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Abstract 

The next generation mobile networks have to provide high data rates, extremely low latency, and support high 
connection density. To meet these requirements, the number of base stations will have to increase and this increase 
will lead to an energy consumption issue. Therefore “green” approaches to the network operation will gain 
importance. Reducing the energy consumption of base stations is essential for going green and also it helps service 
providers to reduce operational expenses. However, achieving energy savings without degrading the quality of 
service is a huge challenge. In order to address this issue, we propose a machine learning based intelligent solution 
that also incorporates a network simulator. We develop a reinforcement-based learning model by using deep 
deterministic policy gradient algorithm. Our model update frequently the policy of network switches in a way that, 
packet be forwarded to base stations with an optimized power level. The policies taken by the network controller 
are evaluated with a network simulator to ensure the energy consumption reduction and quality of service balance. 
The reinforcement learning model allows us to constantly learn and adapt to the changing situations in the dynamic 
network environment, hence having a more robust and realistic intelligent network management policy set. Our 
results demonstrate that energy efficiency can be enhanced by 32% and 67% in dense and sparse scenarios, 
respectively.  
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1. Introduction 

Next generation mobile networks have to meet requirements such as high data rates, extremely low 
latency, and connection density. Due to the rapid growth of telecommunications technology, energy 
consumption is also growing at a very fast rate [1, 2]. Mobile service providers are among the top energy 
consumers [3]. The increase in the energy consumption of mobile networks negatively affects the 
environment and causes higher operational expenses for mobile service providers. Therefore, “green 
network” approaches become more popular to reduce energy consumption as well as the cost [4, 5, 6]. 

In a 5G network, the number of base stations (BS) will increase significantly to meet 5G requirements. 
Consequently, the energy consumption problem will be more prominent. Luckily, with the development 
of software networks (SN), it is possible to dynamically configure cells to reduce power consumption 
when the traffic load is low. This dynamic configuration technique is known as the sleeping strategy or 
ON-OFF switching. The sleeping strategy is considered as an approach for energy saving [7, 8]. 
Therefore, advanced sleeping strategies need to be implemented for future green networks in order to 
achieve better efficiency without harming the network performance. Machine learning (ML) can be a 
remedy in that issue. 

Mobile network function virtualization (NFV) can be applied over the core and the radio access network 
(RAN) [9]. This means that we can virtualize these modules and provide on-demand network functions 
in both of them. Because around 70%-80% network is consumed in RAN, network operators expand 
their investigations in virtualizing RAN in the future networks. In this work, we propose consolidating 
RAN functions using NFV inside multi-access edge clouds (MECs) to reduce the amount of energy 
consumption in the access network. Our proposed network architecture is shown in Figure 1. 
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Figure 1 P-DDPG Network Architecture  

ML provides a way of automatically learning about the environment by using historical data when it is 
challenging to construct and solve analytic models. Hence, ML is suitable for modelling stochastic 
environments such as the wireless networks [10]. With the development of SN, it is now possible the 
exercise the powerful capabilities of machine learning for network management in terms of intelligent 
decision making. That is why, recently, the usage of machine learning in the network management has 
become an active research area [11, 12, 13]. However, there are only a handful of studies that addresses 
the dynamic nature of the wireless networks. 

In order to address the issue, we propose a reinforcement-based approach to employ an advanced 
adaptive sleeping strategy by gathering constant feedback from the network and continuing to learn 
under changing dynamic conditions such user requests, packet arrival time. We develop our solution 
basis on Deep Deterministic Policy Gradient (DDPG) algorithm [10] which is a type of reinforcement 
learning (RL) algorithm. We extend DDPG algorithm to work with multiple environments as parallel 
and we called it Parallel DDPG (P-DDPG). Our model reduces power consumption of a group of base 
stations while maintaining users’ quality of service (QoS). In RL, the model continuously learns by 
taking some actions following a strategy and observing the outcomes of these actions to adjust its 
strategy over time. By taking many actions, the model learns to differentiate the good actions from the 
bad ones. This makes its policies evolve over time. In order to find novel potential good strategies, the 
model sometimes explores new horizons rather than sticking to the exploitation of what has been learnt 
all the time. This mechanism allows the learner to adapt to the changing conditions as well. This scheme 
is often considered similar to how a child learns by exploring her environment. Like a child, the RL 
model makes more mistakes at the beginning of the learning and when it becomes more mature the 
decisions made are more robust and correct. These initial phases of the learning can be problematic if 
we deploy the model in the real network environment. To address this issue, we use a system-level 
network simulator to create a dynamic network environment and we observe the outcomes our actions 
in this simulator. This allows us to learn a more robust model that captures realistic network dynamics 
rather than static assumptions about the network while preventing the real users suffering from bad 
decisions. After the model is mature enough, the learnt policy can be deployed in the real network 
controller safely. To the best of our knowledge, this is the first study that employs such a realistic 
scheme. 

Our main contributions in this paper are: 

• We developed P-DDPG algorithm, which enables DDPG to work for parallel environments 
(Section 2.2). This enabled us to run multiple environments to accelerate learning. 

• We developed a machine learning model that reduces energy consumption while maintaining 
QoS parameters of users on a realistic simulation environment by using the P-DDPG algorithm 
(Section 2.3). 
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• Simulation parameters are given for future reproduce. Simulation results and detailed parameter 
analysis are presented (Section 3). 

Our results show that it is possible to achieve up to 32% increase in the energy efficiency in a dense 
scenario and up to 67% increase in sparser scenarios while preserving user QoS parameters such as 
throughput and Signal to Interference Ratio (SINR). 

2. Modelling P-DDPG for Energy Efficient Base Station Control 

In this section, the evolution of DDPG algorithm, our extended DDPG model which is P-DDPG and the 
details of our RL scheme are described. 

2.1 Background of Reinforcement Model 

Reinforcement learning is a type of machine learning which is focused on goal-directed learning from 
interaction [14]. RL is an efficient method for sequential decision-making problems, making them ideal 
for network management [15]. In RL, the learner agent takes actions, and each action receives a reward 
as a feedback signal. The reward is positive if the outcome of the action is good in terms of the goal 
achievement and it is negative otherwise. Through this reward collection mechanism, the agent learns a 
policy, that is, the action sequences required to solve a problem. RL is widely used in dynamic 
environments where a state can be rewarded as positive or negative without analytically modelling the 
environment but making observations about the outcome instead. 

 
Figure 2 Overview of Reinforcement Learning Algorithms [12]  

The general workflow of RL algorithms is summarized in Figure 2. The agent takes an action at time t, 
(At), according to the observation in the same time step, (St). The environment performs the action and 
returns the observation (St+1) and the feedback signal (Rt+1). The feedback signals are used to update the 
policy, i.e., action decision model. 

RL has been applied in different ways over time. Q-learning is a one type of RL algorithm. It is based 
on Q-tables, where rows represent the states and columns represent the actions. All of the action 
decisions are made by looking at the Q-table, which contains the whole policy. Q-learning considers the 
possible future reward when rewarding the instant status [16]. It is formulated as follows: 

Q(St,  At)  ←  Q(St,  At)  +  α �Rt+1  +  γ max
a

𝑄𝑄(𝑆𝑆𝑡𝑡+1,  𝑎𝑎)   −  Q(St,  At)�, (1) 

where α represents learning rate and γ represents the discount factor. Each cell in the Q-table is created 
by considering the maximum expected future reward. Q-learning suffers from the curse of 
dimensionality because of the need to create a table for each state-action pair. Although it is a convenient 
way to use when a problem has discrete state space or discrete action space, Q-table cannot be created 
for continuous state spaces or continuous action spaces.  

The significant performance improvement in RL comes with deep reinforcement learning, which is also 
called as the “Deep Q Network” (DQN) [17].  Deep deterministic policy gradient (DDPG) algorithm is 
developed for continuous control with deep reinforcement learning [10]. DDPG is a combination of the 
deterministic policy gradient (DPG) algorithm [18] with the DQN. In this work, we employ the DDPG 
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approach since our space is continuous. In the next section, we provide the details of our approach and 
our extension to the original DDPG approach. 

2.2 P-DDPG Model 

As we mentioned previously, the proposed algorithm is implemented in a MEC in order to virtualize 
RAN functions. In this section, we explain the P-DDPG algorithm in detail. 

Traditionally, DDPG algorithm works with a single environment. As can be seen in Figure 2, the 
operating time is restricted by the Agent’s response time or the runtime of the environment. In our case, 
environment’s runtime is considerably slower than the Agent’s response time. Therefore, we extend 
DDPG algorithm to work with multiple environments as parallel and we call it Parallel DDPG (P-
DDPG). 

 
Figure 3 Structure of P-DDPG Algorithm with Parallel Environment  

Figure 3 shows that the structure of P-DDPG algorithm which is implemented in MEC in order to 
virtualize RAN functions including BSs transmit power adaptation. Implementing P-DDPG in MEC can 
provide higher perspective over the network with respect to BSs, while actions and decisions will be 
made quicker in comparison to the core, due to the location of MEC in the network. 

In P-DDPG, the manager is responsible for environment virtualization and memorizing operations. It 
virtualizes each environment and creates a private channel between the agent and each environment. 
Through the private channels, each environment works independently from each other. The manager is 
responsible for taking an environment state and sending them to the agent. Agent decides an action 
according to the state and sends an action back to the manager. The manager sends back the action to a 
related environment. Meanwhile, manager stores state (St), action (At), reward (Rt) and next state (action 
result, St+1) in replay buffer [17]. Each replay buffer entry is called as experience (e) and the agent uses 
replay buffer entities for batch training. It trains deep neural networks by using samples from replay 
buffer. The DDPG algorithm [10] psudocode is followed for policy updating and state-action exchange. 

Environment paralleling is a novel approach for DDPG algorithms, and it reduces the convergence time 
of DDPG algorithm when environment operation time significantly greater than agent’s response time. 
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Each environment configuration is called an episode. Episode length refers to a number of state-action 
exchange which also defined as CTI. In a single episode, when a certain number of consecutive rewards 
are negative, we stop the environment’s episode and start a new episode. We called this method as a 
consecutive negative reward check (CNRC). CNRC method is used because when actions cannot 
improve environment states, and negative rewards continue, eventually negative state-action pairs 
dominate replay buffer. By using CNRC, the number of positive and negative state-action pairs are 
balanced in replay buffer. It increases the convergence time of the model. 

The use of mathematically modelled environments based on strong assumptions in model training is a 
common but unrealistic method. It is not possible to use models that trained in hypothetical 
environments in real systems. Modelling with realistic environment is a challenging problem. We use 
Vienna Simulator [19], known as advanced realistic network simulator, as an environment. We make 
some changes to the simulator so that Vienna Simulator can work with P-DDPG. We develop connectors 
for information exchange between Vienna Simulator and P-DDPG. Moreover, we develop our custom 
indicators which are defined as overall statuses (OSs). With these modifications, Vienna Simulator has 
capability of working with P-DDPG. Thanks to Vienna Simulator, our model is trained in a realistic 
environment that accommodates many real-life factors such as noise, interference, shadowing, fading. 

2.3 Reinforcement Learning Definitions 

In our model, user states are measured at each transmission time interval (TTI) which is 1 millisecond 
in 4G mobile networks. The user behavior and requirements change during time. Sometimes the users 
are idle, sometimes they actively use the communication channels, therefore each TTI status does not 
represent the status of the network. Also, after changing base stations’ transmission powers, we need to 
wait a while before observing action result. Therefore, the environment and agent state exchange is 
performed at certain time intervals, and we call this interval as the communication time interval (CTI). 
In other words, each RL cycle period that is depicted in Figure 2 is one CTI. 

The user denoted by u are assigned to the base station that denoted by bs. U and BS refers to the set of 
users and set of base stations with respectively. User status for specific CTI is represented as different 
notations. For CTI at k, user wideband SINR is called as SINRk(u). The amount of data (MB) that 
transmitted by the user at specific CTI is represented as Ψk(u). User active TTI count for CTIk notated 
as φk(u). 

State: State is a representation of the instant status. Environment creates state vector by using status of 
network and BSs. Environment state at CTIk is defined as: 

𝑆𝑆𝑘𝑘 = �𝑂𝑂𝑆𝑆𝑖𝑖𝑘𝑘,𝑆𝑆1𝑗𝑗𝑘𝑘 , 𝑆𝑆2𝑗𝑗𝑘𝑘 , 𝑆𝑆3𝑗𝑗𝑘𝑘, 𝑆𝑆4𝑗𝑗𝑘𝑘�, (2) 

where i = 1, 2, .. , 4 and j = 1, 2, .., N. N is the number of base stations. OS represents the overall status 
of network. Users’ wideband SINR and transmission values are used while formulating overall statuses 
of network and base station. Overall wideband SINR equation is 

𝑂𝑂𝑆𝑆1𝑘𝑘 =
∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑘𝑘(𝑢𝑢)𝑢𝑢∈𝑈𝑈 × 𝜙𝜙𝑘𝑘(𝑢𝑢)

∑ 𝜙𝜙𝑘𝑘(𝑢𝑢)𝑢𝑢∈𝑈𝑈
 (3) 

In Equation 3, users’ wideband SINR average value is calculated when users are actively using 
communication channels. Overall network throughput is formulated as 

𝑂𝑂𝑆𝑆2𝑘𝑘 =
∑ Ψ𝑘𝑘(𝑢𝑢)𝑢𝑢∈𝑈𝑈

𝑡𝑡
 (4) 

The total amount of data that served to users is divided by CTI length, t. Users’ average throughput 
according to their active TTI count is formulated as 

𝑂𝑂𝑆𝑆3𝑘𝑘 =
∑ Ψ𝑘𝑘(𝑢𝑢)𝑢𝑢∈𝑈𝑈

∑ ϕ𝑘𝑘(𝑢𝑢)𝑢𝑢∈𝑈𝑈
 (5) 

Users who are close to base stations can mislead Equation 4 but averaging with active TTI count will 
normalize throughput considering idle users. Average throughput per user is formulated as 
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𝑂𝑂𝑆𝑆4𝑘𝑘 =
∑ Ψ𝑘𝑘(𝑢𝑢)𝑢𝑢∈𝑈𝑈

|𝑈𝑈| × 𝑡𝑡
 (6) 

Overall statuses (OSi, i=1,2,..,4) give general information about the network configuration which 
consists a group of base station and users. Overall SINR value in Equation 3 shows the possibility of 
transmitting data while users’ throughput sum in Equation 4 shows the actual usage. Equation 5 
considers idle users. Users’ throughput sum in Equation 4 and users’ throughput average in Equation 6 
change when the number of users change. Therefore, each OS value has a unique usage and give 
information about network. OS values are used as QoS parameters. 

Our model also considers base stations’ statuses when deciding their power level. BSs’ powers scaled 
to [0,1] according to 

𝑆𝑆1𝑗𝑗𝑘𝑘 =
𝑃𝑃𝑘𝑘�𝐵𝐵𝑆𝑆𝑗𝑗�
𝑃𝑃max

, (7) 

where Pk(b) refers to the base station b’s power at CTIk and Pmax refers to maximum power of macro BS. 
The number of users assigned to each base station at CTIk is also used as a status of base station. The 
equation is 

𝑆𝑆2𝑗𝑗𝑘𝑘 = �𝑈𝑈𝑗𝑗𝑘𝑘�, (8) 

where Uj
k refers to the set of users which are assigned to base station j at CTI k. The status of BS with 

respect to the user average wideband SINR is 

𝑆𝑆3𝑗𝑗𝑘𝑘 =
∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑘𝑘(𝑢𝑢)𝑢𝑢∈𝐵𝐵𝑆𝑆𝑗𝑗 × ϕ𝑘𝑘(𝑢𝑢)

∑ ϕ𝑘𝑘(𝑢𝑢)𝑢𝑢∈𝐵𝐵𝑆𝑆𝑗𝑗
, (9) 

where u ∈ BSj refers to users that assigned to BSj. Equation 9 gives information about users’ wideband 
SINR average value according to their active TTI count. Users’ average throughput according to their 
active TTI count is formulated as 

𝑆𝑆4𝑗𝑗𝑘𝑘 =
∑ Ψ𝑘𝑘(𝑢𝑢)𝑢𝑢∈𝐵𝐵𝑆𝑆𝑗𝑗

∑ ϕ𝑘𝑘(𝑢𝑢)𝑢𝑢∈𝐵𝐵𝑆𝑆𝑗𝑗
, (10) 

where u ∈ BSj refers to users that assigned to BSj. The state vector is a combination of the status of 
network and BSs, therefore, an increase in the number of base stations causes the state vector to grow. 

Action: The action at CTIk is represented as ak = (∆P1, ∆P2, ... ,∆PN) where ∆Pi refers to the power change 
for base station i and N refers to the number of base stations. Actions are scaled to [-1, 1]. The action 
dimension is related with the number of base stations. The formula for new transmit powers of base 
stations is that: 

𝑃𝑃𝑘𝑘+1(𝐵𝐵𝑆𝑆𝑖𝑖) = 𝑃𝑃𝑘𝑘(𝐵𝐵𝑆𝑆𝑖𝑖) + �𝑎𝑎𝑖𝑖𝑘𝑘 × 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚� (11) 

where Pmax refers to maximum power of macro BS. 

Reward: Rewards are decided according to the long-term goal that the model should satisfy. Our long-
term goal is maintaining QoS while reducing energy consumption. Hence, the proposed model decides 
rewards by considering the overall status of network and energy consumption. Each OS creates its own 
reward according to pre-defined threshold values as follows 

𝑅𝑅𝑂𝑂𝑆𝑆𝑖𝑖
𝑘𝑘 =

⎩
⎨

⎧
 1,               𝑖𝑖𝑖𝑖  𝑡𝑡ℎ𝑖𝑖𝑢𝑢 < 𝑂𝑂𝑆𝑆𝑖𝑖

−
𝑡𝑡ℎ𝑖𝑖𝑢𝑢 − 𝑂𝑂𝑆𝑆𝑖𝑖
𝑡𝑡ℎ𝑖𝑖𝑢𝑢 − 𝑡𝑡ℎ𝑖𝑖𝑙𝑙

, 𝑖𝑖𝑖𝑖  𝑡𝑡ℎ𝑖𝑖𝑢𝑢 ≥ 𝑂𝑂𝑆𝑆𝑖𝑖 > 𝑡𝑡ℎ𝑖𝑖𝑙𝑙

−1,                𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

 (12) 

where thu
i and thl

i refers to upper and lower threshold values for OSi. When OSi is below thu
i then 

negative reward appears. To calculate threshold values, the network is observed without taking any 
action and we call these observations as a baseline. The long-term goal is maintaining the overall status 
of the network same as the baseline. Therefore, we set threshold values according to the baseline’s 
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average QoS parameters. Upper and lower threshold values are used to scale negative rewards to [0, –
1]. 

Energy consumption is also important when we consider a reward. When the proposed model satisfies 
QoS, then according to energy consumption, it gains a positive reward. The environment uses an average 
of scaled powers divided by the number of the base station and uses the gain as a positive reward 

𝑅𝑅𝐸𝐸𝐸𝐸𝑘𝑘 = 1 −
∑ 𝑆𝑆1𝑘𝑘(𝑏𝑏𝑒𝑒)𝑏𝑏𝑏𝑏∈𝐵𝐵𝑆𝑆

|𝐵𝐵𝑆𝑆| + 𝜖𝜖, (13) 

where REC stands for energy consumption reward and ε is a small positive value. The ε value ensures 
that even if all BSs are configured as maximum power, REC will always positive. Reducing the current 
transmit power of the base stations increases REC. Environment sends only one reward to agent, and this 
reward is calculated as 

𝑅𝑅𝑘𝑘 = 𝑚𝑚𝑖𝑖𝑚𝑚�𝑅𝑅OS1
𝑘𝑘 ,𝑅𝑅OS2

𝑘𝑘 ,𝑅𝑅OS3
𝑘𝑘 ,𝑅𝑅OS4

𝑘𝑘 ,𝑅𝑅𝐸𝐸𝐸𝐸𝑘𝑘 � (14) 

At CTIk, if any of OSi is below thu
i then environment sends negative reward to agent. Otherwise, since 

REC
k is always positive, environment sends positive reward to agent. Environment sends positive reward 

if and only if user QoS parameters, which are OS1 – 4, are higher than threshold values. 

We use energy efficiency (EE) as a measure metric. The equation of energy efficiency is  

𝐸𝐸𝐸𝐸 =
∑ Ψ(𝑢𝑢)𝑢𝑢∈𝑈𝑈

∑ 𝑃𝑃(𝑏𝑏𝑒𝑒)𝑏𝑏𝑏𝑏∈𝐵𝐵𝑆𝑆 × 𝑡𝑡
 , (15) 

where P(bs) refers to base station power (J/s) and t refers to time (s). The amount of data (MB), that is 
transmitted to users, is divided into the sum of power consumption (J) of base stations. 

Experience: Each replay buffer entity is called an experience. The experience is a combination of state, 
action, reward, and next state (action result). It is denoted as ek = (Sk, Ak, Rk, Sk+1). These entities are 
used to train deep neural networks. 

3. Experiments 

In this section, the environment setup and details of experiments are explained. In order to reproduce 
the experiments, we provide simulation parameters and P-DDPG parameters in Sections 3.1 – 3.2. In 
the sections that follow the simulation model and parameters, our experiments take place. While 
constructing our experiments, we aim to prove that P-DDPG model can be used for energy efficiency, 
therefore, we ask the following questions:  

• What is the motivation of developing P-DDPG algorithm? As we claim that, Vienna simulator 
is a slow environment, therefore, we modify DDPG algorithm to work with multiple 
environments to reduce the training time. Section 3.3 contains experiments of the run time of 
the simulation and CTI selection. This section also includes the benefits of running multiple 
environments with P-DDPG algorithm. To sum up, Section 3.3 contains experiments related to 
parameter selection and benefits of P-DDPG algorithm.  

• Are we really energy efficient? We are trying to develop a model that can increase energy 
efficiency while maintaining QoS. To test our algorithm, we construct two scenarios with 50 
user equipments (UEs) and 100 user equipments. We train our algorithm on these scenarios 
independently. Section 3.4 provides the details of the experiments and their results.  

• Final question is that what happens if perturbation occurs in the network? Can the model still 
be trained? The base stations could shut down suddenly because of different reasons such as 
internal errors, firmware update, hardware change. We try to prove that after restarting the 
system, P-DDPG model can continue to manage the network in an energy efficient way. Section 
3.5 gives the modelling details and experiment results.  
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3.1 P-DDPG Model and Simulation Environment 

The P-DDPG model is developed by using TensorFlow with Python language. With socket 
programming, we developed a manager class to create a private channel for each environment. Thanks 
to the manager class, P-DDPG algorithm becomes capable of supporting distributed environment. P-
DDPG algorithm is constructed according to [10]. Actor and critic networks are also referenced from 
there. Table 1 shows parameters of P-DDPG algorithm. In order to  improve the learning stability, target 
networks are updated with the learning parameter of τ. This means that target network values slowly 
track the learned network with respect to that parameter. 

Table 1 P-DDPG Parameters 
Parameter Value 

Actor Learning Rate 10−4 
Critic Learning Rate 10−3 

γ 0.99 
τ 10−3 

Replay Buffer size 1000000 
Mini Batch Size 64 

CNRC 40 

3.2 Parameters of the Simulation Environment 

The proposed power management algorithm is implemented for omnidirectional 7 BS with hexagonal 
geometry scenario to show its capabilities with different UE counts. To provide a fair evaluation we 
applied realistic traffic load such as video streaming which is modelled based on real-life LTE networks 
[20]. In this simulation, we focused on a downlink scenario where users' packet requests are varying 
during the runtime. The details of the SINR calculation and environment pathloss are stated in [21]. The 
author notes that in their formulation, the constant K at 6910 KM-1 corresponds to the COST Walfisch-
Ikegami model for an urban environment. The pathloss simulation parameters and traffic models are 
summarized in Table 2. 

 
Figure 4 Example Distribution of Environment from Vienna Simulator 

Vienna LTE system level simulator consists of different modules including antennas, channel models, 
network generation, schedulers, traffic models and etc. The proposed power management module is 
implemented in the network generator module to applied the expected modifications in the lowest level 
to make the proposed model applicable in real-life cellular networks. 

In Figure 4, diamonds show base stations. Base stations are configured as omni-directional. Points refer 
to UEs. UEs are distributed randomly. Thanks to the random distribution, our model will try to solve 
generalized problem. 
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Table 2 Simulation Parameters 
Parameter Value Reference 
Frequency 2.14 GHz [22] 

K 6910 KM−1  [21] 
γ 4  [21] 

N0 10−15.82  [21] 
Subcarrier Frequency 15 kHz  [22] 

Macro BSs Max Power 40 W  [22] 
RRH Antenna Gain Omni-directional  [23] 

Path Loss Model 128.1 + 37.6 log10
R, R in km  [22] 

Noise Power Spectral Density -174 dBm/Hz  [22] 
Receiver Noise Figure 9 dB  [22] 

Feedback CQI  [23] 
Maximum TX power of BS 40  

Feedback Delay 3 TTI  
Scheduler Round Robin Traffic   

Traffic Model Video Stream   
UE speed Stationary  

Number of Macro BS 7  
TTI 1 ms  

Communication Time Interval (CTI)  40 TTI  
Simulation Length 200 CTI  
Simulation Area 2000 m × 2000 m   

Active UEs 50, 100  

3.3 Experiment 1: Parameter Selection and P-DDPG Benefits  

The environment measures the network status at each transmission time interval (TTI). Because of the 
realistic behaviors of users, the measurements of each TTI does not directly represent the network status. 
Since users are sometimes idle, sometimes actively use the network, the traffic load and average users’ 
throughput fluctuates. Therefore, the agent cannot take decisions according to each TTI measurement. 
The communication time interval (CTI) is defined as a state-action exchange interval between 
environment and agent. To find optimum CTI, we run the simulation with different CTI. Each simulation 
records 200 states and we measure the standard deviation of these states in term of users’ throughput.  

 
Figure 5 Standard Deviation of Average User Throughput at Different CTI Values 

Figure 5 shows the effect of CTI on the standard deviation of average users’ throughput. When the 
communication time interval increases, in term of number of TTI, the fluctuation of average users’ 
throughput decreases. This figure proves that each transmission time interval does not represent the 
network status and we need to consider some time interval to state-action exchange. 

The second important point of CTI selection is run time. Vienna simulator is a complex, realistic LTE 
system level simulator and it consists of different modules. Therefore, simulation of the real-life network 
in Vienna Simulator is costly and it is time required task. Run times of different CTIs are shown in 
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Figure 6. Each simulation runs until recording 200 states, therefore, the simulation time on a TTI basis 
is calculated as CTI × 200. When the simulation time increases, then the run time of environment is 
increases. 

 
Figure 6 Analysis of Different Communication Time Interval (CTI) Run Time 

DDPG algorithm can train itself after each state-action exchange. The bottleneck of training can be 
analyzed under two categories, one of them is agent response time and another one is environment 
response time. In our case, the environment’s run time is significantly smaller than the agent response 
time, so the number of training per unit time is limited by the environment’s run time. We propose P-
DDPG model to increase training per unit time. The P-DDPG model can run with multiple environments 
in parallel. 

 
Figure 7 Snapshots of Pendulum Environment  

Effect of environment response time and P-DDPG algorithm are tested on Pendulum-v0 which is one 
of the well-known OpenAI Gym environment. OpenAI Gym is a toolkit for developing and comparing 
reinforcement learning algorithms [24]. Figure 7 shows the snapshot of pendulum problem. The arrows 
illustrate the magnitude of the action and the direction of the action. The problem is that trying to keep 
a pendulum standing up by taking actions. The action is a value between -2.0 and 2.0, representing the 
amount of left or right force on the pendulum. Since the Vienna Simulator is a time-consuming 
environment as shown in Figure 6, we added a delay to the pendulum environment to observe the effect 
of the environment run time on learning time. 
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Figure 8 The Effect of Run Time of the Environment on Learning Time 

Figure 8 shows environment run time effect on training time. We simulate pendulum problem on 
environments which have 0.5, 1- and 2-seconds delay. In these results, we run 10 multiple environments 
as a parallel and these results shows the moving average of last 100-episode rewards. According to 
convergence time of each simulation, when the environment run time increases, the learning time of the 
algorithm is also increased. The fastest trained model is achieved with the minimum delayed 
environment. 

 
       (a) Training Time                                    (b) Training Count per Second 

Figure 9 Running Multiple Environments Effect 

Running multiple environments is examined in Figure 9. We examine the effect of environment run 
time and the effect of the environment count on learning. The environment counts are 10, 20 and 40 
where delays are 0.5, 1 and 2 seconds. We recorded run times of simulations when the average reward 
value of the last 100 simulations exceeded –250. Figure 9 shows that when the environment count 
increases, algorithm learning time decrease. For each delay value, increase in the environment count 
positively affects the learning time. Fastest learning time is achieved with lowest delay and highest 
environment count. Reinforcement learning models need trial and error. The algorithm needs to be 
trained as much as possible to complete learning. Hence, training count per second is important to 
improve algorithm. Figure 9 shows training count per second at different configurations. The delay and 
environment count effects on training per second are observable in this figure. There is an inverse ratio 
between delay and training count per second. Increase in the delay causes a decrease in the training 
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count per second. Conversely, there is a direct correlation between the environment count and training 
count per second. When the environment count increases, then the training count per second increases. 

To sum up, each TTI measurement does not represent the network status (Figure 5), therefore, state-
action exchange has to be done at certain intervals which we called communication time interval (CTI). 
Vienna Simulator is a slow environment which takes time to simulate the network (Figure 6). Training 
is directly related with environment run time (Figure 8). Therefore, while selecting communication time 
interval we have to consider run time and we need to choose long enough CTI that describes the network 
in term of low fluctuation. We empirically choose CTI length as 40 TTI with considering these reasons. 
Our motivation of developing P-DDPG is the slow environment. Since the environment slow, we need 
to run multiple environments to increase training count per second to decrease the learning time (Figure 
9). 

3.4 Experiment II: Energy Efficiency under Stationary Scenario  

Our problem is reducing the energy consumption of base stations while maintaining UE’s QoS 
parameters. We try to solve this problem with our P-DDPG model. QoS parameters, that are defined in 
Equation 2 to 5 are basis on UEs’ wideband SINR and UE’s throughput. We first calculated the baseline 
values without running our model on the network. We run simulation 40 times for each scenario and we 
observe the network without taking any action. UEs and small cells are randomly distributed. The QoS 
distributions obtained in these observations are called baselines. We calculated acceptable QoS values 
(threshold values) for the network based on baseline values. These threshold values are used while 
training our model. We have compared baseline values with the last 40 results that pass CNRC. 

 

 
Figure 10 P-DDPG Algorithm Effects on The Environment with 50 UEs 

We observed the proposed model effects in different environments. We prepare two different test 
scenarios to show the effect of the environmentalist energy efficient model. One of them is composed 
of 50 users and the other 100 users. In our observations, QoS parameters such as average throughput of 
users, the lowest SINR value received by users, energy consumption and energy efficiency are analyzed. 
The average throughput of users gives information about network usage. Users on the edge or users 
which are far from base stations generally get the lowest SINR value. In that case, even if we maintain 
the average throughput of users, some users cannot reach the network because of the poor SINR. 
Therefore, we compare the lowest SINR value received by users to observe the effect of the proposed 
model on poor users. Energy consumption and energy efficiency are the main targets that we need to 
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improve. The realistic natural environment results of Vienna Simulator are called the Baseline, while 
the results of the trained model are called P-DDPG. 

Figure 10 - 12 show P-DDPG effects on the environment with 50 UEs. Figure 10 is obtained by 
evaluating 40 simulation outputs. As we can see in Figure 10, by applying the P-DDPG model, the 
amount of energy consumption is reduced, while the overall UEs throughput is preserved, and in some 
cases, they even enhanced slightly. In sparse scenarios, we achieve up to 67% increase in energy 
efficiency by using the P-DDPG model in the dynamic environment. 

In Figure 11, a single environment’s lifetime is presented to observe the realistic environment behaviors 
and the P-DDPG model effects. In this work, in order to provide a real-life condition, we simulate a 
dynamic network where UEs have various behavior (such as the amount of received or transmit data); 
therefore, QoS requirements will be varied in each TTI. Even though it is challenging to maintain the 
QoS parameters in this variability, our model is trained to maintain QoS while increasing energy 
efficiency. Figure 11 shows the lowest SINR value received by users. Although there are some 
deviations because of the handover, the lowest SINR value is preserved. The average throughput of 
users is observable in Figure 11. Because of the user behaviors, there are fluctuations but the P-DDPG 
model successfully maintains the average throughput of users.  

 

   (a) The lowest SINR        (b) User throughput 

 
   (c) Energy consumption                        (d) Energy efficiency 

Figure 11 P-DDPG Algorithm Single Environment’s Lifetime Effects on The Environment with 50 UEs 

The P-DDPG model maintains QoS parameters while reducing energy consumption. In Figure 11, the 
effect of applying P-DDPG on energy consumption is presented. As it is shown, the proposed model by 
taking varied decisions over time can enhance energy consumption in the network for about the optimum 
level for the environment. The effect of fluctuations in user throughput and energy consumption on 
energy efficiency is also seen in Figure 11. The P-DDPG model always keeps energy efficiency higher 
than baseline. Due to users’ behaviors, throughput is changed naturally. This explains fluctuations in 
energy efficiency. During a single episode, model actions which are increasing or reducing BS’s powers 
are shown in Figure 12. The P-DDPG model plays with BS’s power and find an optimum energy level 
for each of them. 



Sakarya University Journal of Computer and Information Sciences 
 

Aktas et al. 

257 
 

 
Figure 12 BS Power Changes in a Single Environment with 50 UEs 

Another test scenario is constructed with 100 UEs. We illustrate the dense scenario results in Figure 13 
and Figure 14. Like the sparse scenarios, the P-DDPG model can increase energy efficiency while 
maintaining QoS parameters. In the dense scenarios, we achieve up to 32% increase in energy efficiency. 
When the user density increases, users are more affected by power reduction of base stations in term of 
users’ throughput. Therefore, the P-DDPG model maintains the power level of BSs at high and consume 
more power with respect to the sparse scenarios to protect the QoS. Hence, the increase in energy 
efficiency is less than the sparse scenarios. 40 simulations’ average results are presented in Figure 13. 
As we can see in this figure, the P-DDPG model efficiently maintained the QoS parameters during the 
simulation. As it is shown, during multiple simulations, average power consumption is reduced and 
energy efficiency is increased when we use the P-DDPG model. 

 
Figure 13 P-DDPG Algorithm Effects on The Environment with 100 UEs 

Figure 14 shows the lowest SINR value received by users and throughput changes during one episode 
in the dense scenario. It appears in these figures that the P-DDPG model maintains SINR and UEs’ 
throughput. There is a sharp reduction in the lowest SINR at 49th CTI, which may be caused handover. 
Except for 49th CTI, the model maintains the lowest SINR value, similar to the base. BS’s power changes 
in the dense scenario as shown in Figure 12. The P-DDPG model acts according to the scenario 
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requirements and keeps QoS above the threshold, and reduces energy consumption. By reducing BS’s 
powers, it increases energy efficiency as shown in Figure 14. 

 

  (a) The lowest SINR        (b) User throughput 

 

  (c) Energy consumption                       (d) Energy efficiency 

Figure 14 P-DDPG Algorithm Single Environment’s Lifetime Effects on The Environment with 100 UEs 

In both sparse and dense cases, the P-DDPG model is trained and it decreases energy consumption. The 
P- DDPG model has the capability of handling natural user behavior, and it can find an optimum energy 
consumption level for both cases. 

 

Figure 15 BS Power Changes in a Single Environment with 100 UEs 

3.5 Experiment III: Energy Efficiency under Perturbation in the Network  

The P-DDPG model stationary scenarios’ energy efficiency results are presented in the previous section. 
In this section, we test the P-DDPG model when the perturbation occurs in the network. The base 
stations could shut down suddenly because of different reasons such as internal errors, firmware update, 
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hardware change. Therefore, the proposed models should have a tolerance to sudden base stations turn 
off. To test this scenario, we set up a simulation with 50 users and 7 base stations. We set simulation 
length to 200 CTI. At 25th CTI, we close 3 out of 7 base stations. In Figure 16, the squares show the 
closed base stations and the diamonds show the rest. At 50th CTI, we restart the system and set the closed 
base station powers to the maximum level. During that time, model actions are neglected and we keep 
base station powers constant. 

 
Figure 16 Perturbation Scenario Illustration 

The reward function is updated for this scenario. During 25 ≤ CTI ≤ 50, the model is neither rewarded 
nor punished. We set R = 0 during perturbation. For the perturbation scenario, the reward function is 
formulated as  𝑅𝑅𝑘𝑘 = 𝑚𝑚𝑖𝑖𝑚𝑚�𝑅𝑅OS2

𝑘𝑘 ,𝑅𝑅𝐸𝐸𝐸𝐸𝑘𝑘 �, where 𝑅𝑅OS2 refers to overall status of users’ throughput reward 
(Equations 4 – 12) and 𝑅𝑅𝐸𝐸𝐸𝐸 refers to energy consumption reward (Equation 13). 

 
Figure 17 P-DDPG Algorithm Effects on The Environment in Perturbation Scenario 

We illustrate the perturbation scenario results in Figure 17 and Figure 18. In perturbation scenario, P-
DDPG model can increase energy efficiency while maintaining QoS parameters. We achieve up to 39% 
increase in energy efficiency. 
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(a) The lowest SINR        (b) User throughput 

 
  (c) Energy consumption                       (d) Energy efficiency 

Figure 18 P-DDPG Algorithm Single Environment’s Lifetime Effects on The Environment in Perturbation 
Scenario 

In this experiment, the average throughput of users and the lowest SINR value received by users are 
compared. The average throughput of users gives information about network usage. Hence, the average 
throughput of users is important with respect to maintaining QoS. QoS is not only depended on average 
throughput. Users on the edge or users which are far from base stations generally get the lowest SINR 
value. In that case, even if we maintain the average throughput of users, some users cannot reach the 
network because of the poor SINR. Therefore, we also try to maintain the lowest SINR value received 
by users to consider poor users. 

Figure 17 is obtained by evaluating 40 simulations outputs. As shown in this figure, the P-DDPG model 
efficiently maintained the QoS parameters during the simulation like previous scenarios. The average 
throughput of users almost while reducing energy consumption. There is a 4% decrease in the average 
throughput of users where energy consumption is reduced by 30%. As a result, energy efficiency is 
increased by 39% by using the P-DDPG model. 

In Figure 18, a single environment’s lifetime is presented. The base station sudden shutdown effect is 
manifestly observable in these figures. There is a significant change between 25th CTI and 50th CTI. The 
shutting down 3 out of 7 base stations at 25th CTI sharply decrease average throughput of users. Figure 
18 shows the lowest SINR value that is received from users. There is a sudden decrease in the lowest 
SINR value because of the shutdown. 

After restarting closed base stations at 50th CTI, the P-DDPG model successfully continue to the 
management of the network. The average throughput of users is almost equally maintained with 
baseline. By using the P-DDPG model, energy consumption is significantly reduced after 50th CTI. The 
model tries to find optimum energy consumption level by changing base stations transmit powers. 
During that time, it increases energy efficiency and preserves the average throughput of users. 

Effects of the sudden shutdown and the model actions on base station transmit powers are observable in 
Figure 19. The base stations 1, 5, and 6 are turned off during 25 ≤ CTI ≤ 50. After 50th CTI, the P-DDPG 
model plays with BS transmit powers to find the optimum energy consumption level for each of them. 
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Figure 19 BS Power Changes in a Single Environment in The Perturbation Scenario 

To conclude, in this experiment, the perturbation scenario is tested. The base stations could shut down 
suddenly because of different reasons such as internal errors, firmware update, hardware change. Users’ 
QoS parameters adversely affected by sudden shutdowns. The P-DDPG model has the capability of 
continuing its management after restarting the system. It maintains users’ QoS parameters while 
increasing energy efficiency. In perturbation scenario, we achieve up to a 39% increase in energy 
efficiency. 

4. Related Work 

Given the importance of the subject, several studies have been carried out to increase network energy 
efficiency using different approaches. In general, these studies try to adjust a viable sleeping strategy to 
achieve energy efficiency using analytic models or machine learning.  

In the first group, researchers try to find an optimum sleeping strategy by modelling the network 
analytically. In [25], the authors aim to quantify the trade-off between energy consumption and 
throughput in a heterogeneous cellular network where small cell BSs have four distinct power-saving 
modes. These are On, Standby, Sleep and Off with power consumption ratios given as 100, 50, 15 and 
0 per cent, respectively. They used a static traffic model which treats all users as stationary with known 
positions. Instead of using discrete power levels, our proposed model can use continuous power levels. 
It increases complexity but thanks to the machine learning, the proposed model has the capability of 
handling continuous power level adaptation. Feng et al. list new challenges of a design of BSs sleeping 
strategy in 5G networks [7]. They provide a comprehensive review of recent advances on ON-OFF 
switching mechanisms in different application scenarios. They list various ON-OFF switching problems 
and known solutions. Their claim is that ON-OFF scheduling is generally an NP-hard problem and 
solving with standard techniques is unfeasible. Moreover, they point the application of machine learning 
techniques on the network as future research. Cai et al. propose to dynamically change the operating 
states of the BSs (as on and off) to reduce the power consumption of the heterogeneous networks 
(HetNets) [26]. They consider location and user density-based operation scheme to optimize power 
consumption. These studies describe the network by using mathematical models. After modelling, they 
try to solve an optimization problem to find an optimum sleeping mode for each BS. Mathematical 
models try to find threshold values such as the number of users that are assigned to each BS, or 
throughput threshold. Threshold values are used for sleeping decisions. When we consider the dynamic 
nature of the system, these models have to make very restricting assumptions for a network to perform 
well. Unlike machine learning used models, modelling the stochasticity is a challenging problem as well 
as solving it.  
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On the other side, with the advent of software defined networking, machine learning approaches are 
available for a network. Historical data and online learning concepts are key-enablers for using machine 
learning in the network management. Reinforcement learning is well suited to the online and continuous 
nature of the network management problem. In [27], Lu et al. develop a RL model for cellular networks 
with coordinated multipoint communication. The model aims to find an optimum solution for ON-OFF 
switching. They use the Q-learning algorithm while modelling solution. Their main focus is macro base 
stations and they use only ON-OFF as an action. Therefore, they cannot use the intermediate power 
values of the base stations. Sharma et al. use an actor-critic reinforcement learning approach for ON-
OFF switching in HetNets [28]. They emphasis transfer learning benefits and they point the relation 
between energy efficiency and delay importance. RL is also used for energy efficient resource allocation 
in 5G heterogeneous cloud radio access networks by Al Qerm and Shihada [29]. They build an online 
Q-learning model for resource allocation. Their action and state space are relatively larger than previous 
studies, however, because of the Q-learning, the curse of dimensionality problem is there for them. 
Ghadimi et al. try to use RL for transmit power adaptation [30]. Their action space is {0, ±1, ±3}. 
Limited action space and state space are the known phenomenon of Q-learning. There are studies for 
developing RL models to optimize energy efficiency in small cells such as Wi-Fi routers, 4G home 
eNBs and 5G home gNBs [31]. Researchers point the problem of small cell energy consumption in next 
generation networks in their study. They try to optimize energy consumption by considering QoS. They 
transform continuous decision variables into discrete ones to reduce complexity and to fit their models 
which are based on regret learning based RL and fictitious play based RL. In contrast to their work, we 
focused macro cells and continuous actions are supported in our proposed model.  

Moreover, reinforcement learning is used for various control problems in the mobile network. In [32], 
Wang et al. use federated deep reinforcement learning for decentralized cooperative edge caching. They 
address to content replacement problem by modeling as a Markov decision process and they use a double 
deep Q-network (DDQN) to find a solution in the noncontinuous huge space. The time division 
duplexing control problem is also adressed by using reinforcement learning. In [33], authors work on 
duplexing framework that let network to dynamically adapt according to the traffic demands. At the 
same time, intercell interference is mitigated by using their suggested approach. They model the problem 
by using  DDQN. 

Unlike previous works, we used deep deterministic policy gradient-based reinforcement learning. Our 
proposed model is constructed to support continuous state space and continuous action space. This is a 
novel approach that finds the optimum power consumption in the network by using deep deterministic 
policy gradient-based reinforcement learning that trained in a realistic environment.  

5. Conclusion 

In the next-generation networks, due to the increase in the BS density, environmentalist approach will 
be essential. Autonomous systems will be more involved in the next generation network. These 
autonomous systems should be trained in a simulation environment which is close to real life. In this 
paper, we present a dynamic machine learning based energy saving model. P-DDPG is an extended 
version of DDPG which has the capability of work with parallel environments. Unlike previous works, 
we train our model on Vienna Simulator, which is known as realistic and advanced network simulator. 
Our experiments show that it is possible to achieve up to 32% increase in the energy efficiency in a 
dense scenario and up to 67% increase in sparser scenarios. P-DDPG successfully manages networks in 
term of reducing energy consumption and maintaining QoS. As future work, the proposed approach can 
be tested in environments with mobile users. By taking advantage of transfer learning, it is possible to 
work in environments with mobile users as a continuation of this study. A fully autonomous system 
running on the network can be obtainable by using P-DDPG models that are trained for each cluster. 
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List of Abbreviations 

BS Base Station 

CNRC Consecutive Negative Reward Check  

CTI Communication Time Interval 

DDPG Deep Deterministic Policy Gradient  

DDQN Double Deep Q Network 

DQN Deep Q Network 

HetNet Heterogeneous Networks  

LTE Long-Term Evolution 

MEC Multi-access Edge Cloud 

ML Machine Learning 

NFV Network Function Virtualization 

OS Overall Status 

P-DDPG Parallel Deep Deterministic Policy Gradient  

QoS Quality of service 

RAN Radio Access Network 

RL Reinforcement Learning 

SINR Signal to Interference Ratio  

SN Software networks 

TTI Transmission Time Interval 

UE User Equipment 
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