
SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES

VOL. 4, NO. 3, DECEMBER 2021

DOI: 10.35377/saucis.04.03. 901776

GraParT: A MATLAB Toolbox for Partitioning Directed Graphs

Onur CİHAN

Marmara University, Faculty of Engineering, Department of Electrical and Electronics Engineering;

onur.cihan@marmara.edu.tr

Received 23 March 2021; Accepted 7 September 2021; Published online 31 December 2021

Abstract

Consensus algorithms are increasingly used in multi-agent systems due to their advantages in various applications.

Recent results on consensus algorithms show that the number of groups formed in a network of agents utilizing

consensus-based algorithms can be computed once its primary and secondary layer subgraphs are determined. In

this study, we present GraParT -Graph Partitioning Toolbox- that can be used to partition directed graphs by

determining its primary and secondary layer subgraphs and the vertices therein. The toolbox helps the user to

build, modify, analyze and illustrate directed graphs in terms of the grouping behavior of the consensus algorithms

with its user-friendly interface. GraParT is an open-source software that is available free of charge for academic

and non-commercial use.

Keywords: directed graphs, consensus algorithms, group consensus, MATLAB toolbox

1. Introduction

The last two decades have seen the rapid development of consensus algorithms due to their use in

practical problems consisting of multiple agents [1-6]. These algorithms find applications in the fields

of robotics [1, 2], computer networks [3], distributed optimization [4], and social networks [5]. Most of

the work consider the consensus problem as agreement on a single state which requires the underlying

graph of the network to have a spanning tree [7, 8]. If there is no spanning tree in the graph, consensus

on a single state is not possible and multiple groups will be formed in the network [8].

Recently, the number of groups that will be formed in a multi agent network utilizing a consensus based

algorithm was investigated for networks with first [9], second [10] and third order agent dynamics [11].

While the stability conditions are different for these networks, the grouping behaviors are the same. The

concepts of primary layer subgraphs (PLS) and secondary layer subgraphs (SLS), which were first

introduced in [9], have been instrumental in our understanding of the grouping behavior of a multi-agent

system. Once these subgraphs are determined, the topology designer can merge or divide the groups by

adding new edges to the graph [12].

Hespanha proposed a MATLAB algorithm to partition undirected graphs which can be used to solve the

l-bounded Graph Partitioning (l-GP) problem [13]. In this problem, the vertices of the given undirected

graph are partitioned into k disjoint subsets where the sum of the edges connecting the vertices in

different subsets is minimized. Çatalyürek and Aykanat built a hypergraph partitioning tool called

PaToH that can be utilized to solve various combinatorial scientific computing problems including VLSI

layout design and dynamic load balancing for parallel processing [14]. The objective of such partitioning

is to divide the given graph into two (or more) subgraphs with equal (or nearly equal) number of vertices

such that the cost function defined on the hyperedges connecting vertices in different subgraphs is

minimized. Furthermore, depending on the problem, another objective may be to keep the sum of

hyperedges connecting the vertices in the same subgraphs as close as possible (load balancing problem).

For a detailed survey on graph partitioning, we refer the reader to [15] and the references therein. While

some research has been carried out on developing graph partitioning tools for solving different graph-

related problems, to the best of our knowledge, this is the first study that provides a tool for partitioning

directed graphs to determine the groups and their members in a network of agents utilizing a consensus-

based algorithm. Due to the applicability of the consensus algorithms in important real-world problems

https://orcid.org/0000-0002-5729-2417
mailto:onur.cihan@marmara.edu.tr

Sakarya University Journal of Computer and Information Sciences

Onur Cihan

278

(such as formation control of multi-robot systems, analysis of social network analysis, etc.), a toolbox

for partitioning directed graphs may help the engineers in designing network topologies.

In this paper, our objective is to provide a tool for determining these groups and the vertices in each

group by expoiting the graph structure. This tool enables the network topology designer to understand

the grouping behavior of the multi-agent system without running a consensus based algorithm. More

specifically, the topology designer can add new links or remove existing ones to form a new network or

modify an existing one to obtain desired grouping when a consensus based algorithm is used. For

instance, in the formation control problem of a multi-robot system, this tool can be used to design a

network topology where the robots in the same group achive a desired formation. To this end, we utilize

the concepts of PLS and SLS; and implement the detection algorithms whose pseudocode were given

in [8]. Moreover, we propose the notion of reduced graphs where each group is represented by a vertex

and the interaction between the agents in two different groups are represented by an edge in the reduced

graph. Finally, we propose an algorithm for obtaining the reduced graph of an arbitrary directed graph

and discuss its time and space complexity. With this novel definition, one can analyze complex directed

graphs in terms of the grouping behaviors of the agents that are utilizing a consensus based algorithm.

To the best of authors’ knowledge, this is the first study to provide such a graph theoretic concept and

an algorithm its detection.

We organize the remaining parts of this paper as follows. We review graph theory concepts that are used

throughout the paper and give the mathematical formulation of the conventional continuous-time and

discrete-time consensus algorithms with linear agent dynamics in Section 2. In Section 3, we present

the workflow of the toolbox; and demonstrate a short tutorial on how to use the toolbox, interpret the

outputs and visualize the partitioned graph. Finally, Section 4 concludes the paper.

2. Graph Theory Preliminaries and Dynamical Model of Consensus

2.1 Graph Theory Preliminaries

Communication network of a multi-agent system is modeled by a directed graph 𝑮 = (𝑽, 𝑬) where 𝑽 =
{𝒗𝟏, … , 𝒗𝒏} is the finite set of vertices and 𝑬 ⊆ 𝑽 × 𝑽 is the set of edges representing the information

flow between agents. We say that there exists a directed edge form 𝒗𝒊 to 𝒗𝒋 if (𝒗𝒊, 𝒗𝒋) ∈ 𝑬 and 𝒗𝒊 is

called a neighbor of 𝒗𝒋. The graph 𝑮 is said to consist of a spanning tree if there exists a vertex 𝒗𝒓 such

that all vertices in 𝑮 receive information from 𝒗𝒓 directly or indirectly (in more than 1 step). Here, 𝒗𝒓
is called a root of the graph 𝑮. When there is no spanning tree in a directed graph, it can be partitioned

into its PLS and SLS whose definitions are given as follows.

Definition 1. (Primary and secondary layer subgraphs)

Let the multi-agent system be modeled by a directed graph 𝐺 = (𝑉, 𝐸). Then 𝐺 can be partitioned into

𝑙𝑝 + 𝑙𝑠 subgraphs such that

i) the vertices in 𝑙𝑝 subgraphs (each consisting of the largest possible spanning tree) are not connected

to the rest of the graph, and

ii) the vertices in 𝑙𝑠 subgraphs (each consisting of a spanning tree) are connected to the rest of the

network through a single vertex which is a root of the subgraph and the only vertex to receive

information from other subgraphs. Furthermore, this root vertex has at least two neighbors in two other

subgraphs.

The subgraphs defined in items (i) and (ii) are called the PLSs and SLSs subgraphs of 𝐺 and denoted by

𝐺𝑝,𝑖 (𝑖 = 1,… , 𝑙𝑝) and 𝐺𝑠,𝑗 (𝑗 = 1,… , 𝑙𝑠) respectively. Note that this partitioning is unique for a given

directed graph.

2.2 Dynamical Model of Consensus

Sakarya University Journal of Computer and Information Sciences

Onur Cihan

Consider a network of 𝑛 agents evolving over a directed graph 𝐺 = (𝑉, 𝐸). The conventional distributed

consensus algorithm with continuous time first-order agent dynamics can be expressed as

𝑥�̇�(𝑡) = ∑ 𝑎𝑖𝑗 (𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)) , 𝑖 = 1, … , 𝑛

𝑗∈𝑁𝑖

 (1)

where 𝑥𝑖(𝑡) ∈ 𝑅
𝑚 is the state of agent 𝑖 at time 𝑡, 𝑁𝑖 is the set consisting of the neighboring vertices of

agent 𝑖 and 𝑎𝑖𝑗 is the (𝑖, 𝑗)-th element of the adjacency matrix 𝐴 defined as 𝑎𝑖𝑗 > 0 if (𝑣𝑗 , 𝑣𝑖) ∈ 𝐸 and

𝑎𝑖𝑗 = 0 otherwise. In matrix form, the system represented by Equation 1 can be expressed as

�̇�(𝑡) = −(𝐿⊗ 𝐼𝑚)𝑥(𝑡) (2)

where 𝐼𝑚 is the 𝑚 × 𝑚 identity matrix, ⊗ is the Kronecker product operator and 𝐿 = [𝑙𝑖𝑗] is the

Laplacian matrix defined by

𝑙𝑖𝑗 =

{

∑𝑎𝑖𝑘 ,

𝑛

𝑘=1
𝑘≠𝑖

if 𝑖 = 𝑗

−𝑎𝑖𝑗 , otherwise

. (3)

In discrete-time, the distributed algorithm with first-order agent dynamics is given as follows

𝑥𝑖(𝑘 + 1) = 𝑤𝑖𝑖𝑥𝑖(𝑘) + ∑ 𝑤𝑖𝑗𝑥𝑗(𝑘), 𝑖 = 1, … , 𝑛

𝑗∈𝑁𝑖

 (4)

where 𝑥𝑖(𝑘) ∈ 𝑅
𝑚 is the state of agent 𝑖 at time step 𝑘, and 𝑤𝑖𝑗 ≥ 0 is the weighting coefficient

corresponding to the information exhange between agents 𝑗 and 𝑖. The following assumption is

necessary for the stability of the system represented by Equation 4.

Assumption 1. The following conditions hold for the weighting coefficients 𝑤𝑖𝑗

𝑖) 𝑤𝑖𝑗 {
> 0, if (𝑣𝑗 , 𝑣𝑖) ∈ 𝐸 or 𝑖 = 𝑗

= 0, otherwise.
(5)

𝑖𝑖) ∑𝑤𝑖𝑗 = 1, for all 𝑖 ∈ {1,… , 𝑛}

𝑛

𝑗=1
(6)

Assumption 1(i) ensures that the weighting coefficients are always non-negative, and equal to 0 if there

is no information flow between agent 𝑗 to agent 𝑖. Assumption 1(ii) guarantees that the weighting

coefficients sum up to 1 for all 𝑖.

The system represented by Equation 4 can be expressed in matrix form as

𝑥(𝑘 + 1) = (𝑊⊗ 𝐼𝑚)𝑥(𝑘) (7)

where 𝑥(𝑘) = [𝑥1(𝑘)
𝑇 , … , 𝑥𝑛(𝑘)

𝑇]𝑇and 𝑊 = [𝑤𝑖𝑗] is the weighting matrix of the system.

Given a multi-agent system with a directed graph that is not consisting of a spanning tree, the agents

can not achieve consensus on a single equilibrium state. In such a case, the agents converge to different

vectors and multiple groups are formed. The definition of group consensus is introduced as follows.

Definition 2. (Group consensus)

We say that the multi-agent system with the underlying graph 𝐺 achieves group consensus if there are

𝑐 nonempty sets 𝑆𝑙 (𝑙 = 1,… , 𝑐) such that

279

Sakarya University Journal of Computer and Information Sciences

Onur Cihan

⋃𝑆𝑙

𝑐

𝑙=1

= 𝑉, 𝑆𝑙 ∩ 𝑆𝑞 = ∅, for 𝑙 ≠ 𝑞 and 𝑙, 𝑞 = 1,… , 𝑐 (8)

and for the set 𝑆𝑙 we have

lim
𝑘→∞

‖𝑥𝑖(𝑘) − 𝑥𝑗(𝑘)‖ = 0, ∀𝑣𝑖, 𝑣𝑗 ∈ 𝑆𝑙 (9)

for arbitrary initial conditions 𝑥𝑖(0) ∈ 𝑅
𝑚 and arbitrary choice of averaging coefficients 𝑤𝑖𝑗 satisfying

Assumption 1 (or equivalently, arbitrary choice of 𝑎𝑖𝑗).

Note that for a multi-agent network with dynamics given in Equation 1 (or equivalently Equation 4 for

discrete-time networks), the number of groups is related to the structure of the network [9-12, 16]. The

following lemma states relationship between the number of groups and the graph partitioning based on

Definition 1.

Lemma 1. (Number of groups)

Consider a multi-agent system with the underlying graph 𝐺 where agents utilize the consensus algorithm

given by Equation 1 (or equivalently Equation 4 for discrete-time networks). The multi-agent system

forms 𝑐 = 𝑙𝑝 + 𝑙𝑠 groups where 𝑙𝑝 and 𝑙𝑠 are the number of PLSs and SLSs of 𝐺, respectively [9].

From Lemma 1, one can conclude that the number of groups can be determined from the numbers of

PLS and SLS of the underlying network. It is shown in [9] that the agents’ states in a particular subgraph

converge to the same state. Furthermore, the states of the agents in the SLSs asymptotically converge to

a convex combination of those of the agents in the PLSs. The main motivation of this study is to provide

a useful tool for determining these groups and their members for a given directed graph. To better

illustrate the groups in the network the following definition is introduced.

Definition 3. (Reduced graph)

Let 𝐺 = (𝑉, 𝐸) be a directed graph consisting of 𝑙𝑝 PLSs and 𝑙𝑠 SLSs. Let 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) denote the PLS

for 𝑖 = 1,… , 𝑙𝑝 and the SLS for 𝑖 = 𝑙𝑝 + 1,… , 𝑙𝑝 + 𝑙𝑠. Then the graph �̅� = (�̅�, �̅�) is called the reduced

graph of 𝐺 where �̅� = {�̅�1, … , �̅�𝑙𝑝+𝑙𝑠} is the vertex set and �̅� is the edge set of the reduced graph whose

elements are defined as

(�̅�𝑖, �̅�𝑗) {
∈ �̅� 𝑖𝑓 ∃𝑣𝑎 ∈ 𝑉𝑖, 𝑣𝑏 ∈ 𝑉𝑗 such that (𝑣𝑎, 𝑣𝑏) ∈ 𝐸

∉ �̅� otherwise
. (10)

The adjacency matrix of the reduced graph is a block matrix of the form

�̅� = [
0𝑙𝑝×𝑙𝑝 0𝑙𝑝×𝑙𝑠

�̅�𝑠𝑝 �̅�𝑠
] (11)

where �̅�𝑠 is related with the communication between secondary layer subgraphs and �̅�𝑠𝑝 refers to the

one-way communication between the PLS and SLS. Here 0𝑚×𝑛 denotes the zero matrix of dimension

𝑚 × 𝑛.

In [9], two algoritms were introduced to determine the PLS and SLS of a given directed graph. Once

these subgraphs are determined, the following algorithm can be used to determine the reduced graph �̅�.

Algorithm 1 Reduced graph extraction algorithm
1

2

3

4

5

6

7

8

9

procedure �̅� = ReducedGraph(𝐺,𝐺1, … , 𝐺𝑙𝑝+𝑙𝑠 , 𝑙𝑝, 𝑙𝑠)

�̅� ← {�̅�1, … , �̅�𝑙𝑝+𝑙𝑠}

�̅� ← ∅
for 𝑖 ← 1, 𝑙𝑝 do

for 𝑗 ← 1, 𝑙𝑠 do

for all 𝑣𝑎 ∈ 𝑉𝑖 do

for 𝑣𝑏 ∈ 𝑉𝑙𝑝+𝑗 do

if (𝑣𝑎, 𝑣𝑏) ∈ 𝐸 then

280

Sakarya University Journal of Computer and Information Sciences

Onur Cihan

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

�̅� ← �̅� ∪ (�̅�𝑖 , �̅�𝑙𝑝+𝑗)

end if

end for

end for

 end for

end for

for 𝑖 ← 1, 𝑙𝑠 do

for 𝑗 ← 1, 𝑙𝑠 do

for all 𝑣𝑎 ∈ 𝑉𝑙𝑝+𝑖 do

for 𝑣𝑏 ∈ 𝑉𝑙𝑝+𝑗 do

if (𝑣𝑎, 𝑣𝑏) ∈ 𝐸 then

�̅� ← �̅� ∪ (�̅�𝑙𝑝+𝑖, �̅�𝑙𝑝+𝑗)

end if

end for

end for

 end for

end for

�̅� ← (�̅�, �̅�)
return �̅�
end procedure

The algorithm initially generates a set consisting of 𝒍𝒑+𝒍𝒔 vertices with an empty set of edges (time

complexity 𝑶(𝒏), space complexity 𝑶(𝒏)). For each agent in the primary layer subgraphs, the algorithm

checks whether there is a directed path to an agent in the secondary layer subgraphs (time complexity

𝑶(𝒏𝟐)) . If there exists such a path, a link is added to the edge set of the reduced graph (space complexity

𝑶(𝒏𝟐)). The same procedure is repeated for the links between the agents in the secondary layer

subgraphs (time complexity 𝑶(𝒏𝟐) and space complexity 𝑶(𝒏𝟐)). Consequently, the overall time

complexity and space complexity of the reduced graph extraction algorithm is 𝑶(𝒏𝟐). On the other

hand, this algorithm requires the PLS and SLS of the graph to be determined prior to its execution. Since

the time complexity of PLS and SLS detection algorithms are 𝑶(𝒏𝟒) and 𝑶(𝒏𝟔) (see [8]), we conclude

that the time complexity of detecting the reduced graph of an arbitrary directed graph is 𝑶(𝒏𝟔). Note

from Definition 1 that the vertices in a PLS are not connected to the vertices in other PLS and SLS.

Therefore 𝒍𝒑 vertices in the reduced graph �̅� = (�̅�, �̅�) do not receive information from other vertices.

We would like to note also that the concept of a reduced graph is novel and therefore there does not

exist any other algorithm in the literature which can be used to determine the reduced graph of an

arbitrary directed graph.

3. GraParT: Graph Partitioning Toolbox

In this section, we present GraParT: a MATLAB toolbox for partitioning directed graphs.

3.1 Installation

GraParT can be downloaded from http://www.onurcihan.com/GraParT.html and requires R2018b or a

newer release of MATLAB to work properly. It is compatible with Windows, macOS and Linux

operating systems.

3.2 The Workflow

GraParT allows the users to input the directed edges of a graph and computes the adjacency matrix 𝑨,

the Laplacian matrix 𝑳, the weighting matrix 𝑾 (assuming equal weighting is used for the information

coming from different agents), the partitions of the graph (namely, the PLS and SLS and the vertices

281

http://www.onurcihan.com/GraParT

Sakarya University Journal of Computer and Information Sciences

Onur Cihan

therein) and the reduced graph. Furthermore, evolution of the states of the agents utilizing Equation 1 is

given as a visual output. The workflow of GraParT is shown in Figure 1.

Figure 1 Overall workflow of GraParT

Note from Definition 1 that if a graph contains a single PLS, then all vertices of the graph is a member

of the PLS and consequently the graph does not contain any secondary layer subgraphs. The PLS and

SLS are determined by using the algorithms proposed in [9] and the reduced graph is determined by

Algorithm 1.

3.3 The Graphical User Interface

GraParT has a user-friendly graphical user interface as illustrated in Figure 2.

282

Sakarya University Journal of Computer and Information Sciences

Onur Cihan

Figure 2 The Graphical User Interface of GraParT

The user enters the directed edges of the graph from the left-hand side of the user interface and the

graphs can be saved as text files and loaded for future use. Once the user clicks the “Plot & partition the

graph” button, GraParT computes the adjacency matrix, the Laplacian matrix and the weighting matrix;

and partitions the graph into its PLS and SLS. The subgraphs and vertices are given as analysis results

at the right-hand side of the interface. Furthermore, the reduced graph is computed and depicted together

with the original graph.

The ordinary differential equation (ODE) solver that will be used to solve Equation 1, absolute and

relative tolerances in the calculations, the maximum time for simulation (in seconds) and the initial

states of the agents are simulation parameters to be entered by the user. The evolutions of the states are

depicted as functions of time on the bottom-right side of the graphical interface and can be used to verify

that the number of groups is equal to the number of subgraphs determined by GraParT.

In most multi-agent systems, the agents are mobile and as a result of this, the network connectivity may

be time-varying. A new communication link may be built when two agents come closer, and an existing

link may be broken when they move away from each other. In order to understand the grouping behavior

of the network in such cases, we provide the following examples.

Example 1.

Consider a network of 14 agents whose edge set is given by

 𝐸1 = {(𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣2, 𝑣3), (𝑣3, 𝑣2), (𝑣3, 𝑣9), (𝑣3, 𝑣11), (𝑣4, 𝑣5), (𝑣5, 𝑣6), (𝑣5, 𝑣7), (𝑣6, 𝑣7),

 (𝑣7, 𝑣4), (𝑣7, 𝑣5), (𝑣7, 𝑣11), (𝑣8, 𝑣9), (𝑣8, 𝑣14), (𝑣9, 𝑣10), (𝑣10, 𝑣11), (𝑣10, 𝑣14), (𝑣11, 𝑣12),

 (𝑣11, 𝑣14), (𝑣12, 𝑣13), (𝑣12, 𝑣14), (𝑣13, 𝑣12)}.

(12)

Since there is no spanning tree in the graph 𝑮𝟏 = (𝑽𝟏, 𝑬𝟏), multiple groups will be formed in the

network. Once the directed edges are entered as inputs to GraParT, Figure 2 illustrates the network

graph, the reduced graph; the PLS and SLS of 𝑮𝟏, and evolutions of the states of the agents as functions

of time. As can be seen from Figure 1, there are 3 PLS and 3 SLS in the network and the simulation

283

Sakarya University Journal of Computer and Information Sciences

Onur Cihan

results verify that there are 𝟔 consensus equilibria (groups of agents with same final values) in the

network.

Example 2.

In order to understand the effect of adding edges to a graph on the grouping behavior of a multi-agent

network, suppose that a new link between agents 8 and 13 is created. The edge set of the new graph can

be written as

 𝐸2 = {(𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣2, 𝑣3), (𝑣3, 𝑣2), (𝑣3, 𝑣9), (𝑣3, 𝑣11), (𝑣4, 𝑣5), (𝑣5, 𝑣6), (𝑣5, 𝑣7), (𝑣6, 𝑣7),

 (𝑣7, 𝑣4), (𝑣7, 𝑣5), (𝑣7, 𝑣11), (𝑣8, 𝑣9), (𝑣8, 𝑣14), (𝑣9, 𝑣10), (𝑣10, 𝑣11), (𝑣10, 𝑣14), (𝑣11, 𝑣12),

 (𝑣11, 𝑣14), (𝑣12, 𝑣13), (𝑣12, 𝑣14), (𝑣13, 𝑣12), (𝑣8, 𝑣13)}.

(13)

Figure 3 Partitioning of the network and the simulation results for Example 2

Figure 3 illustrates the network graph, the reduced graph; the PLS and SLS of 𝑮𝟐, and evolutions of the

states of the agents as functions of time. As can be seen from Figure 3, there are 2 PLS and 3 SLS in the

network. In particular, the creation of the link between agents 8 and 13 resulted in the dissolution of the

a secondary layer subgraph and formation of new secondary layer subgraphs in the modified graph. The

total number of groups in the modified network is 8.

Example 3.

Reconsider the network under investigation in Example 2. Suppose that the link between agents 11 and

12 is removed. The edge set of the new graph can be written as

 𝐸3 = {(𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣2, 𝑣3), (𝑣3, 𝑣2), (𝑣3, 𝑣9), (𝑣3, 𝑣11), (𝑣4, 𝑣5), (𝑣5, 𝑣6), (𝑣5, 𝑣7), (𝑣6, 𝑣7),

 (𝑣7, 𝑣4), (𝑣7, 𝑣5), (𝑣7, 𝑣11), (𝑣8, 𝑣9), (𝑣8, 𝑣14), (𝑣9, 𝑣10), (𝑣10, 𝑣11), (𝑣10, 𝑣14), (𝑣11, 𝑣14),

 (𝑣12, 𝑣13), (𝑣12, 𝑣14), (𝑣13, 𝑣12), (𝑣8, 𝑣13)}.

(14)

284

Sakarya University Journal of Computer and Information Sciences

Onur Cihan

Figure 4 Partitioning of the network and the simulation results for Example 3

Figure 4 illustrates the network graph, the reduced graph; the PLS and SLS of 𝑮𝟑, and evolutions of the

states of the agents as functions of time. As can be seen from the figure, there are 3 PLS and 3 SLS in

the network. In particular, the removal of the link between agents 11 and 12 resulted in unification of

two SLS and a primary layer subgraph into a large primary layer subgraph (with the member agents 8,

12 and 13). The total number of groups in the modified network is 6.

Examples 1-3 show that modification of a directed graph by adding a new link or removing an existing

link may result in an increase or a decrease of the number of groups formed in the network. By using

the proposed partitioning tool, the network topology designer can create a directed multi-agent network

with the desired grouping behavior.

4. Conclusion

In this paper, we provide a MATLAB toolbox for partitioning directed graphs into its PLS and SLS.

The states of agents in these subgraphs asymtoyically converge to the same values when they utilize a

conventional continuous-time or discrete-time consensus algorithm. The toolbox enables the users to

modify the graph and analyze the effect of these changes in the graph structure to the number of groups

formed in the multi-agent network. We hope this toolbox will enrich the understanding of the grouping

behavior of the multi-agent systems and will be a reference tool for network topology designers.

References

[1] R. Aragues, J. Cortes, and C. Sagues, “Distributed consensus on robot networks for dynamically

merging feature-based maps, ” IEEE Trans. Robot., vol. 28, no. 4, pp. 840–854, 2012.

[2] M. Mirzaei, H. Atrianfar, N. Mehdipour, and F. Abdollahi, “Asynchronous consensus of

continuous-time lagrangian systems with switching topology and non-uniform time delay, ” Rob.

Auton. Syst., vol. 83, pp. 106–114, 2016.

[3] N. Amelina, A. Fradkov, Y. Jiang, and D. J. Vergados, “Approximate consensus in stochastic

285

Sakarya University Journal of Computer and Information Sciences

Onur Cihan

networks with application to load balancing,” IEEE Trans. Inform. Theory, vol. 61, no. 4, pp.

1739–1752, 2015.

[4] O. Cihan, “Distributed Solution of Road Lighting Problem Over Multi-Agent Networks, ” Sakarya

University Journal of Computer and Information Sciences, vol. 3, no. 2, pp. 89–98, 2020.

[5] R. Hegselmann and U. Krause, “Opinion dynamics and bounded confidence: Models, analysis and

simulation, ” J. Artif. Soc. Soc. Simul., vol. 5, no. 3, pp. 1–33, 2002.

[6] O. Cihan, “Rapid solution of linear equations with distributed algorithms over networks, ” IFAC-

PapersOnLine, vol. 52, no. 25, pp. 467-471, 2019.

[7] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching

topology and time-delays, ” IEEE Trans. Automat. Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[8] W. Ren and R. Beard, “Consensus seeking in multiagent systems under dynamically changing

interaction topologies, ” IEEE Trans. Automat. Control, vol. 50, no. 5, pp. 655–661, 2005.

[9] Ö. F. Erkan, O. Cihan, and M. Akar, “Analysis of distributed consensus protocols with multi-

equilibria under time-delays, ” J. Franklin Inst., vol. 355, no. 1, pp. 332–360, 2018.

[10] O. Cihan and M. Akar, “Multi-consensus of second-order agents in discrete-time directed

networks, ” Int. J. Syst. Sci., vol. 51, no. 10, pp. 1847-1861, 2020.

[11] O. Cihan and M. Akar, “Necessary and Sufficient Conditions for Group Consensus of Agents With

Third-Order Dynamics in Directed Networks, ” J. Dyn. Syst. Meas. Control, vol. 142, no. 4, pp.

041003, 2020.

[12] O. Cihan, “Topology design for group consensus in directed multi-agent systems, ” Kybernetika,

vol. 56, no. 3, pp. 578–597, 2020.

[13] J. Hespanha, “An efficient MATLAB Algorithm for Graph Partitioning, ” Technical Report,

University of California, Oct. 2004.

[14] Ü. Çatalyürek and C. Aykanat C, “PaToH (Partitioning Tool for Hypergraphs), ” In: Padua D.

(eds) Encyclopedia of Parallel Computing. Springer, Boston, MA, 2011.

[15] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, “Recent Advances in Graph

Partitioning, ” In Algorithm Engineering, pp. 117–158, Springer International Publishing, 2016.

[16] Ü. Develer and M. Akar, “Cluster consensus in first and second-order continuous-time networks

with input and communication delays,” International Journal of Control, vol. 9 no. 4, pp. 961-976,

2021.

286

