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Abstract  

Most of the criminal acts are performed using criminal tools. One of the most effective ways of preventing crime 
is to observe and detect offensive weapons by security camera systems. Deep learning techniques can show very 
high-performance in observing and perceiving objects. In the current study, the performances of the pre-trained 
AlexNet, VGG16, and VGG19 models based on convolutional neural networks, were tested for the detection and 
classification of criminal tools such as guns and knives. In the study, the training process was carried out using 
transfer learning approaches such as Fine-tuning and Training from scratch based on deep architectures. To test 
the deep architectures used in the proposed study, the gun and knife datasets frequently used in the literature were 
collected and combined with new datasets obtained originally from search engines and videos, and then their 
performances were tested. In the experimental results, the VGG16 model based on fine-tuning for the two and 
three classes achieved the highest accuracy in detecting criminal devices with a rate of 99.73% and 99.67%, 
respectively. As a result, the study has observed that offensive weapons could be detected with security cameras 
using learned weights of deep architectures. 

Keywords: Pattern recognition, Gun and Knife Detection, Deep Learning, Offensive weapons, Convolutional 
Neurol Network 

1. Introduction 

Globally the number of violent incidents committed by individuals with their weapons is increasing day 
by day. In the 2019 report named the Map of the Armed Violence in Turkey released by Umut 
Foundation, an institution standing against the individual armament in Turkey, it has been stated that 
the number of violent events committed by using personal arms is arising every passing year in Turkey. 
The report has declared that individuals involving criminal acts in 2019 took their places in the media 
for 3623 disagreements. Out of these events, firearms were used in 2867 conflicts, and all kinds of sharp 
and piercing tools were used in the remaining 756 incidents. Besides, according to the foundation's 
research results obtained from other sources, it has been stated that 2,211 people died, and 3,736 people 
were injured in the same year resulting from firearms and sharp objects utilization [1].   

The Umut Foundation report also includes a comparative regional armed violence report for the years 
2015-2019. As seen in Figure 1, at least a 46% increase in the numbers of violent crimes and crime tools 
is observed in every region of Turkey between 2015 and 2019 years [1]. That people openly carry 
offensive instruments is a sign of possible acts of violence. Detection of crime weapons may prevent 
violent incidents. Governments prohibit carrying offensive weapons with sanctions, and besides, assign 
law enforcement officers to detect. Law enforcement officers make observations directly in public areas 
and also with security camera systems through computers. 

Object detection and recognition from images or videos have recently become one of the most popular 
research/application topics. Various applications such as recognitions and detections of face, vehicle, 
plant, license plate, item are performed automatically. The security sector is one of the most prominent 
areas that object detection or recognition applications can have significant effects. Today, security 
cameras are used in many living areas, and images taken from these security cameras play a primary  
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Figure 1. Umut Foundation 2015-2019 Armed Violence by Regions [1]. 

role in solving many incidents and providing information for forensic channels [2]. Usually, the usage 
of security cameras and getting crucial information for public safety are conducted by law enforcement. 
However, using computer vision systems for object perception or detection in today's technology will 
ensure reliability in the detection and reduce the law enforcement officers' workloads. Besides, since 
the computers carry out the automatic object detection and recognition processes, the law enforcement 
officers can get the information required more quickly and accurately. Research has shown that law 
enforcement officers' prompt intervention in preventing crime is of great importance [3].  

In the method's selection for this study, some studies on gun and knife detection and perception in the 
literature were examined. In their studies, Garega et al. performed feature extraction from MPEG7 
videos and made classifications using SVM algorithms to detect guns and knives through security 
cameras [4].  Gonzalez et al. conducted a real-time gun detection study in the closed-circuit security 
camera (CCTV) system. They used R-CNN based pre-trained ResNet-50 architecture [5]. Verma and 
Dhillon conducted a study for the detection of handheld guns by using Faster R-CNN, which is one of 
the deep learning techniques. They used Deep Convolution Network (DCN) for automatic gun detection 
from scattered scenes [6]. Tiwari and Verma carried out a computer vision-based visual gun detection 
study using a Harris point of interest detector. They have extracted the unrelated object from the images 
using the K-Means algorithm. They made use of the color-based sections in the appearances [7]. Kmiec 
et al. presented a new application of Active View Patterns from Computer vision techniques to detect 
the blades in images. In the examination, they sought an answer to whether there was a knife in the 
security camera images [8].  Castillo et al. made a preprocessing through the brightness guidance for 
automatic cold steel gun detection in security camera surveillance videos featured with deep learning. 
They used CNN-based ResNet architectures for detection. They also used the DaCoLT (Darkening and 
Contrast in Learning and Testing stages) technique for brightness-guided preprocessing [9]. Carrobles 
et al. conducted a Faster R-CNN-based gun and knife detection study for video surveillance. They used 
R-CNN based SqueezeNet architecture and GoogleNet architecture in their studies. In test 
measurements of the detection process, they achieved a performance score of 46.68% with GoogleNet 
architecture and 85.44% with SqueezeNet architecture [10]. Jain et al. conducted a gun detection study 
using artificial intelligence and deep learning techniques for security applications. They used the R-
CNN neural network SSD VGG-16 architecture in their work and achieved an average performance 
score of 73.8% [11]. Olmos et al. made automatic gun detection in videos using deep learning 
approaches. They used an open-access dataset. In their studies, they performed the training process with 
the CNN based R-CNN model [12].  

In this study, the pre-trained deep architecture performance was evaluated to classify guns, knives, and 
regular images. In this direction, approaches such as transfer learning and scratch were used for pre-
trained deep architectures. In the experimental studies, a comprehensive dataset containing guns, knives, 
and ordinary images was used to test the proposed system. In the experimental results, VGG16 
architecture achieved a criminal devices recognition performance of 99.73%.  
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The present study was carried out to automatically detect guns and knives that could be used in violent 
incidents. For this purpose, deep learning techniques were suggested. The measurements were made on 
high-performance GPU supported computers with AlexNet, Vgg16, and Vgg19 architectures previously 
trained with deep learning techniques. Previous object detection studies in the literature were examined, 
and the existing datasets were analyzed. To increase the dataset reliability, original and new gun and 
knife data were collected from internet pages, combined with the existing dataset, and tested with 
architectures. The architectures of the dataset used, and the test performances have been compared with 
the table. From the current study results in the literature, methods with better performance have been 
recommended for applications that require this type of perception.   

The main contributions of this study are given below: 

• In experimental studies, it has been determined that the learned weights of pre-trained Deep 
architectures provide high performance in detecting crime instruments.  

• In this study, the performances of deep architectures such as AlexNet, VGG16, and VGG19 
were evaluated, and their strengths were demonstrated.  

• The proposed study can be used in simple and real-time applications. 

2. Materıal and Method 

In this paper, we evaluated performances of deep models based on transfer learning approaches to the 
classification of gun and knife images. The general flow diagram of the proposed study is given in 
Figure 2. 

 

 
Figure 2. The general structure of the proposed study 

2.1. Dataset 

In this study, a data set suitable for the purposes was created by collecting images from open access data 
sets [9, 12-14], which have repeatedly been the source of many previous studies in the literature and 
original internet browsers and video pages [4, 15]. This dataset has 16000 images containing 9500 
knives, 3500 guns, and 3000 ordinary pictures. Sample images belonging to these classes are given in 
Figure 3.  
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(a) 

 
(b) 

 
(c) 

Figure 3. Data set example, a) Gun images, b) Knife images, c) Normal images 

2.2 Convolutional Neural Networks   

A convolutional neural network (CNN) is a neural network that has matrix multiplication and 
convolution system in at least one of its layers. CNNs must have at least one or more of the convolution 
layer, non-linearity layer, pooling layer, fully connected layer, and hidden layers (Figure 4).   

 

 
Figure 4. Convolutional Neural Network Layers 

The layers given in Figure 4 can be briefly summarized as follows [16-19]: 

• Convolutional Layer- The layer used to detect properties,  

• Non-Linearity Layer- The layer used to make the system nonlinear,  

• Pooling Layer- The layer controlling the number of weights and over-fitting,  

• Flattening Layer- Data preparation layer for classical neural network, 

• Fully Connected Layer- Standard neural network layer used for classification. 
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CNNs are inspired by people's ability to comprehend events. It is in the deep feedforward artificial 
neural networks class to analyze images. CNN uses 2D and 3D images when generating spatial and 
configuration information. Convolutional neural networks use three receptive fields, shared weights, 
and sub-sampling mechanisms to increase the models' working areas. CNNs are generally used to 
recognize patterns in images. For this reason, features within images can be encoded into architectures, 
thus making them more suitable for vision network-oriented tasks while further reducing the parameters 
required for model building. CNN applications are widely used for object detection, prediction, text 
detection, image detection, etc. [18-24]. 

2.3 Deep Architectures 

In this study, the convolutional neural network models AlexNet, VGG-16, and VGG-19 architectures, 
which were previously trained on over one million images, were used, and the comparison results were 
obtained. 

2.3.1 AlexNet Architecture 

AlexNet [25] is a convolutional neural network architecture created in 2012. It has 60 million parameters 
and 650 million neurons. AlexNet comprises five Convolutional Layers and three Fully Connected 
Layers. The Multiple Convolutional Kernels layer (Filters layer) discerns unusual features in an image. 
There are usually plenty of same-size cores in a single convolution layer. For example, AlexNet's first 
Conv Layer contains 96 cores at 11x11x3. The width and height of the cores are usually the same sizes. 
The Max Pooling layer comes after the first two-convolutional layers. The third, fourth and fifth 
convolutional layers directly connect. The Overlapping Max Pooling layer, whose output goes to a series 
of two fully connected layers, follows the fifth convolutional layer. The fully connected second layer is 
followed by a 1000 class labeled Softmax classifier [26-27]. For the Alexnet architecture, images should 
be specified as 256x256 inputs. The structure of the AlexNet architecture given in Figure 5. 

 

 
Figure 5. AlexNet Architecture 

2.3.2 VGG Architecture 

The VGG-16 architecture [28], including 21 main layers, consists of convolutional, pooling, and fully 
connected layers. Its architecture has an increasing network structure. The image input resolution must 
be 224x224 pixels in size. In this architecture, the last layers comprise fully connected layers used for 
feature extraction [29-30]. The structure of the VGG16 architecture given in Figure 6. 
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Figure 6. VGG16 Architecture 

VGG-19 architecture [28] with 24 main layers consists of 16 convolutional, five pooling, and three fully 
connected layers. Since VGG-19 has a deep network, the filters are used in the convolution layer to 
reduce the parameters' number. In this architecture, the image input size is 3x3 pixels. The VGG-19 
architecture contains nearly 138 million parameters [29-30]. The structure of the VGG19 architecture 
given in Figure 7. 

 

 
Figure 7. VGG19 Architecture 

2.4 Transfer learning approaches 

Pre-trained deep models contain parameters that have been trained using a large multi-class data set. 
Two transfer learning approaches, Fine-tuning and Training from scratch are available to use these deep 
models in other data sets. The fine-tuning method uses the learned weights of pre-trained deep models. 
This approach is based on adapting deep architectures by replacing the last three layers with new three 
layers to solve another classification problem. On the other hand, the Training from scratch approach 
uses the pre-trained model architecture to train the dataset accordingly. The starting weights of the model 
begin randomly [21, 31]. 

3. Experimental Works 

The experimental studies were performed using MATLAB (R2020a) software on a computer equipped 
with RTX 2080 GPU card, 32 GB Ram, and Intel Core i7. In experimental studies, 2-class and 3-class 
data sets were used. These data sets were split into training and test sets, at the ratios of 80-20%, 60-
40%, 40-60%, and 20-80%, and a comprehensive experimental study was conducted for each. Besides, 
the network parameters used for training the pre-trained ESA architectures used in this study are given 
in Table 1. 

Table 1 The deep network parameters used in the current study. 
Mini-batch size 8-16 
Maximum epoch number 5-20 
Weight decay factor 0.01 
Initial learning rate 0.0001 

Optimization method SGDM (Stochastic Gradient Descent 
with Momentum) 

 

Accuracy scores obtained in the experimental study performed for the 2-class (knife and normal) data 
set are given in Table 2.   
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Table 2 Accuracy scores (%) for the 2-class data set 
Approaches Models 80-20 60-40 40-60 20-80 Average 

Fine-tuning 
Alexnet 98.80 98.31 97.39 96.48 97.74 
VGG16 99.73 99.65 99.42 98.77 99.38 
VGG19 99.65 99.53 99.25 98.66 99.27 

Training from 
scratch 

Alexnet 87.87 87.09 84.05 79.40 84.58 
VGG16 84.73 83.57 80.23 74.38 80.72 
VGG19 83.76 79.46 77.46 75.40 79.02 

In Table 2, separation values for four different training/test clusters are used, and separate results are 
given for each. According to these results, among deep models based on the fine-tuning approach, the 
VGG16 architecture achieved the highest accuracy on average, while the AlexNet architecture showed 
the lowest performance. On the other hand, among deep models based on the training from scratch 
approach, the Alexnet architecture obtained the highest accuracy on average, while the VGG19 
architecture achieved the lowest performance. Additionally, the VGG16 architecture based on the Fine-
tuning approach obtained the highest accuracy score among deep models with a 99.73% success for 
separating training/testing clusters as 80-20, while an 87.87% score was obtained with the AlexNet 
architecture based on the training from scratch approach. The confusion matrices of the highest 
performance based on these fine-tuning and the training from scratch approaches are given in Figure 8. 

  
(a) (b) 

Figure 8. Confusion Matrices of proposed deep model based approaches to 2-class, a) Fine-tuning, 
b) Training from scratch. 

The accuracy scores obtained in the experimental studies performed for the 3-class (knife, gun, and 
ordinary) data set are given in Table 3.   

Table 3 Accuracy scores (%) for the 3-class data set 
Approaches Models 80-20 60-40 40-60 20-80 Average 

Fine-tuning 
Alexnet 98.86 98.68 97.82 96.72 98.02 
VGG16 99.62 99.41 99.29 98.64 99.24 
VGG19 99.59 99.27 99.15 98.59 99.15 

Training 
from scratch 

Alexnet 86.77 85.25 80.48 72.86 81.34 
VGG16 85.74 83.31 78.18 70.03 79.31 
VGG19 83.67 79.69 74.04 64.64 75.51 

As seen from Table 7, the average highest accuracy among deep models based on the Fine-tuning 
approach was achieved as 99.24% with the VGG16 model, while the AlexNet model using the training 
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from the scratch approach achieved an 81.34% success rate. In terms of the 80-20 separation value of 
training/test clusters, the highest accuracy score among the deep models was achieved with a 99.62% 
rate by the VGG16 architecture based on the fine-tuning approach. Confusion matrices of the highest 
performance among deep models based on the fine-tuning and training from the scratch approaches are 
given in Figure 9.  

 

  
(a) (b) 

Figure 9. Confusion Matrices of proposed deep model based approaches to 3-class, a) Fine-tuning, 
b) Training from scratch. 

As a result, it has been observed that the fine-tuning approach provides higher performance than the 
training from the scratch approach for pre-trained deep models. Besides, according to the results 
obtained from all experimental studies, the highest accuracy among deep models based on the fine-
tuning method was obtained with the VGG16 model, while the AlexNet model got the highest score by 
using the training from scratch approach. 

4. Discussion 

Nowadays, most offensive actions are committed with criminal tools. One of the most effective ways of 
preventing malignant acts is to observe and detect the weapons in advance through security cameras. 
Many studies in the literature deal with the classification of criminal instruments such as guns and knives 
utilizing visuals containing offensive images. These studies are detailed in Table 4. 

Table 4 Comparison of the proposed approach with previous studies 

References Methods Number of 
Classes 

Number of 
Images 

Accuracy 
(%) 

[32] Fine-tuning based LeNet 3 12,000 99 

[33] 
Visual vocabularies and deep 
features 4 1,950 95 and above 

[2] Alexnet+SVM 2 2,000 95 
[15] Fuzzy classification model 2 12,899 86 
[34] VGGNet  3 5,504 98.41 

The current study Fine-tuning based VGG16 
2 12,899 99.73 
3 14,481 99.62 

In Table 4, the accuracy scores of previous studies using knives, guns, and ordinary images are given. 
In these researches, generally, deep-learning-based models were used. In Table 4, it is observed that the 
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current study has used more visuals than other works. As a result, it has been observed that the proposed 
research achieved a higher accuracy score than previous studies. 

5. Conclusion 

This study assessed the performances of deep convolutional neural networks based on different 
approaches for the classification of criminal tools. For this purpose, pre-trained AlexNet, VGG16, and 
VGG19 models were used. The performances of these models were calculated using Fine-tuning and 
Training from scratch approaches. As a result of extensive experimental studies, it was clearly observed 
that nearly 100% accuracy was obtained using the learned weights of deep architectures in the detection 
of crime tools. As a result, the study has observed that offensive weapons could be detected with security 
cameras using learned weights of deep architectures. In future studies, we are planning to detect video-
based criminal devices using a deep neural network. 
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