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Abstract 

Deep learning researchers and practitioners have accumulated a significant amount of experience on training a 

wide variety of architectures on various datasets. However, given a network architecture and a dataset, obtaining 

the best model (i.e. the model giving the smallest test set error) while keeping the training time complexity low is 

still a challenging task. Hyper-parameters of deep neural networks, especially the learning rate and its (decay) 

schedule, highly affect the network’s final performance. The general approach is to search the best learning rate 

and learning rate decay parameters within a cross-validation framework, a process that usually requires a 

significant amount of experimentation with extensive time cost. In classical cross-validation (CV), a random part 

of the dataset is reserved for the evaluation of model performance on unseen data. This technique is usually run 

multiple times to decide learning rate settings with random validation sets. In this paper, we explore batch-level 

cross-validation as an alternative to the classical dataset-level, hence macro, CV. The advantage of batch-level or 

micro CV methods is that the gradient computed during training is re-used to evaluate several different learning 

rates. We propose an algorithm based on micro CV and stochastic gradient descent with momentum, which 

produces a learning rate schedule during training by selecting a learning rate per epoch, automatically. In our 

algorithm, a random half of the current batch (of examples) is used for training and the other half is used for 

validating several different step sizes or learning rates. We conducted comprehensive experiments on three datasets 

(CIFAR10, SVHN and Adience) using three different network architectures (a custom CNN, ResNet and VGG) 

to compare the performances of our micro-CV algorithm and the widely used stochastic gradient descent with 

momentum in an early-stopping macro-CV setup. The results show that, our micro-CV algorithm achieves 

comparable test accuracy to macro-CV with a much lower computational cost. 

Keywords: deep learning, neural networks, learning rate, hyper-parameter search, adaptive learning rate, 

cross-validation 

1. Introduction 

Training deep neural network models is not a trivial task. It is a delicate and complex process which 

aims to efficiently obtain a model that generalizes well to unseen test data. An excessive number of 

hyper-parameters including learning rate, learning rate schedule, mini-batch size, regularization 

parameter, weight decay constant and the network architecture increase the complexity of the training 

process as all of these parameters need to be tuned. The problem is exacerbated for new problem 

domains or new datasets. Guided sequential experiments with a different selection of hyper-parameters 

usually require prior knowledge on neural network’s convergence, loss function topology and dataset to 

achieve a model that has smallest generalization error. After each experiment, the subsequent selection 

of hyper-parameters can be determined based on these factors using prior knowledge. In fact, human 

skill and expertise is a significant factor in the final performance of a deep learning architecture [1]. 

Even carefully designed sequential experiments conducted with knowledge-based assessments come 

with a very high amount of computational cost. Given the surprisingly large carbon-footprint of deep 

learning computations [2], electricity and hardware costs, efforts to shorten the training process become 

crucial. 

Learning rate, i.e. step size, seems to be one of the most important hyper-parameters for deep neural 

networks that highly affects the model performance. Specifically, the learning rate adjusts the magnitude 

of the network’s weight updates for minimizing the loss function. If the learning rate is too high, the 

model struggles to converge to a local minima; while a too small learning rate slows down convergence, 

hence increases the total training time. 
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Adaptive optimizers (e.g. Rmsprop[3], Adam[4]) have been proposed to address the problem of setting 

optimal learning rates. It is widely reported that “Adam” with its default parameters achieves high 

accuracy for many architectures. However, there is also evidence that “researchers kept evolving new 

architectures on which Adam works” [5]. Recent research ([6, 7]) also points out the convergence 

problem of Adam optimizer. According to these recent findings, hand-tuned stochastic gradient descent 

(SGD) with momentum optimizer can achieve better results than adaptive optimizers. Adaptive 

optimizers’ convergence problem can be solved with additional learning rate tuning. In short, selecting 

learning rate and its schedule is still an unsolved challenge for which an automated procedure would 

have significant impact. Our proposed methods (using micro cross-validation) explore some ideas 

towards automating the search for the optimal learning rate. 

The standard way to find an optimal learning rate and/or decay parameter (more generally, a learning 

rate schedule) is to apply cross-validation (CV) to estimate model performance on unseen data for 

different learning rates and decay values. In classical cross-validation (CV), a random part of the dataset 

is reserved for the evaluation of model to estimate its future performance on unseen data. This process 

is repeated multiple times with random validation sets to determine the best learning rate settings. We 

name this standard CV method as “macro CV” since it is a dataset-level method. As an alternative, we 

propose “micro CV” method which works at the mini-batch level. We argue that “micro CV” may be 

more efficient because once the gradient vector is computed at the batch level, it could be re-used to test 

out several different learning rates. We propose an automated learning rate selection algorithm that aims 

to find optimal learning rate and learning rate schedules during training. In each iteration of our 

algorithm, we sample a mini-batch from the training set just like in all stochastic gradient algorithms. 

Then, we split this batch into two equal-size sets, one of which is used as the training mini-batch and 

the other as the validation mini-batch. We compute the gradient of the loss function with respect to 

network weights using only the “training” mini-batch. Once we have the gradient vector, we apply 

different step-sizes or learning rates along this vector to obtain different future models. Next, we 

evaluate these future models on the “validation” mini-batch, and accumulate the corresponding losses. 

When this process is repeated for the whole training set (i.e. all batches), we identify the step-size which 

has accumulated the least amount of (validation) loss, and set it as the learning rate for the next epoch. 

We implemented this method and a variant of it, where we not only accumulate the validation loss but 

also the training loss, and used them for the image classification task on three different image 

classification datasets (CIFAR10, SVHN, Adience) with three different CNN architectures. Our 

experiments show that, in terms of test set classification accuracy, macro-CV slightly outpeforms micro-

CV, however, in terms of computational cost, micro-CV algorihtm is better by a large margin. Overall, 

our micro-CV algorithm yields promising results. 

This paper has been compiled from the first author’s MSc thesis [8]. The rest of the paper is organized 

as follows. Section 2 discusses the SGD algorithm and provides a comparison with adaptive gradient 

descent algorithms as background. Section 3 describes our proposed micro CV algorithm. In Section 4, 

we describe the experiments we conducted for the purpose of comparing micro-CV and macro-CV 

methods. Finally, Section 5 concludes the paper by providing a brief summary and discussion. 

2. Background and Related Work 

Many methods have been proposed for automated learning rate selection [3, 4, 7, 9, 10, 11, 12, 13, 14, 

15]. The ultimate goal is to obtain the lowest generalization error in a minimum time and memory 

budget. This section covers traditional hyper-parameter tuning approaches, adaptive learning rate 

methods, cyclical learning rate schedules, gradient based learning rate tuning methodologies and mini-

batch validation based methods. 

2.1 Hyper-parameter Tuning and Cross Validation 

Automated hyper-parameter tuning can be considered as the ancestor of automated learning rate tuning. 

The classical way of tuning is to define a set of parameter values and estimate model performance for 

them. This basic method is known as “grid search” and it can be carried out in a sequential or parallel 
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manner, for more than one variable or hyper-parameter. The set of parameter values can be set 

beforehand or sampled randomly as well (i.e., random search [10]). The model performance is evaluated 

on a held-out set known as the “validation set”. Typically, 10 − 30% of the training set is reserved for 

this purpose. To reduce variability of results, the training set can be split into many folds and each fold 

can be used as the validation set while others are used for training. These methods are generally known 

as “cross-validation” methods. In this paper, we further call these methods as “macro cross-validation” 

since the train-validation split is done at the dataset level. As an alternative, this split can be carried out 

at the batch-level as we propose in this paper. 

2.2 Adaptive Learning Rate Methods 

The earliest heuristic to achieve adaptive learning is the idea of using separate learning rates per 

parameter based on the sensitivity of the cost function per parameter. AdaGrad [9], an earlier example 

of adaptive learning rate optimizers, scales learning rate per parameter with the square root of the sum 

of all historical squared values of the gradient. In this approach, parameters with larger partial 

derivatives have decreased learning rates compared to parameters with small partial derivatives. Even 

though this approach helps some models, keeping historical partial derivatives for the whole training 

session may lead to excessive decrease in the effective learning rate for some parameters. Rmsprop [3] 

modifies the AdaGrad algorithm to address its excessive decrease on learning rate by using a moving 

average of gradients to replace the whole-history based average. This introduces a new hyperparameter 

(which is usually not tuned). Adam optimizer [4] combines Rmsprop’s and momentum optimizer’s 

benefits. It computes two historical moving average estimates which keep averages of gradients and 

squared gradients respectively. There is also correction of initial bias of moving average of gradients 

and square of gradients in Adam that is also an addition to Rmsprop algorithm. Although Adam is 

capable to work with different models with default values, some cases still requires tuning the global 

learning rate and other hyper-parameters. 

2.2.1 Revisiting SGD with Momentum 

Even though adaptive methods are quite useful, recent research shows that SGD with momentum can 

obtain better test results over adaptive methods. Wilson et al. [6] conduct a comprehensive study which 

shows that, contrary to common belief, SGD and SGD with Momentum outperform adaptive optimizers 

on unseen dataset in designed tasks for over-parameterized models. Adaptive methods have faster 

progress during the earlier epochs of training while their final performance on test set is not promising. 

They also found out that tuning Adam classifier brings considerable improvement compared to using 

the default settings. Another research inspired by Wilson et al.’s [6] findings suggests a simple idea: 

using Adam on earlier epochs of deep neural network training, then switching to SGD with Momentum 

to address the saturation problem of Adam on later epochs [16]. They showed that using Adam and SGD 

with momentum instead of only using Adam results in better generalization. Several modifications have 

also been proposed for the Adam optimizer. The “YOGI” algorithm [17] proposes an additive adaptive 

rule which controls the increase in learning rate, as opposed to the rapid increase yield by Adam. Zhang 

et al. [7] conduct several experiments that compares hand tuned “SGD with momentum” and adaptive 

optimization methods. They report that models trained with hand-tuned SGD with momentum achieves 

faster convergence than Adam for many models. Indeed, many recent state-of-the-art image 

classification models on popular datasets, such as SVHN, CIFAR10 and ImageNet, use the “SGD with 

momentum” method [18] [19] [20] [21]. 

2.2.2 Cyclical Learning Rates 

Cyclical learning rates (CLR) method [11] addresses the learning rate and learning rate schedule tuning 

problem. The method trains the neural network by cyclically varying learning rates within predefined 

boundaries instead of always decreasing the learning rate. Boundaries of cyclical learning rate can be 

found by linearly increasing the learning rate of the network for a few epochs which is called “LR range 

test”. The optimal learning rate is inside these boundaries. Then, the learning rates where model 
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accuracy starts to increase and decrease are taken as minimum and maximum boundaries of the cycle. 

Learning rate varies between these minimum to maximum and maximum to minimum boundary in a 

defined step size during training. These method also requires the selection of step size, i.e the number 

of iterations to take a half learning rate cycle from minimum to maximum. Cycle topology can be 

triangular or exponential. CLR experiments of different neural network architectures show that CLR 

achieves better accuracy than fixed learning rate methods. In a follow-up research, Smith et al. [12] 

propose super convergence phenomenon that can be achieved by using very large learning rates in the 

cyclical learning rate method. They present that using large learning rates helps to regularize the network 

that result in better model performance. In learning rate range test, increasing learning rate causes an 

increase on training loss while test loss is surprisingly decreased at the same time for Resnet-56 

architecture. However, proposed rapid convergence was only demonstrated in a single task which limits 

the generalizability of this method. 

Another adaptive method similar to cyclical learning rates is “SGD with warm restarts” (SGDR) [13]. 

In this work, the learning rate is initialized to some value that is scheduled to decay with an aggressive 

cosine annealing schedule. Warm restarts refers to restarting only learning rate while other model 

parameters remain the same with the latest step. SGDR improves many state-of-the-art models error 

rates on popular datasets. 

These methods are important since they show that increasing the learning rate from time to time to 

reasonably higher values can be beneficial for final network performance. 

2.2.3 Gradient Based Tuning Methods 

Another adaptive approach is using gradients to find out the optimal learning rate. Schaul et al. [14] 

define a formula to obtain the optimal learning rates for SGD based on the variance of the gradients. 

This method can find either single global learning rate, or learning rates for each parameter or parameter 

group, based on the moving averages of gradients and the diagonal Hessian. This algorithm 

automatically decreases learning rate to zero when loss function is approaching to its optimal value 

without any manual learning rate search. Zhang. et al. [7] conduct experiments to show that carefully 

hand-tuned learning rate can be competitive with adaptive learning rate optimizers. They not only 

analyzed this phenomena but also, came up with an automated learning rate and momentum tuning 

approach called Yellowfin. They consider the learning rate tuning problem together with momentum 

tuning. Similar to Schaul et al.’s work [14], they use noisy quadratic model. In their tuner, hyper-

parameters are tuned in every training step using curvature range and gradient variance estimates. 

Another work proposes hypergradient descent method to tune the learning rate [15]. They define 

hypergradient descent as applying gradient descent to learning rate in each training step. This means 

calculating the partial derivative of the objective function at the previous time step with respect to the 

learning rate. Applying hypergradient descent on SGD, SGD with Nesterov momentum and Adam has 

showed that the need for manual tuning is reduced. 

2.2.4 Mini-batch validation 

We are not the first to explore mini-batch-level validation. Recently, Jenni and Favaro have extended 

the idea of cross-validation to validate a group of mini-batches with another mini-batch during training 

[22]. In their method, called “Deep Bilevel Learning” (DBL), at each iteration, they sample a number 

of training mini-batches and a validation mini-batch. Then, they calculate the gradient of the loss 

function on all of these mini-batches. Next, the inner product between the gradients of a training mini-

batch and the validation mini-batch is computed. Each training gradient is weighted by its corresponding 

inner product value with the validation mini-batch. The final training gradient to be used for this iteration 

is the linear combination of all training mini-batch gradients weighted by their inner products with the 

validation mini-batch. If the gradient of a training mini-batch agrees with the gradient of the validatio 

mini-batch, then their inner product, hence the training gradient’s weight, is a large positive value. They 

show that this procedure results in better generalization. They explain this achievement as the validation 
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of gradients helps to avoid memorization by encouraging model parameter updates that only reduce 

errors on shared sample patterns. Our proposed methods are similar to DBL in the sense that both use 

training and validation mini-batches during training. However, while DBL is based on gradient 

similarity (based on inner product), our methods are based on loss values obtained on training and 

validation mini-batches.  

3. Automated Learning Rate Search Methods using Micro Cross Validation 

In this section, we describe our proposed micro-CV based automated learning rate search algorithm. 

The training scenario we consider is a typical one: we are given a supervised training set

 consisting of n examples, a neural network architecture represented by f(x;θ), where 

f(·) is the overall function computed by the network, θ is the set of learnable weights of the network and 

x is an input to the network, and a loss function ℒ. Our goal is to minimize ℒ on T by adjusting the 

network weights θ: 

θ∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛  
θ

 
1

𝑛
∑ ℒ(𝑓(𝑥𝑖; θ), 𝑦𝑖)(𝑥𝑖,𝑦𝑖)∈𝑇 . (1) 

 

We consider the stochastic gradient descent (SGD) method where a mini-batch B consisting of m 
examples is randomly sampled (m << n), on which the gradient vector is computed: 

𝑔 =  
1

𝑚
∑ ∇θℒ(𝑓(𝑥𝑖; 𝜃), 𝑦𝑖)(𝑥𝑖,𝑦𝑖)∈B . (2) 

 

Then, the learning takes place by updating the network weights θ along the gradient vector g with a 

step-size η, called the learning rate: 

 θ (t+1) = θ(t)− η(t)g(t) , (3) 

where superscript (t) indicates the iteration number. For simplicity, we drop this notation for iteration 

in the following. 

Given the widespread use and its more stable convergence, we consider the “SGD with momentum 

method” [23, 24], which accelerates learning if recent gradient vectors are consistently aligned. It has 

an additional parameter α, called the momentum parameter, to decide how much of past gradients are 

taken into account: 

 ϑ = αϑ − ηg, (4) 

 θ = θ + ϑ.     (5) 

Here the learning rate η is usually a small constant throughout the whole training or a variable which 

changes its value according to some schedule as a function of time (iteration number). Although decay 

schedules, where η monotonically decreases through time are more common; cyclical schedules, where 

η increases and decreases alternatingly [11], are also possible. In classical, macro (i.e. dataset-level) 

cross-validation (CV), these learning rate schedules are determined prior to training, mostly based on 

previous experience. 

In this paper, we are interested in setting the learning rate η automatically using micro (i.e. batch-level) 

crossvalidation (CV). Before we describe how we do this, let us first look at the classical, macro CV. 

In macro CV, the training set T is split into two mutually exclusive, training and validation sets (e.g. 

80% to %20 is common). Together with this, a set of learning rate schedules are determined prior to 

training. Note that a “schedule” deterministically defines the values of η throughout a whole training 

episode. Then, a complete training episode is carried out for each different learning rate schedule. 

During training, “early-stopping” technique is widely used as a stopping criterion. Loss on the validation 

set is monitored and if it does not improve for a certain number of epochs, the training is terminated. At 
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the end of the training, performance is measured on the validation set and recorded. After all the learning 

rate schedules are used this way, the one yielding the highest performance (or the lower loss) on the 

validation set is identified as the “optimal learning rate (schedule)”. Many variations to this basic recipe 

is possible such as using more than one validation set (i.e. k-fold CV). 

In contrast to macro CV, in micro CV, there is no need to split T into two prior to training. Instead, each 

minibatch is split randomly into two at each iteration. On one half-batch, the gradient is computed and 

on the other half-batch, validation losses for different learning rates are measured. These losses are 

accumulated for an entire epoch, at the end of which, the learning rate yielding the smallest validation 

loss is chosen as the learning rate to be used for the next epoch. This way, an “optimal” learning rate is 

identified for each epoch, which effectively produces a dynamic and adaptive learning rate schedule. 

Our micro-CV based automated learning rate search method is given in Algorithm 1, which is also 

illustrated in Figure 1. 

Considering the inputs of the classical macro-CV stochastic gradient training algorithm, our micro-CV 

algorithm has an additional input parameter, λ, which weighs the importance of training and validation 

losses incurred during training. When λ is 1, only the validation loss is taken into account, and in that 

case, there is no need to execute line 14 in Algorithm 1. 

 

 

Figure 1 An overview of our micro-CV algorithm. In each training step, a training mini-batch (Batch1) and 

validation mini-batch (Batch2) are sampled from the training dataset. The gradient of the objective function with 

respect to the model parameters are computed on Batch1. This gradient is used for “validating” different learning 

rates on Batch2. 

4. Experiments 

In this section, we present our experimental results for the micro (i.e. batch-level) cross-validation 

(MCV) methods described in the previous section, and compare them to the performance of our baseline 

method. The baseline we consider is the classical macro-CV using stochastic gradient descent with 

momentum. We test whether our MCV methods that automatically select learning rates improve test set 

accuracy over the baseline. We also compare our method and the baseline in terms of time complexity. 

 

Algorithm 1 Our “micro-CV” based training algorithm. This algorithm trains a given model by using micro 

cross-validation to automate the selection of learning rate schedule. 
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Input: Training set 𝑻, initial network weights 𝜽, momentum parameter 𝜶, initial velocity 𝝑, mini-batch size 

𝒎, training-vs-validation trade-off parameter 𝝀. 

Output: Weights of trained model, 𝜽. 

 1: Initialize learning rate 𝜂 ← 0.00001 

 2: epoch ← 𝟏 

 3: while true do   

 4:     learning_rates ← [5𝜂, 2𝜂,
4

3
𝜂, 𝜂,

3

4
𝜂,

1

2
𝜂,

1

5
𝜂]    // List of learning rates to search for 

 5:     losses ← [0,0,0,0,0,0,0]       // Accumulated loss for each learning rate 

 6:     for i = 1 … |𝑇|/𝑚 do    // Loop over mini-batches 

 7:          Sample 𝐵, a mini-batch of 𝑚 examples from 𝑇 

 8:          Randomly split 𝐵 into two half-batches, 𝐵1 and 𝐵2      // 𝐵1 is for training, 𝐵2 for validation 

 9:          Compute gradient 𝑔 on 𝐵1: 𝑔 ←
1

𝑚
∇𝜃 ∑ ℒ(𝑥𝑖,𝑦𝑖)∈𝐵1

(𝑓(𝑥𝑖; 𝜃), 𝑦𝑖) 

10:         for 𝑗 = 1 … |learning_rates| do 

11:              𝛾 ← learning_rates𝑗    // 𝑗th element in learning_rates 

12:              Create a temporary model using learning rate 𝛾: 𝜃tmp ← 𝜃 + (𝛼𝜗 − 𝛾𝑔) 

13:              Compute the losses on 𝐵1 and 𝐵2 using this temporary model: 

14:              ℓ𝐵1
←

1

𝑚
∑ ℒ(𝑥𝑖,𝑦𝑖)∈𝐵1

(𝑓(𝑥𝑖; 𝜃tmp), 𝑦𝑖)   // training loss 

15:              ℓ𝐵2
←

1

𝑚
∑ ℒ(𝑥𝑖,𝑦𝑖)∈𝐵2

(𝑓(𝑥𝑖; 𝜃tmp), 𝑦𝑖)    // validation loss 

16:              losses𝑗 ← losses𝑗 + (1 − 𝜆)ℓ𝐵1
+ 𝜆ℓ𝐵2

 

17:          end for 

18:          𝜗 = 𝛼𝜗 − 𝜂𝑔 

19:          𝜃 ← 𝜃 + 𝜗 // The actual training update 

20:    end for 

21:    𝑘 ← argmin (losses) 

22:    𝜂 ← learning_rates𝑘  // Pick the best learning rate with minimal accumulated loss  

23:    overall_loss(epoch) ← losses𝑘 

24:    if no improvement in overall_loss then  

25:         stop training 

26:    end if 

27:    epoch ← epoch +1 

28: end while 

 

Using just one dataset and a neural network architecture to explore whether MCV is effective would 

give us a limited picture. In order to increase the generality of our results, in our experiments, we used 

three image classification datasets, two of them being widely used small-scale benchmark datasets 

(CIFAR-10 [25] and SVHN [26]) and one of them being a larger scale dataset for age prediction from 

face images (Adience [27]). On these datasets, we evaluated three different convolutional neural 

network (CNN) architectures: a small, custom CNN, a ResNet [18] and a VGG [28] network. 

Below we first describe the datasets (Section 4.1), the network architectures (Section 4.2) and our 

performance measures (Section 4.3). Then, we present and discuss the results of our experiments. 

4.1 Datasets: CIFAR-10, SVHN, Adience 

The CIFAR-10 [25] dataset contains 60,000 32x32 color images from 10 classes which are airplane, 

automobile, bird, cat, deer, dog, frog, horse, ship and truck. The training set contains 50,000 images and 

the remaining 10,000 images are used as testing images. 

The Street View House Numbers (SVHN) dataset [26] contains colored digits from Google Street View 

images, which are obtained from real world street house numbers. We used the cropped and centered 

version of SVHN that contains 73,257 training and 26,032 testing examples. Each image is 32x32 pixels. 

The Adience [27] dataset includes face images for the tasks of age and gender prediction. The dataset 

consists of 26,580 images from 2,284 subjects which are labeled with 8 age interval classes {(0-2, 4-6, 

8-13,15-20, 25-32,38-43,48-53,60−)}. We use the cropped and aligned images version of the dataset. 
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Provided train, test, validation sets include 11823, 4316 and 1284 images respectively. We performed 

only the age prediction task, skipping gender prediction. 

4.2 Network Architectures 

On CIFAR-10 and SVHN datasets, we used two well-known and widely used architectures: ResNet-18 

[18] and VGG-11 [28], as well as a basic and small CNN, which has only convolutional and fully 

connected layers without any regularization such as batch normalization and dropout. The small CNN 

for CIFAR-10 includes six 3x3 convolutional layers which have 48, 48, 96, 96, 192, 192 output 

channels, respectively. Convolutions are followed by three fully connected layers which have 512, 265, 

10 output channels, respectively. Rectified linear unit (ReLU) [18] is used as nonlinear activation 

function after each convolutional and fully-connected layer. For the SVHN dataset, since digit 

classification is an easier task, our small CNN architecture has four 3x3 convolutional layers which have 

32, 32, 64, 64 output channels, respectively. Convolutions are followed by 2 fully connected layers with 

512 and 10 output channels. The Adience dataset, unlike CIFAR-10 and SVHN, contains high-

resolution images and it is a relatively more challenging dataset. A large capacity neural network can 

be beneficial for this dataset’s age prediction task. For this reason, we choose to use ResNet-50 [18] 

architecture for this dataset. 

4.3 Performance Measures 

We compare the performances of baseline methods and our automated learning rate search methods in 

terms of accuracy and time. To compare accuracy, we simply use the ratio (percent) of correctly 

classified examples in the testing set. To compare time expenditure, we use two different performance 

measures: wall-clock time and theoretical computational complexity. 

The “wall-clock time” is simply the time spent running all the experiments required for training a given 

model on a given dataset from start to end. Here, by training, we mean the whole cross-validation 

process. 

The “theoretical computational complexity” refers to the number of complex operations (with large time 

expenditure), namely, the forward propagation, backward propagation and weight update operations. 

Forward operation refers to calculation of output layer’s values through passing all neurons of DNN 

with input. A single forward is required to calculate the loss incurred by the prediction of network and 

the ground-truth class. Backward operation is performing backpropagation from networks last layer to 

the first layer by applying the chain rule to calculate gradients. After the backward operation, weights 

(i.e. parameters) of network are updated with the update operation. This operation calculates the final 

parameter update inside the optimizer with gradients (e.g. momentum buffer calculation for SGD with 

momentum). In the following, we present an experiment’s theoretical complexity with two numbers: (i) 

number of total forward and backward operations, (ii) number of total update operations. 

We conducted our experiments on computers that have two Xeon Scalable 6148 2.40 GHz CPU 

processor with 16GB RAM and 4x NVIDIA Tesla V100 16GB. The models are implemented in 

PyTorch but we also used Keras with Tensorflow backend in our earlier experiments. 

4.4 CIFAR-10 Experiments 

Macro-CV. To establish the baseline results, we used the classical macro cross-validation with early 

stopping. For each architecture, we performed two sets of experiments which are summarized below. 

1. Use SGD with momentum (abbreviated as “Momentum SGD”) as the optimizer. No learning rate 

decay. Search for the best learning rate (LR) among {0.1,0.01,0.001,0.0001}. 

2. Use “Momentum SGD” as the optimizer. Use the best learning rate from the previous set. Search 

for the best learning rate decay parameter among {10−3,5 × 10−4,10−4}. We follow the standard, 

inverse-time decay rule:   
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LR ×
1

1 + decay × step
 , (6) 

 

where “decay” is the decay parameter and “step” refers to the number of learning updates on the model, 

or, simply the iteration number. 

Both sets of experiments above have a common macro-CV setup. For a given learning rate schedule 

(i.e. learning rate and learning rate decay parameter), we randomly split the training set into %80 for 

training and %20 for validation, with stratified sampling. We monitor the validation loss and use early  

Table 1 CIFAR-10 baseline macro-CV results for three different CNN architectures. Each row identifies a 

different training setup, which consists of a learning rate and a learning rate decay parameter. For each 

training setup, the training set is randomly split into 80%-20% training and validation. Early stopping with a 

patience of 20 epochs is used. Reported epoch numbers are for the epochs that yield smallest validation error. 

Optimizer is Momentum SGD. See Section 4.4 for other details.  

 LR LR Decay Epochs Test Loss Test Acc. 

S
m

al
l 

C
N

N
 

10−1 – 3 1.77 33.50 

10−2 – 6 0.72 76.37 

10−3 – 16.6 0.86 72.23 

10−4 – 80 0.97 67.21 

10−2 10−3 7.4 0.77 74.63 

10−2 5 × 10−4 6.8 0.75 75.46 

10−2 10−4 6.4 0.72 76.60 

R
es

N
et

-1
8

 

10−1 – 6.2 0.63 80.70 

10−2 – 4.4 0.63 79.30 

10−3 – 6.8 0.75 76.12 

10−4 – 13.6 0.92 68.07 

10−1 10−3 5.4 0.58 81.00 

10−1 5 × 10−4 6.4 0.60 81.50 

10−1 10−4 6.0 0.60 81.44 

V
G

G
-1

1
 

10−1 – None None 10.00 

10−2 – 9.8 0.80 75.40 

10−3 – 42.4 0.96 73.26 

10−4 – 80 1.77 31.30 

10−2 10−3 13.2 0.82 73.30 

10−2 5 × 10−4 9.8 0.78 75.72 

10−2 10−4 11 0.85 73.61 

 

 

stopping with a patience of 20 epochs. Since the %80-%20 split introduces randomness on results, we 

repeat the mentioned process for 5 times to obtain average results. These 5 runs provide us with the 

required epoch count and the best learning ratverye schedule. Then, we train the model one last time 

using these settings on the whole original training set (no splits). Finally, performance is reported on the 

testing set. 

The results of these experiments are given in Table 1 for the three architectures mentioned in Section 

4.2, namely, small CNN, ResNet-18 and VGG-11. For all three architectures, Momentum SGD with 

decay yields the best results: 76.60% for small CNN, 81.50% for ResNet-18 and 75.72% for VGG-11. 

Optimal learning rate (LR) and decay parameters are all different for different architectures: LR=10−2, 

decay=10−4 for small CNN; LR=10−1, decay=5 × 10−4 for small ResNet-18; LR=10−2, decay=5 × 10−4 for 

VGG-11. 

Micro CV. We obtained our micro-cross validation results for four different λ values (λ ∈ 

{1,0.9,0.7,0.5}). Due to the randomness introduced by splitting each mini-batch into two (train and 
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validation half-batches), we repeated each experiment 5 times and reported the average epoch count, 

test loss and accuracy, theoretical time cost and wall-clock times. Results are presented in Table 2. 

For all three architectures, macro-CV outperforms our micro-CV algorithm, in terms of test accuracy. 

However, we also observe that micro-CV performs reasonably well in a much shorter time window. For 

the small CNN, it achieves 73.59 test accuracy, which is 96% of macro-CV’s test accuracy (76.60) in 

only 23% of the time spent by macro-CV (8min 37s vs. 36min 46s). The situation is similar for the other 

two architectures: for ResNet-18, 99% of macro-CV’s test accuracy is achieved in 70% of time spent 

by macro-CV; for VGG-11, these numbers are 98% and 15%. 

 

 

Table 2 Comparison of macro-CV and micro-CV results on CIFAR-10. Small CNN, Resnet-18 and 
VGG-11 test accuracy and loss values are reported with theoretical and time costs. 

 Method Epoch Test Loss Test Acc. Theoretic Cost Time Cost 

S
m

al
l 

C
N

N
 Macro-CV baseline 6 0.72 76.60 (656K, 378K) 36min 46s 

Micro-CV (𝜆 = 1) 53.2 0.91 68.48 (285K, 228K) 22min 56s 

Micro-CV (𝜆 = 0.9) 35.6 1.03 73.59 (368K, 173K) 19min 38s 

Micro-CV (𝜆 = 0.7) 5.2 1.68 38.37 (167K, 78K) 8min 54s 

Micro-CV (𝜆 = 0.5) 4.4 1.49 45.68 (162K, 72K) 8min 37s 

R
es

N
et

-1
8

 

Macro-CV baseline 6.2 0.61 81.50 (480K, 240K) 2h 2min 

Micro-CV (𝜆 = 1) 100 0.96 65.30 (390K, 312K) 1h 40min 

Micro-CV (𝜆 = 0.9) 100 0.95 68.71 (664K, 312K) 2h 12min 

Micro-CV (𝜆 = 0.7) 55.9 1.01 75.29 (503K, 237K) 1h 41min 

Micro-CV (𝜆 = 0.5) 44.4 0.76 81.03 (427K, 201K) 1h 25min 

V
G

G
-1

1
 

Macro-CV baseline 9.8 0.80 75.72 ( 416K,208K) 1h 34min 

Micro-CV (𝜆 = 1) 70.9 1.04 63.31 (178K, 142K) 37min 7s 

Micro-CV (𝜆 = 0.9) 100 1.87 68.05 (332K, 156K) 52min 30s 

Micro-CV (𝜆 = 0.7) 26 0.89 73.91 (153K, 72K) 24min 9s 

Micro-CV (𝜆 = 0.5) 14.4 0.92 70.74 (114K, 54K) 18min 4s 
 

Table 3 SVHN baseline (macro-CV) results for three different CNN architectures. Each row identifies a 

different training setup, which consists of a learning rate and learning rate decay parameter. For each training 

setup, the training set is randomly split into 80%-20% training and validation. Early stopping with a patience 

of 20 epochs is used. Reported epoch numbers are for the epochs that yield smallest validation error. 

Optimizer is Momentum SGD. See Section 4.4 for other details.  

 LR LR Decay Epochs Test Loss Test Acc. 

S
m

al
l 

C
N

N
 

10−1 – 5 0.55 84.75 

10−2 – 6 0.36 90.16 

10−3 – 16.8 0.46 87.79 

10−4 – 30 0.97 77.84 

10−2 10−3 5.6 0.39 89.16 

10−2 5 × 10−4 5 0.37 89.56 

10−2 10−4 4.5 0.36 89.66 

R
es

N
et

-1
8

 10−1 – 4.2 0.21 94.17 

10−2 – 3.4 0.22 93.69 

10−3 – 6 0.26 92.50 

10−4 – 23.6 0.30 91.02 

10−1 10−3 3.8 0.20 94.25 
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4.5 SVHN Experiments 

We apply the experimental configuration of CIFAR-10 on the SVHN dataset. The only difference is in 

the architecture of the “small CNN”, which is described in Section 4.2.  

Baseline macro-CV results are presented in Table 3. Micro-CV results are presented in Table 4. The 

summary of results is similar with that of CIFAR-10. In terms of test accuracy, macro-CV outperforms 

micro-CV, however, when time cost and test accuracy are considered together, micro-CV achieves a 

high relative test-accuracy with lower time cost. For the small CNN, micro-CV achieves 89.55% test 

accuracy, which is 99% of macro-CV’s test accuracy (90.16%) in only 21% of the time spent by macro-

CV (87min 47s vs. 36min 30s). Similarly, for ResNet-18, micro-CV achieves 98% relative accuracy 

with 45% relative time cost; for VGG-11, these numbers are 93% and 61%. 

 

Table 4 Comparison of macro-CV and micro-CV results on SVHN. Small CNN, Resnet-18 and VGG-11 test 

accuracy and loss values are reported with theoretical and time costs. 

 Method Epoch Test Loss Test Acc. Theoretic Cost Time Cost 

S
m

al
l 

C
N

N
 Macro-CV baseline 4.8 0.36 90.16 (440K, 220K) 36min 30s 

Micro-CV 𝜆 = 1 27.8 0.37 89.55 (137K, 109K) 14min 25s 

Micro-CV 𝜆 = 0.9 33.4 0.62 89.15 (260K, 122K) 17min 37s 

Micro-CV 𝜆 = 0.7 6 0.55 83.30 (126K, 60K) 8min 35s 

Micro-CV 𝜆 = 0.5 3.6 1.20 58.85 (115K, 54K) 7min 47s 

R
es

N
et

-1
8

 Macro-CV baseline 3.2 0.20 94.30 (388K, 194K) 2h 47 min 

Micro-CV 𝜆 = 1 80.5 0.40 88.53 (286K, 229K) 2h 2 min 

Micro-CV 𝜆 = 0.9 92.6 0.31 91.45 (496K, 229K) 2h 53 min 

Micro-CV 𝜆 = 0.7 66.25 0.38 93.78 (420K, 197K) 2h 29min 

Micro-CV 𝜆 = 0.5 23.4 0.27 92.73 (211K, 99K) 1h 15min 

V
G

G
-1

1
 

Macro-CV baseline 9.8 0.30 92.53 (436K, 218K) 1h 37min 

Micro-CV 𝜆 = 1 100 0.45 86.25 (286K, 229K) 59min 55s 

Micro-CV 𝜆 = 0.9 13.7 1.46 48.70 (163K, 77K) 25min 54s 

Micro-CV 𝜆 = 0.7 3.4 2.05 26.30 (114K, 54K) 17min 59s 

Micro-CV 𝜆 = 0.5 2 2.23 19.60 (107K, 50K) 16min 54s 
 

10−1 5 × 10−4 3.2 0.20 94.30 

10−1 10−4 3.8 0.21 94.01 

V
G

G
-1

1
 

10−1 – None None None 

10−2 – 8 0.27 92.30 

10−3 – 37.8 0.26 90.34 

10−2 10−3 15.8 0.32 91.32 

10−2 5 × 10−4 8.6 0.30 91.94 

10−2 10−4  9.4 0.30 92.53 
 

 

Table 5 Adience average baseline results on ResNet-50. Experiments with average epoch count, test accuracy 

and test loss are reported. They are conducted to obtain learning rate and learning rate decay setting that gives 

best accuracy result. Each setting of learning rate and learning rate decay is repeated 5 times. 

LR LR Decay Epochs Test Loss Test Acc. 

10−1 – 26.6 1.47 50.12 

10−2 – 12.8 1.65 48.64 

10−3 – 16.4 1.68 44.81 

10−4 – 77 1.71 42.61 
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4.6 Adience Experiments 

Compared to CIFAR-10 and SHVN, the Adience dataset contains higher resolution images. Therefore, 

on this dataset, we use a larger network, namely, ResNet-50. 

Train and test experiment configuration is the same as that of CIFAR-10. One difference here is that 

experiments are repeated only 3 times, instead of 5. Another difference is in the selection of the 

validation set for the macro-CV experiments. Since train, test and validation sets are provided in the 

dataset, we used the provided validation set in all experiments instead of random validation set for each 

experiment. Baseline macro-CV results are presented in Table 5. And, the micro-CV results are 

presented in Table 6. 

5. Conclusion 

In this paper, we propose a minibatch-level (i.e. micro) cross-validation algorithm that can dynamically 

and adaptively choose the learning rate at each training epoch. As an alternative to the dataset-level, 

macro approach to cross-validation, in micro-CV, the randomly sampled minibatch is randomly split 

into training and validation halfbatches. The gradient vector computed on the training half-batch is re-

used to evaluate several different learning rates (i.e. step sizes) on the validation half-batch. Using 

stochastic gradient descent with momentum as the optimizer, experiments on three different datasets 

with three different neural network architectures show the potential of our micro-CV training algorithm.  

On CIFAR-10 and SVHN, micro-CV achieves a slightly lower test accuracy and macro-CV, however, 

it spends a much lower computational budget and time. For example, on CIFAR-10 using a ResNet-18 

network, while macro-CV achives 81.50% test accuracy in 2 hours 2 minutes, micro-CV achieves 

81.03% in 1 hour 25 minutes. On SVHN, with the same architecture, macro-CV yields 94.30% accuracy 

in 2 hours 47 minutes, micro-CV yields 92.73% in 1 hour 15 minutes. Finally, on the relatively much 

larger and more realistic Adience dataset, our micro-CV algorithm outperforms macro-CV with a drastic 

reduction in total training time; macro-CV: 51.02% test accuracy in 26 hours 16 minutes, micro-CV : 

52.50% test accuracy in 3 hours 54 minutes. These results show the promising potential of our micro-

CV algorithm. Futher research is required to comprehensively compare micro-CV to adaptive learning 

rate methods such as Adam, AdaGrad and Rmsprob. 
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10−1 10−2 139.5 1.44 48.64 

10−1 10−3 45.6 1.46 49.53 

10−1 5 × 10−4 65.4 1.54 45.86 

10−1 10−4 24.4 1.37 51.02 
 

Table 6 Adience average adaptive learning rate search using MCV results on ResNet-50. Experiments with 

average epoch count, test accuracy and test loss, theoretical and wall clock time cost are reported. 

Method Epoch Test Loss Test Acc. Theoretic Cost Time Cost 

Macro-CV baseline 24.4 1.37 51.02 ( 522K, 261K) 26h 16min 

Micro-CV 𝜆 = 1 75.6 1.80 39.11 ( 176K, 141K) 3h 38min 

Micro-CV 𝜆 = 0.9 96.7 1.63 46.75 (314K, 148K) 4h 13min 

Micro-CV 𝜆 = 0.7 81.6 2.14 48.20 (314K, 148K) 4h 13min 

Micro-CV 𝜆 = 0.5 72.6 2.28 52.50 (291K, 137K) 3h 54min 
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