Root Mean Squared Error 

SDAP  : Severe Drought Area Prediction 

SegNet  : Semantic Segmentation  

SPAM  : Subtractive Pixel Adjacency Model 

SPEI  : Standardized Precipitation- 

  Evapotranspiration Index 

SVM  : Support Vector Machine 

TARBIL  : Tarımsal İzleme ve Bilgi Sistemi  

  (Agricultural Monitoring and Information  

   System) 

UAV  : Unmanned Aerial Vehicle 

USA  : United States of America  

VGGNet  : Visual Geometry Group (Designed by  

  VGG from Oxford University) 
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Appendix 
 

Table A.1. Studies on plant recognition 

Article Year Plant Dataset 
Model/ 

Algorithm 
Result 

[13] 2016 Citrus RGB images of 126 citrus fruits SVM 
Accuracy  

SVM: 83% 

[14] 2016 
Various Plant 

Images 

Images obtained from 1200 Turkey 

TARBIL stations 

CNN, SVM-Kernel, 

SVM-Polynomial 
Kernel 

Accuracy CNN: 100%, SVM: 91.2%, 

D-Tree: 81.5%, ANN: 93%, 
kNN: 83.6% 

[15] 2017 
Various Plant 

Images 

The half-hour AlexNet images 
obtained from Turkey TARBIL 

system  

 

For Wheat; CNN Precision: 82.62%, 

Recall: 83.64%, F1-Score 83.68%, 
Accuracy: 83.64%, MEF-BA 

precision: 75.51%,  

Recall: 74.53%, F1-Score: 74.57%, 
Accuracy: 74.53%; For Barley,  

CNN Precision: 79.32%, Recall 

77.34% F1-Score: 78.43%, Accuracy: 
77.15% MEF-BA Precision: 72.21%,  

Recall 71.68%, F1-Score: 72.21%, 

Accuracy: 71.43%  

[16] 2018 
Various Plant 

Images 

Images obtained using a 

spectrodiometer 
RBF-PLS, CLR 

For RBF-PLS; 

R2: 0.27, RMSE: 18.7 

For CLR; 
R2: 0.92, RMSE: 6.1 

[17] 2019 
Rice, Corn, 
Soybean 

Images of Rice, Corn, Soybeans 

obtained from Sentinel-II satellite in 

2017 

RF, SVM 
Accuracy 
RF: 88.6%, SVM: 98% 

[18] 2019 Wheat 

Average annual rainfall data for the 

years 2012, 2013, 2014 

and combined data 

PLSR 
Accuracy 
RF: 88.6%, SVM: 98% 

[19] 2019 Tomato 450 images obtained on ImageNet CAE, CNN, SoftMax 

F1-Score 
CNN+SoftMax: 99.63% 

CAE+CNN+SoftMax: 100% 

CNN+SVM: 100% 
CAE+CNN+SVM 100% 

[20] 2020 Sugarcane 
2271 Synthetic images in 452 different 

area 

CNN Algoritmaları:  

Yolo v3,  
Yolo v3-Tiny 

MAPE Values; 

Yolo v3: 0.832 
Yolo v3-Tiny: 0.810 

[21] 2020 Rice 
CL153 (Long grain dataset) 
Jupiter (Medium grain data) 

Calhikari 202 (Short grain dataset) 

SEM Hibrit Modeli: 
RF, ANN, SVM, 

kRR, kNN 

MEAN ERROR 

For CL153 dataset: 4.1% 
Jupiter dataset: 2.9% 

Calhikari for dataset: 4.3%  

has error rate.   

[22] 2020 Sour Lemon 
341 Sour lemon images (185 health 

shapes, 156 damages shapes) 

CNN, SVM,  

D-Tree, ANN,  
kNN 

Accuracy 
CNN: 100%, SVM: 91.2% 

D-Tree: 81.5%, ANN: 93% 

kNN: 83.6% 

 

Table A.2. Studies on detection of plant diseases 

Article Year Plant Dataset 
Model/ 

Algorithm 
Result 

[23] 2016 
Various Plant 
Images 

A total of 13360 images from different 
sources 

Hybrid Model 

(Logistic Regression 

and Naive Bayes) 

Accuracy 

Hybrid Model: 94.73% 

 

[24] 2016 Pumpkin Many images of the pumpkin plant 
Logistic Regression, 

ANN 

LR, high dose-infiltrated leaves; 
YSA, low dose-infiltrated leaves. 

High accuracy predicted by rates. 

[25] 2017 Tomato 

Adult, Zoo, Lung, taken from the UCI 

ML pool Soybean-small, Monk’s 
datasets 

KNN, SVM 

MFORS-kNN Accuracy:84%, 
Precision:84.2%, Recall: 83%;  

MFORS-SVM Accuracy: 84%, 

Precision 86%, Recall 87% 

[26] 2017 
Various Plant 
Images 

250 images of 5 different diseases SVM 
Accuracy  
SVM: 94.2% 

[27] 2018 Cucumber 
14208 symptom images 

 

D-CNN, RF; SVM, 

AlexNet 

Accuracy 

D-CNN: 92.2%, AlexNet: 82.6%, 
SVM: 81.9%, RF 84.8% 

[28] 2018 Melon 358 images between 3-7 DPI LR, ANN, SVM 

Accuracy  

LRA: 96.5%, SVM: 98.3%, ANN 

99.1% 

[29] 2018 Lemon 135 images of untreated lemon trees RF 
Accuracy  

RF: 95% 
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Article Year Plant Dataset 
Model/ 

Algorithm 
Result 

[30] 2018 
Various Plant 

Images 

Image dataset from PlantVillage (500 

healthy, 500 unhealthy) 

SVM, LDA, kNN, 

ZeroR 

Accuracy  
ESMO-SVM: 92.12%, ESMO-LDA: 

80.79%, ESMO-kNN: 84.76%, ESMO-

ZeroR: 49.32% 

[31] 2019 Grape 

Image dataset from PlantVillage in 
Tuscon region between July and 

October 

 

AlexNet, GoogleNet, 

Google  

Inception v3, ResNet-
50, RestNet-101 

SqueezeNet 

Accuracy 

AlexNet: 97.63%, GoogleNet: 96.36%, 

Google Inception v3: 98.43%, ResNet-
50: 99.18%, ResNet-101: 99.33%, 

SqueezeNet: 93.77% 

[32] 2019 Mango 

1070 real-time environment images, 

1130 images from the PlantVillage 
dataset.  

2200 images in total 

PSO, SVM, RBF, 
MCNN 

Accuracy 

PSO: 88.39%, SVM: 92.75%, RBFNN: 

94.20%, MCNN: 97.13% 

[33] 2019 Rice 

 

350 images for rice 
 

kNN, ANN 

Accuracy 
kNN for explosion image 85%, for 

normal image 86%; ANN for explosion 

image 99%, for normal image 100% 

[34] 2019 
Various Plant 

Images 

236 healthy plants images; COCO 

dataset 
R-CNN 

Accuracy  

R-CNN: 67.34% 

[35] 2019 
Various Plant 

Images 

 

Images obtained from smart phone and 
tablet 

One Class SVM 
Accuracy 

SVM: 95% 

[36] 2020 Onion Obtained real time images for onion CNN 

MAP; 

For A model: 75.0% 
For B model; 74.1% 

For C model: 81.8% 

For D model: 87.2% 

[37] 2020 
Tomato, 
Potato,  

Corn, Apple 

Images of plant diseases 

36,000 images 

Wide Residual 
Networks, 

Google Inception v4 

Accuracy 
WRN: 91.03% 

Google Inc. v4:57.26% 

[38] 2020 Cassava 
10,000 images of 5 fine-grained 
Cassava roots 

CNN 
Accuracy  
CNN: 94% 

 

Table A.3. Studies on weed and pest detection 

Article Year Plant Dataset 
Model/ 

Algorithm 
Result 

[39] 2017 
Lepidoptera 

(Butterfly) 
1301 images of 22 Lepidoptera species CNN 

LLC and CART method 95% 

His own methods 100% 

[40] 2017 

 

Anastrepha 

(Fruit Fly 
Pest) 

 

301 images divided into different 

categories 

MLP, NB, D-Tree, 

NB-Tree, kNN, 
Simple LR, SVM 

Accuracy 
MLP: 88.9%, NB: 58.9%, D-Tree: 

70.6%, NB-Tree: 71.6%, kNN: 79.5%, 

Simple-LR: 79.2%, SVM 87.7% 

[41] 2017 
Various Pest 
Images 

Pest Images obtained from mixed 
agricultural land 

 
SVM, BP-NN, 

AlexNet,  

ResNet-50, ResNet-
101 

 
Accuracy 

ResNet-101: 98.67%, ResNet-50: 

94.67%, AlexNet: 86.67%, SVM: 
44.00%, BP-NN: 42.67% 

[42] 2017 

 

Weed 

 

Images acquired between 08:00 and 

10:00 in the morning between 

December 2015 and March 2016 

CaffeNet, SVM, 

AdaBoost, RF 

 

Precision 

CaffeNet: 98%, SVM: 95%, 
AdaBoost: 96%, RF: 95% 

 

[43] 2018 
Various Pest 

Images 

4500 pest images for D0 area 

1440 butterfly images for D1 area 

60 images of 24 pest kind pest images 

for D2 area 

225 insect images for D3 area 

Unsupervised 

Dictionary 

Learning 

Accuracy  

For D0:  83.5% 
For D1:  97.2% 

For D2:  90.0% 

For D3:  91.5% 
 

[44] 2018 

 

Weed 

 

Consisting of 25 420 words and 1135 

rules 

a data set 

LR, SVM, RF 

Accuracy 

LR: 84.46%, RF: 84.04%, SVM 
72.12% 

 

[45] 2018 
Weed, Beet, 

Corn 
146 images of beet and corn plants Gauss-SVM 

Accuracy 

Gauss-SVM: 97%, NDVI: 70% 
 

[46] 2018 Wireworm 

14% of the land area and 

Data from Murray-Darling Basin 

covering 67% of agricultural land 

ELM, RF 

For ELM R values: 0.641, RMSE: 

0.641, MAE: 0.055;  
For RF R values: 0.829, RMSE 0.056, 

MAE: 0.044 

[47] 2020 Weed 
364 pest images in F1 area, 

240 pest images in F2 area 

BP Network, SVM, 

RF, FCNN 

In OBIA analysis MIU values 66.6% 

and 2343.5 inference speed, and FCN 
80.2% and 326.8 inference speed  
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Table A.4. Studies on soil mapping, drought index and determining agricultural vehicles 

Article Year Plant Dataset 
Model/ 

Algorithm 
Result 

[48] 2018 Drought 
Images obtained from Landsat 5-TM 

satellite between 1986-2000 

LeNet, AlexNet, 

VGGNet 

Accuracy 

LeNet: 100%, AlexNet 99.92%,  
VGGNet 99.93% 

[49] 2018 Soil Mapping 69562 images of multispectral area ANN, RF 
For ANN; ME 2.85, RMSE 23.64 

For RF; ME 3.19, RMSE 22.53 

[50] 2019 Drought 

Images obtained from the 97-day 

Landsat-8 satellite between March 
2017 and June 2017 

RF 

First model; RMSE: 0.052,  
MAE: 0.039, R2: 0.91.  

Second model; RMSE 0.382, MAE: 

0.375, R2: 0.58 

[51] 2019 Drought 
Meteorological data obtained from 

SWI 

ANN, ANFIS 

 

For ANN; NSE: 0.371, RMSE: 2.654 

For ANFIS: NSE 0.460, RMSE 2.459 

[52] 2019 

Agricultural 

Machinery 

Classification 

7 models of agricultural machines 

are divided into 6 types according to 
shooting angle; 125,000 images in 

total 

Inception v3, RestNet-
50, AMTNet 

For Top_1 Dataset: 97.83%, 
For Top_5 Dataset: 100% 

[53] 2019 Soil Mapping 
DEM data obtained from NASA's 
Shuttle Radar Topography 

ANN, SVM, RF 
For RMSE; 
ANN: 2.62, SVM: 2.82, RF 2.22 

[54] 2019 Drought 80,000 images of 12,517 plant CNN 

For Carrot; Precision: 99.68%, Recall: 

99.56, F-Score: 0.9962.  
For Herb; Precision: 99.57%, Recall: 

99.68%, F-Score: 0.9962 

[55] 2019 Drought 

Values for 228,855 irrigation events 

were used in the 365-day evaluation 
of the 2,891-hectare Sector 2 in 

Spain's 21,141 hectare Canal del 

Zujar (CZD) region. 

Hibrit (D-Tree ve 

Genetik Algoritma) 

Accurate irrigation events between 

68%-100%, 

Inaccurate irrigation events between 
93%-100%  

[56] 2019 Drought 

SPI (Standardized Precipitation 

Evapotranspiration Index), TRMM 

(Tropical Rainfall Measuring 
Mission) and MODIS data between 

2001-2017. 

Bias-corrected random 

forest, SVM, 
MLP Neural Network 

Looking at the RMSE; Bias-corrected 

is more effective results from Random 
Forest 

[57] 2020 Soil Mapping 

Dataset A includes 200 sample data.   

Dataset B is a subset of A and 
includes 50 sample data. 

Dataset C includes 25 data of dataset 

B with largest residuals. 
Dataset D includes 25 data of dataset 

B with least residuals. 

MLR, kNN, SVM, 
SVR, Cubist, RF, ANN 

Calculation time is not important 
ANN works best. 

If the data set is less than 100 

Cubist, RF, SVM, kNN good result 
gives. 

[58] 2020 Drought 
Hydraulic environmental datasets 

between 1994-2013 

CART, MARS, BRT, 

RF 

Looking at the ROC analysis  
RF is the best result the other models 

to 97.7% 

[59] 2019 Soil Mapping 
LPIS (Land-Parcel Identification 
System) data 

CNN 
To forecsast field areas 89%,  
To field border 69%   

[60] 2020 Drought 

Average temperature, precipitation 
sunny day rate and RGB field images 

from UAV, Chine Meteorological 

Administration in Dixing County 

SVM 

The pixel classification provided only 

82.8% accuracy, with a low F1 score 

of 71.7%. Using spectral densities, it 
provided an accuracy of 89.9% with 

an F1 score of 87.7%. 

[61] 

 

 
 

2020 

 

 
 

Drought 

A total of 372 images taken in winter 
from lemon, orange, almond, olive, 

malt, fig, strawberry, cherry and 

walnut trees in Murcia, Spain (251 for 
SVM, 121 for deep learning) 

SVM, SegNet 
F1-Score; 
SVM: 83.11%, SegNet: 86.27% 

[62] 2020 Drought 

China Meteorological Information 

Center Meteorological data, 

agrometeorological data, remote 

sensing data and biophysical data 

between 2003-2014. 

BP Neural Network 

Recommended IDI system, SPI-3 

and results close to SPEI-3 data 

produced. 

[63] 2020 Drought 

It was used by comparing Korea 
Meteorological Administration 

(KMA) forecast data and Met Office 

Global Seasonal Forecast Model v5 
data. 

Hybrid Model 
(Combined Extreme 

Learning Machine and 

GloSea5GC2 climate 
model) 

Looking at the RMSE; 
Hybrid Model results between 1.02 

and 3.35, and Climate Model results 

between 1.61 and 3.37 
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Table A.5. Studies on yield forecasting 

Article Year Plant Dataset 
Model/ 

Algorithm 
Result 

[64] 2016 Wheat Online satellite image 

Counter-program ANN, 

XY-Fused Networks, 
Supervised Kohen 

Networks 

CP-ANN: %78.3, XY-Fs – 80%, 
SKN 81.65% 

[65] 2016 
Three Different 
Vegetations 

3 different vegetation index 

(AVHRR, MODIS, SPOT-4) for 32 

years from NASA measures NDVI 

ANN 

Develop a model for daily in 16, 32, 

48, 64 days and examine RMSE and 

MAPE values to each model 

[66] 2016 Sugarcane 

Nitrogen, Phosphorus, Potassium, 

Sulfur and total 20 data in 
Sugarcane field 

Hybrid Model (DDNHL-

GA), FCM-GA, GCM-

DDHNL, NB, RBF 
Network, MLP, j48, 

Random Tree, LMT 

Accuracy 

DDNHL-GA: 94.7%, FCM-GA: 
93.4%, FCM-DDNHL: 92.1%, NB: 

89.4%, RBF: 85.5%, MLP: 81.57%, 

J48: 73.68%, Random Tree: 71.05%, 
LMT: 86.84% 

[67] 2017 
Lemon, 
Mandarin, 

Orange 

94 lemon images, 364 mandarin 
images, 509 orange images 

 

M5 Prime 

R (Correlation coefficient) 

Lemon 0.813, Mandarin 0.744, 

Orange 0.828 
RMSE Lemon 0.072, Mandarin 

0.165, Orange 0.297 
MAE Lemon 0.107, Mandarin 

0.081, Orange 0.102 

[68] 2017 
Evapotranspirati
on 

Meteorological data between 1961-
2014 years in Sichuan, China 

ELM, GRNN 

1. Model ELM RMSE 0.198, MAE 

0.267; GRNN RMSE 0.220, MAE 
0.314 

 

2. Model ELM RMSE 0.209, MAE 
0.301; GRNN RMSE 0.194, MAE 

0.263 

[69] 2018 Corn 

SOM, CEC, Mg, K and PH values 
for 200 soil at 2013, October 1 in 

Molly Caren Farm, Ohio 

 

Linear Regression 

RF, Neural Network, 
Radial SVM, Linear 

SVM, Gradient Boosting 

Model, CU 
 

Cross-Validation  
R2; Linear 0,34, RF 0.53, SVM-R 

0.45, SVM-L 0.33, GBM 0,41, NN 

0,37, CU 0,52 
RMSE Linear 1.15, RF 0,97, SVM-

R 1,16, SVM- L 1,05, GBM 1,08, 

NN 1.12, CU 0,98 

[70] 2018 Soil Fertility 
372 data in Maharasthra, India 

 

Neural Network, 
Deep Learning, 

SVM, RF, Boosting, 

Bagging,  
Bayesian Models, 

Extremely 

Randomized Regression 
Trees  

(extraTrees) 

The best result is extraTrees  
for RMSE values between 0,57 and 

0,70 

[71] 2018 Cotton 
400 images from 100 different 
cotton field and NCDC climate data 

between 2013-2014 

ANN 
ANN correlation R= 0,68 and MAE: 

%11 

[72] 2019 Canola 

Canola plant data between 2008-

2015 and three separate datasets 
with 21 to 27 variables 

(QQWR15_4, QQWR31_5, 

QQWR30_6) 

MLP 

QQWR15_4 model MAE 0.2870, 
MAPE6.88,  

QQWR31_5 model MAE 0.4353,  

MAPE 9.87,  
QQWR30_6 model MAE 0.4118, 

MAPE 7.69 

[73] 2019 Corn 
721 images in 2016, 1552 images in 
2017, 1566 images in 2018 obtained 

from Sentinel-II satellite 

MR, RF, SVM, GNDVI 

The highest R2 GNDVI 0.48,  

The best results of R2 for ML are RF 
which is 0,6. The best time to have a 

high corn yield is between 105 and 

135 days after October 

[74] 2019 Wheat 

Satellite images and climate data of 

NDVI between 2009 and 2015 at an 

altitude of 250 meters, daily 
precipitation and weather data from 

SILO and images provided by 

farmers 

RF, CUB, XB, SVM 

Linear, SVM Radial 
Basis, MLP, MARS, GP, 

kNN 

Looking at the RMSE; 

The best result of RMSE is SVM 
Radial Basis Function (0.545.  

 

[75] 2019 Soybean 
500 Soybean images 32126 images 

containing seeds 

CNN (3x3) 

CNN (5x5) 

MSE; 
CNN (3x3): 23.49, 

CNN (5x5): 20.79,  

TCNN: 13.21 

[76] 2019 Corn 
2267 genotype of corn hybrid 
between 2008-2016 in 2247 

location 

DNN, Lasso, Shallow 

Neural Networks, 

Regression Tree 
 

DNN RMSE 10.55, r 88.3; 

Lasso RMSE 20.28, r 36.68; 

SNN RMSE 12.96, r 80.21 
RT RMSE 14.31, r 76.7 

[77] 2019 
Wheat, Barley, 

Canola 

Precipitation and MODIS national-

global dataset  
RF 

Correlation 0.89 
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Article Year Plant Dataset 
Model/ 

Algorithm 
Result 

[78] 2019 Orange 
4931 tree images belonging to 25 
rootstock varieties 

CNN 
Accuracy  
CNN: 99.9%  

[79] 2019 Lettuce 
Over 10000 training datasets with 

20x20 pixels 

Hybrid Model (AlexNet 

and CNN) 
Accuracy 98% 

[80] 2019 Lettuce 

In a greenhouse with controlled 
temperature and humidity data 

followed for two weeks to determine 

CBZ and DCF intake by growing 
three types of lettuce 

Hybrid Model (ELM and 

FFNN) 

 

Accuracy for Hybrid Model 95%  
 

[81] 2019 Mango 
Mango greenhouse data from 
October 2016 and May 2018  

MLP, RF, Spline, MVR, 

Linear 

 

R2 values 

In short term Linear %95, 

Long-term MLP %96 

[82] 2019 Crop Forecast Cropland Data Layer (CDL) data 
Multi-layer ANN 

 

Accuracy: %88 

R2: 0.9 

[83] 2019 
Evapotranspirati
on  

INMET data between 1996 and 

2016 in  
Verde Grande River 

 

HS, ANN, MLR, ELM 

R (correlation coefficient) 
HS 0.661, MLR 0.731, ELM 0.724, 

ANN 0.718 

 
RRMSE  

HR 0.171 MLR 0.091, ELM 0.151, 

ANN 0.165 
 

[84] 2019 
Evapotranspirati

on 

Meteorological data between 1978-

1999 and 2007-2016 in Hoshiarpur, 

and between 1970-1999 and 2007-
2016 in Patiala 

ELM, GBM, GLM, DL-

MLP 

Nash-sutcliffe efficiency (NSE) 

0.95-0.98, R2 0.95-0.99, ACC 85-

95, MSE 0.0369- 0.1215, RMSE 
0.1921- 0.2691 

[85] 2020 
Various many 

plant images 

365 images contain Simple-RGB 
and Foreground-RGB 

 

SegNet 

For Simple-RGB; Mean Accuracy 

0.89, IoU 0.52, Boundary-F1 0.81 
For Foreground-RGB; Mean 

Accuracy 0.94, IoU 0.58, Boundary 

F1 0.92 

[86] 2020 Corn 

For monthly weather forecast data; 

4000 data to Scenario A and 6000 

data to Scenario B 

Linear Regression, SVM, 

MLP, GBP,  

Regression Tree, EGB 

To Scenario A, GW Effects; Cross-
validation correlation (CV CORR) 

values (LR-0.45, SVR-0.68, ANN-

0.64, GBRT-0.80, XGBoost-0.78) 
To Scenario A, EU Effects; CV 

CORR values (LR-0.65, SVR-0.80, 

ANN-0.74, GBRT-0.87, XGBoost-

0.86).  

To Scenario B, GW Effects; CV 
CORR values (LR-0.35, SVR-0.63, 

ANN-0.64, GBRT-0.78, XGBoost-

0.76) Scenario B, EU Effects; CV 
CORR values (LR-0.63, SVR-0.74, 

ANN-0.74, GBRT-0.84, XGBoost-

0.83)   

[87] 2020 Corn 

NASS fertilizer data, SSURGO data 

for soil type, NCDC monthly 
average temperature and 

precipitation data 

 

The BRT model has 
been developed 

according to the life 

cycle of maize 
production for a period 

of 9 years. 

Correlation coefficient between 
0.87- 0,99, R2 between 0.78- 0,82  

 

[88] 2020 
Apple and 

Mango 

Terahertz data and Swisstol2 data 

(0,75 and 1.1 Thz frequency) 
SVM, kNN, D-Tree 

Accuracy For Apple  
SVM: 97.0%, kNN: 86.4%, D-Tree: 

93.2;  

For Mango 
SVM: 93.4%, kNN: 86.4%, D-Tree: 

92.5% 

[89] 2020 Barley 
Climatic events between 2001-2015 

and data on 450 soils 

PLSR (Partial Least 

Square Regression) 

For Wheat RMSEC 0.20, R2: 0.54 

For organic matter; R2: 0.9345, 
RMSECV 0.54% 
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