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Abstract 

Recommender systems offer tailored recommendations by employing various algorithms, and collaborative 

filtering is one of the well-known and commonly used of those. A traditional collaborative filtering system allows 

users to rate on a single criterion. However, a single criterion may be insufficient to indicate preferences in domains 

such as restaurants, movies, or tourism.  Multi-criteria collaborative filtering provides a multi-dimensional rating 

option. In similarity-based multi-criteria collaborative filtering schemes, existing similarity methods utilize co-

users or co-items regardless of how many there are. However, a high correlation with a few co-ratings does not 

always provide a reliable neighborhood. Therefore, it is very common, in both single- and multi-criteria 

collaborative filtering, to weight similarities with functions utilizing the number of co-ratings. Since multi-criteria 

collaborative filtering is yet growing, it lacks a comprehensive view of the effects of similarity weighting. This 

work studies multi-criteria collaborative filtering and the literature of binary vector similarities, which are 

frequently used for weighting, by giving a related taxonomy and conducts extensive experiments to analyze the 

effects of weighting similarities on item- and user-based multi-criteria collaborative filtering. Experimental 

findings suggest that prediction accuracy of item-based multi-criteria collaborative filtering can be boosted by 

especially binary vector similarity measures which do not consider mutual absences. 

Keywords: multi-criteria, collaborative filtering, similarity-weighting, binary vector similarity 

1. Introduction 

The number of people who have access to the Internet has been rapidly increasing. In parallel, e-

commerce companies are increasing both in number and size. At this point, online companies like 

Amazon and Netflix utilize personalized recommendations to offer the right products to their customers. 

Recommender systems help companies understand their customers’ tastes. By doing so, a customer 

might be interested in items otherwise he is not aware of. The first example of such a system was 

Tapestry [1], which was an experimental email filtering system at Xerox. Usually, recommender 

systems can be broadly categorized into collaborative filtering (CF), content-based filtering (CB), and 

hybrid approaches. 

As the name suggests, CF systems require collaboration from their users [1], [2] to perform their tasks. 

Clearly, CF systems require user feedback. The feedback can be explicit or implicit. Explicit feedback 

is the ones that the users supply by casting their ratings. On the other hand, the CF system might utilize 

some implicit feedback such as browsing, click, or purchase history [3]. CF systems contain two 

approaches which can be either model or memory-based. Model-based approaches build a model and 

produce recommendations or predictions based on the model. On the other hand, memory-based 

approaches re-run the whole procedure to produce an output for the recommendation. The general idea 

in CF is that users who have similar preferences in the past will probably have similar preferences in 

the future as well. Therefore, memory-based CF approaches determine a set of neighbors for an active 

user. An active user is the one who is looking for a prediction or recommendation. The k nearest neighbor 

algorithm is the most dominant and widely used algorithm to select neighbors in user-based and item-

based CF [4]. Although CF systems are widespread, they might suffer from data sparsity and cold start 

problems [5]. A cold start problem occurs when a new item or user is introduced into the system. Since 

there are not enough ratings for them, the CF system cannot produce a recommendation. CB utilizes 

contextual information of the items. Unlike CF, CB does not rely on different user feedbacks. Instead, 
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it essentially analyzes the content of the items rated by the active user and recommends similar items 

based on item contents. Such content can be described as a synopsis or actors for a movie-related 

domain. CB systems can be useful to avoid cold start problems for new items; however, the disadvantage 

is that it often produces obvious recommendations [6]. Hybrid approaches combine CF and CB to take 

advantage of them. 

CF systems usually operate on n × m matrix, where n is the number of users while m is the number of 

items. Users rate items on a binary, interval, ordinal, or continuous scale [6]. In traditional CF systems, 

users express their preferences based on a single criterion. For example, a movie recommendation 

system collects the general preferences of the users about the movie. However, a movie evaluation might 

include several dimensions such as cast, story, direction, or action. Therefore, integrating multiple 

criteria might be useful to characterize items better. Adomavicius and Kwon [7] propose 

recommendation techniques for multi-criteria CF (MCCF) systems. Their seminal paper was the first to 

introduce the concept of MCCF and to propose two methods called similarity-based and aggregation 

function-based. In the similarity-based approach, the similarity values between users or items are 

calculated for each criterion using any existing similarity measures and then the overall similarity is 

calculated by averaging or selecting the smallest one. In the second method, the aggregation function-

based approach, a relationship between the overall rating and sub-criteria ratings is extracted by utilizing 

an aggregation function.  Since it is important to find an appropriate aggregation function, domain 

expertise, statistical techniques, and machine learning methods can be used.  

Herlocker et al. [8] study the effectiveness of significance or similarity weighting in single criterion CF. 

The idea is that an active user might be highly correlated with some users on a small number of co-rated 

items. For example, two users might be perfectly correlated based on a single item and such correlation 

is stronger than a correlation of 0.9 over hundred co-rated items. Therefore, the authors [8] argue that 

the correlation between users can be adjusted by introducing significant weighting. In their original 

method, they use a threshold-based significance weighting factor. Although single criteria CF schemes 

have long been utilizing similarity weighting [9]-[12], two recent studies [13], [14] employ similarity 

weighting in MCCF. Scholars [13] improve the prediction performance of item-based MMCF. Yalcin 

and Bilge [14] propose a binary MCCF method and they apply binary similarity weighting to calculate 

the correlation between users. It is clear that MCCF literature lacks a systematic view of the effects of 

similarity weighting on the prediction performance.  

In this study, we present a comprehensive study of the effects of binary vector similarity weighting on 

both item- and user-based MCCF. Binary vector similarity is used as a weighting factor in addition to 

the existing similarity measures to improve the prediction performance of MCCF. Considering the 

structure of the existing similarity measures in similarity-based approaches, similarities are only 

calculated based on co-rated users or items. Then, nearest neighbors are selected based on these 

calculated similarity values. On the other hand, higher similarity values may not always indicate a better 

correlation between users or items because these metrics do not consider how many co-rated items exist 

between two users or vice versa. In item- or user-based schemes, it is sufficient to have a single common 

item/user to calculate a similarity score between two users or items. In a user-based perspective, a user 

vector consists of item ratings while, in an item-based perspective, an item vector consists of users’ 

ratings on the related item.  At this point, binary vector representation of the rating vectors can reveal 

which items/users are rated by encoding rated items by 1 and unrated items by 0. Then, binary vector 

representations of two users’ or items’ vectors might be exploited in the similarity calculations since 

they inform the mutual and non-mutual presences as well as mutual and non-mutual absences of the 

ratings. Utilizing binary vectors similarities as weighting factors in addition to the existing methods is a 

solution to overcome the shortcoming of the limited number of co-ratings. This study presents extensive 

literature on binary vector similarity measures and their effect on similarity weighting in MCCF 

schemes. Besides, this work can serve as a reference point for future researchers to understand the 

contribution of binary vector similarity weighting on MCCF prediction accuracy.   

The rest of the paper is organized as follows. In Section 2, the related work is given briefly. Section 3 

represents detailed information about CF and MCCF. In Section 4, we give a review of binary vector 

similarity literature and related taxonomy. Then, we discuss how to apply binary vector similarities to 
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weight MCCF similarities. We experimentally show in Section 5 how binary similarity weighting affects 

the general prediction performance of user-based and item-based MCCF. Section 6 gives the discussion. 

The final section represents our conclusions.  

2. Related Work 

The implementation of multi-criteria recommendation systems dates to the early 2000s. First, Plantié, 

Montmain, and Dray [15] suggest using a decision support system that combines text mining techniques 

with multi-criteria analysis techniques to develop movie-based recommendation systems. Adomavicius 

and Kwon [7] state that using multi-criteria recommendation systems instead of traditional 

recommendation systems increase the likelihood that the correlations calculated between users. 

Researchers argue that rating items with more criteria, such as visual effects or scenario in a movie 

dataset, rather than giving a single rating about the items may also increase the accuracy of the 

recommendation. They show how traditional memory-based CF algorithms can be adapted to MCCF 

systems. First, researchers produce recommendations using traditional similarity-based approaches. 

While calculating the similarities between users, the system calculates the similarity value separately 

for each criterion as in the traditional similarity-based approach. Then, the average or smallest value of 

all criteria can be selected as a final similarity. They also show that similarity calculations can be made 

using multidimensional distance metrics. With this approach, it has been shown that only the traditional 

similarity calculation process has changed, the rest of the process will remain the same as in traditional 

CF algorithms to provide predictions. Researchers also mention that all other methods used in single-

criteria or traditional recommendation systems can also be adapted to multi-criteria systems beside 

memory-based collaborative filtering algorithms. Bilge and Kaleli [16] propose a framework that adapts 

the work proposed by Adomavicius and Kwon [7] to multi-criteria item-based CF systems. The study 

shows that the performance of item-based multi-criteria systems is better than traditional item-based CF 

systems.  

In memory-based CF algorithms, the number of items commonly rated among users is an important 

factor. Considering the nature of recommender systems, most items are not rated, and this situation 

causes similarity calculations to be made on a very small number of co-rated items when calculating a 

similarity value between two users. The similarity value calculated over a few common items may not 

reflect the actual correlation. Therefore, Herlocker et al. [8] propose to use a weighting method in 

traditional recommender systems while calculating the similarity between users. In the proposed method 

called significance-weighting, a threshold value is defined, and if the number of items voted commonly 

by two users is less than this value, the similarity is multiplied by the calculated weighting, thus the 

similarity between the two users is reduced to a certain extent. The goal is to obtain a more reliable 

similarity between two users. The more commonly rated items between two users, the more trust these 

two users have. Ma, King, and Lyu [9] modify the work proposed by Herlocker et al. [8] and apply the 

modified algorithm when calculating similarity both between users and items. Polatidis and Georgiadis 

[10] propose a new similarity calculation process inspired by the work [8] and divide the similarity 

process into multiple levels. If the conditions specified at each level are fulfilled, a value determined by 

the researchers is added to the calculated similarity. The aim of the researchers is to increase the 

similarity values of these users as more items are rated in common. In another study of the researchers, 

a dynamic multi-level CF system is also proposed [11]. If the criteria specified in the study are met, the 

correlation is affected positively by adding different numbers to the similarity calculation for different 

levels. On the other hand, if no criteria are met, the similarity is multiplied by the specified value and 

the similarity is devalued. Candillier, Meyer, and Fessant [12] suggest using the Jaccard similarity as a 

weighting method by multiplying it with the existing similarity methods for CF systems. The study 

shows that the proposed method gives better results than traditional methods. Shambour and Lu [17] 

propose to use the Jaccard similarity as a weighting method in item-based MCCF. First, adjusted cosine 

similarity (ACS) is used to calculate the similarity between items for each criterion. Then, the final 

similarity is calculated using the weighted average method as in the traditional multi-criteria algorithms. 

Researchers propose a new similarity calculation that multiplies the final calculated similarity value 

with Jaccard. Shambour, Hourani, and Fraihat [18] propose to apply the Dice metric as a weighting 
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method for multi-criteria item-based CF. Dice metric calculates a similarity between two items based 

on common users, such as Jaccard similarity. Euclidean distance is used while calculating the 

similarities between items for each criterion. Since the distance metric is selected to calculate similarity 

values, the similarity with the lowest value is chosen as the final similarity. Researchers propose a new 

similarity calculation process that multiplies the Dice metric with the final similarity in item-based 

MCCF systems. In a similar study to the last two, it is proposed for user-based MCCF systems [19]. The 

researchers integrate the Dice metric into ACS as a weighting method as in previous studies. Sadikoglu 

and Demirelli Okkalioglu [13] propose to apply Jaccard similarity and significance-weighting as 

weighting methods to improve the existing similarity calculation process in similarity-based approaches 

in item-based MCCF.  The proposed two weighting methods are multiplied by Pearson Correlation 

Coefficient (PCC) and ACS for each criterion. The final similarity value is obtained by either the 

weighted average method or the minimum method. Researchers show that the proposed methods 

improve the accuracy and coverage of predictions compared to the traditional methods. Yalcin and Bilge 

[14] propose a binary MCCF method and they apply binary similarity weighting to calculate the 

correlation between users. Table 1 displays list of MMCF work that utilize similarity weighting for 

comparison purposes. 

Table 1 Comparison of the existing work 

These studies state that high correlation values may not always ensure the best neighbors in similarity-

based approaches. As the number of co-users or co-items increases, the correlation calculated between 

them is more reliable. Therefore, different weighting methods are proposed to change the neighbor 

selection process and to improve the prediction performance. Unlike the works presented here, we 

investigate the binary vector similarity literature and utilize a variety of binary similarity measures as 

weighting factors in the MCCF similarity calculation process. Thus, our work presents an enhanced 

view of the effects of binary vector similarities on the prediction accuracy of MCCF schemes. 

3. Multi-Criteria Collaborative Filtering 

Before introducing MCCF, brief information about a traditional CF is given. The best-known CF 

algorithm is the memory-based or neighborhood-based algorithm. The memory-based algorithms are 

also divided into two classes: user-based and item-based.  The underlying approach of user-based is to 

find like-minded users when an active user (a) asks for a prediction for a target item (q). Equation 1 

shows a formula how to calculate a prediction after users are selected as nearest neighbors for a. 

𝒑𝒓𝒆𝒅(𝒂, 𝒒) = �̅�𝒂 + 
∑ (𝒓𝒖,𝒒 − �̅�𝒖)𝒌

𝒖=𝟏 𝒔𝒊𝒎(𝒂, 𝒖)

∑ 𝒔𝒊𝒎(𝒂, 𝒖)𝒌
𝒖=𝟏

 (1) 

where k is k-nearest-neighbors of a. �̅�𝒂 and �̅�𝒖 are mean ratings for user a and user u, respectively. 𝒓𝒖,𝒒 

is the rating of user u on item q and 𝑠𝑖𝑚(𝑎, 𝑢) illustrates the similarity value between user a and user u. 

The similarity between users is crucial in CF. There are different methods used in the literature. One of 

the most popular similarity methods is Pearson Correlation Coefficient (PCC) [20]. PCC calculates 

similarities in the range [-1, 1], where 1 depicts the highest correlation whereas -1 illustrates the worst 

correlation between two users. Equation 2 shows how to apply PCC between two users, a and u: 

References Data Type Scheme Similarity Weighting 

Shambour and Lu [17] Numeric Item-based Jaccard 

Shambour, Hourani, and Fraihat 

[18] 
Numeric Item-based Dice 

Shambour [19] Numeric User-based Dice 

Sadikoglu and Demirelli 

Okkalioglu [13] 
Numeric Item-based 

Jaccard and Significance-

weighting 

Yalcin and Bilge [14] Binary 
User-based, Item-

based 

Jaccard, Czekanowski, 

Simpson, Kulczynski, and 

Johnson 
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𝑠𝑖𝑚(𝒂, 𝒖) =  
∑ (𝒓𝒂,𝒑 −  �̅�𝒂)(𝒓𝒖,𝒑 − �̅�𝒖)𝒑∈𝑷

√∑ (𝒓𝒂,𝒑 −  �̅�𝒂)
𝟐

𝒑∈𝑷 √∑ (𝒓𝒖,𝒑 −  �̅�𝒖)
𝟐

𝒑∈𝑷

 
(2) 

where P demonstrates the set of items rated both an active user, a, and a user, u, 𝒓𝒂,𝒑 and 𝒓𝒖,𝒑 represent 

ratings for item p rated by a and u, respectively. �̅�𝒂 and �̅�𝒖 are the mean of P items’ ratings of a and u. 

Whereas user-based algorithms produce a prediction by utilizing user similarities, item-based algorithms 

generate a prediction based on similarities between items. In this case, an active user (a) asks for a 

prediction for a target item (q) as in user-based algorithms. The algorithm finds similarities between the 

target item and other items and k items are selected as the best neighbors. The prediction formula is 

given in Equation 3.    

𝒑𝒓𝒆𝒅(𝒂, 𝒒)  =  
∑ 𝒔𝒊𝒎(𝒊, 𝒒) × 𝒓𝒂,𝒊𝒊∈𝒓𝒂𝒕𝒆𝒅𝑰𝒕𝒆𝒎(𝒂)

∑ 𝒔𝒊𝒎(𝒊, 𝒒)𝒊∈𝒓𝒂𝒕𝒆𝒅𝑰𝒕𝒆𝒎(𝒂)

 (3) 

Where 𝑠𝑖𝑚(𝑖, 𝑞) shows the similarity value between item i and item q, 𝑟𝑎,𝑖 represents the rating value 

given by user a to item i. Recall that among the selected neighboring items, the items rated by the user 

a are included in this calculation. 

ACS is the common similarity method when calculating similarities between items [21]. The similarity 

value between two items in ACS is also in the range of [-1, 1] as in PCC. ACS performs the similarity 

calculation between item i and q using Equation 4.    

𝒔𝒊𝒎(𝒊, 𝒒)  =  
∑ (𝑹𝒖,𝒊 − 𝑹𝒖)(𝑹𝒖,𝒒 − 𝑹𝒖)𝒖∈𝑼

√∑ (𝑹𝒖,𝒊 − 𝑹𝒖)𝒖∈𝑼

𝟐
√∑ (𝑹𝒖,𝒒 − 𝑹𝒖)𝒖∈𝑼

𝟐
 

(4) 

In Equation 4, U indicates common users who rated item i and item q. 𝑅𝑢,𝑖 and 𝑅𝑢,𝑞 show the rating 

given by user u to items i and item q, respectively. 𝑅𝑢 represents the average of ratings of user u. 

In addition, PCC and ACS are the best-known similarity methods in CF. Therefore, these methods are 

widely used in both user-based and item-based algorithms. Equation 2 represents user-based similarity 

calculation; however, the formula can easily be converted into an item-based one. Likewise, Equation 4 

shows item-based ACS, but it can be modified to user-based ACS. Since corresponding item- or user-

based formulas are trivial, these formulas are briefly presented here. 

A traditional CF system performs similarity calculations over a single criterion. Users send overall 

ratings about items and a prediction is produced using a single rating. On the other hand, researchers 

put forward an idea that multi-criteria systems could better reflect the characteristics of the users instead 

of a single rating-based system. Multi-criteria systems allow users to rate more than one criterion 

separately. Users reflect their personal preferences better due to the multi-criteria system. A rating 

function R in a multi-criteria CF is represented as follows: 

𝑹: 𝒖𝒔𝒆𝒓𝒔 ×  𝒊𝒕𝒆𝒎𝒔 →  𝑹𝟎 ×  𝑹𝟏  ×  … × 𝑹𝒌 (5) 

where 𝑅0 shows overall ratings that users rate items and 𝑅𝑗 represents that users rate items for jth criteria 

where j = 1,2, …, k. k is the number of criteria. 

In multi-criteria CF, Adomavicius and Known [7] propose similarity-based and aggregation function-

based approaches to provide predictions. In this study, similarity-based approaches are applied. In this 

approach, similarity values between users/items are calculated using any existing similarity measures 

for each criterion separately as in traditional CF. Then, it is required to aggregate individual similarities 

to obtain an overall similarity. Adomavicius and Known [7] introduce two methods that aggregate 

individual similarities: average and worst-case similarity. In the average similarity approach as seen in 

Equation 6, the similarities of all individual criteria are averaged to get an overall similarity.  In Equation 

6, k defines the number of criteria, 𝑠𝑖𝑚𝑐(𝑖, 𝑗) shows the similarity between item i and item j for criterion 

c. 
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𝒔𝒊𝒎𝒂𝒗𝒈(𝒊, 𝒋)  =  
∑ 𝒔𝒊𝒎𝒄(𝒊, 𝒋)𝒌

𝒄=𝟎

𝒌 + 𝟏
 (6) 

The second aggregation approach is called the worst-case or minimum similarity. The main purpose is 

to select minimum similarity as a final similarity among all individual criteria. The final similarity is 

estimated as seen in Equation 7.  

𝒔𝒊𝒎𝒎𝒊𝒏(𝒊, 𝒋)  =  𝒎𝒊𝒏
𝒄=𝟎,𝟏,…,𝒌

𝒔𝒊𝒎𝒄(𝒊, 𝒋)  (7) 

Although Equation 6 and Equation 7 show how to calculate the overall similarity in item-based MCCF 

algorithms, user-based MCCF can be applied similarly [7].   

4. Weighting Similarities in Multi-Criteria Collaborative Filtering 

4.1 Binary Vector Representations and Similarities 

In this section, our motivation is to present binary similarity measures to use them as weighting factors 

in the neighborhood selection. Since rating vectors are generally very sparse [22] in CF, similarity 

calculations can be boosted if weighting factors are utilized [23], [24]. PCC, ACS, or other similarity 

measures are applied over co-rated numeric items. Herlocker et al.  [8] argue that the number of co-rated 

items can contribute to the similarity score as a weighting factor because the similarity between two 

vectors might have been calculated over few items. For example, the same similarity score, say 1.0 

(perfect), may not indicate the same degree of similarity for vectors, which have few versus many co-

rated elements.  Therefore, weighting similarity scores is used in CF literature [8], [13], [14], [17]-[19], 

[23], [24] in the neighborhood selection. 

A weighting factor can be calculated over binary representations of vectors. Assume that the rating range 

is a set of discrete numeric values, say 𝑅 = {0, 1, 2, 3, 4, 5}, where 0 means unrated. For an item-based 

MCCF, an item vector for a criterion can be defined as 𝑖𝑡𝑒𝑚𝑗 = {𝑟1, 𝑟2, … , 𝑟𝑛−1, 𝑟𝑛}, where j is the item 

id and 𝑟𝑖 ∈ 𝑅, ∀𝑖 ∈ {1, 2, … , 𝑛}. Such a vector can be also expressed in a binary form where each 𝑟𝑖 is 

replaced either 1 if 𝑟𝑖 ≠ 0, or 0 otherwise. In binary vector format, 1s represent the presence while 0s 

represent the absence. For example, a rating vector of 𝑖𝑡𝑒𝑚1 = {1, 2, 3, 0, 0, 4, 5, 0, 0, 0, 2, 0} can be 

transformed into a binary vector, 𝑖𝑡𝑒𝑚1 = {1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0}. These binary vectors are also 

called binary basket data in the data mining literature [25]. 

While calculating the similarities of binary vectors, corresponding absence and presence become crucial. 

Table 2 displays how absence and presence value will be represented for two vectors, say 𝑣1 and 𝑣2. 𝑎 

is |𝑣1 ⋅ 𝑣2|1, which is the number of 1s after the dot product. In other words, 𝑎 represents the number of 

common elements that both 𝑣1 and 𝑣2 have 1, which is the mutual presence. 𝑏 is |𝑣1 ⋅ 𝑣2|1, which is the 

number of elements that is present in 𝑣1 but absent in 𝑣2. 𝑐 is |𝑣1 ⋅ 𝑣2|1, which is the number of elements 

that is absent in 𝑣1 but present in 𝑣2. 𝑏 +  𝑐 can be called the non-mutual presence. 𝑑 is |𝑣1 ⋅ 𝑣2|1 is the 

number of elements that are absent in both 𝑣1 and 𝑣2, which is the mutual absence. Obviously, |𝑣1 ⋅
𝑣1|1 = 𝑎 + 𝑏, |𝑣2 ⋅ 𝑣2|1 = 𝑎 + 𝑐, and 𝑎 +  𝑏 +  𝑐 +  𝑑 is the number of features. In our case with 

item-item similarities, the number of features will be 𝑛, which is the number of users. 

Table 2 Notation for binary vector similarities 

 

Based on the notation in Table 2, many variations of binary vector similarities can be calculated. Table 

3 lists 21 different measures including similarities and distances. The use of 𝑑 is controversial [26], [27] 

while some measures do not include it some others include. Because the number of attributes that are 

absent in both vectors is very dominant, 𝑑 might be omitted. This is true in CF, as well. These similarity 

and distance measures can be broadly categorized into two, ones ignoring 𝑑 and ones considering 𝑑 

 𝒗𝟐 

𝒗𝟏 Presence (1) Absence (0) 

Presence (1) 𝑎 𝑏 

Absence (0) 𝑐 𝑑 

  𝒏 =  𝒂 + 𝒃 + 𝒄 + 𝒅 
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[27], [28]. In addition, binary similarity functions that consider 𝑑 in the calculation can be further 

classified as the ones treating both 𝑎 and 𝑑 equally or unequally [27]. 

Table 3 Binary similarity and distance measures  

Similarity measures that ignore 𝑑 are generally useful for asymmetric binary vectors, where the presence 

is more important than absence, such as market basket data in the data mining literature. There might 

be many items that can go into a market basket; however, any two customers can have a very limited 

number of common items in their baskets. Therefore, calculating a similarity using 𝑑 either in the 

numerator or denominator part of the equation devalues the mutual presence, which is 𝑎. The examples 

of such similarity measures that do not utilize 𝑑 in Table 3 start from Jaccard until Ochiai. Jaccard is 

the ratio of dot products of two vectors in consideration over the union of presences (mutual presence 

plus non-mutual presence). The Jaccard measure does not prioritize mutual presence over non-mutual 

presences. However, Dice and 3w-Jaccard weigh the mutual-presence (𝑎) by two and three, respectively. 

On the contrary, Sokal-Sneath-I imposes a penalty for non-mutual presence by a factor of two. Simpson 

and Braun measures are the ratio of mutual presence to the minimum and maximum non-mutual 

presence, respectively. Johnson, on the other hand, utilizes both. Kulcznyski-I measure is the ratio of 

 Measure Equation Range Ref 

Similarity 

measures 

ignoring 𝑑 

Jaccard 
𝑎

𝑎 + 𝑏 + 𝑐
 [0, 1] [26], [27] 

Dice 
2 × 𝑎

2 × 𝑎 + 𝑏 + 𝑐
 [0, 1] [26], [27] 

3W-Jaccard 
3 × 𝑎

3 × 𝑎 + 𝑏 + 𝑐
 [0, 1] [26], [27] 

Sokal-Sneath-I 
𝑎

𝑎 + 2 × 𝑏 + 2 × 𝑐
 [0, 1] [26], [27] 

Simpson 𝑎

𝑚𝑖𝑛(𝑎 + 𝑏, 𝑎 + 𝑐)
 [0, 1] [26], [27] 

Braun 𝑎

𝑚𝑎𝑥(𝑎 + 𝑏, 𝑎 + 𝑐)
 [0, 1] [26], [27] 

Johnson 𝑎

𝑎 + 𝑏
+

𝑎

𝑎 + 𝑐
 [0, 2] [26], [27] 

Kulczynski-I 𝑎

𝑏 + 𝑐
 [0, ∞) [26], [27] 

Sorgenfrei (𝑎 × 𝑎)

(𝑎 + 𝑏) × (𝑎 + 𝑐)
 [0, 1] [26], [27] 

Ochiai 𝑎

√(𝑎 + 𝑏)(𝑎 + 𝑐)
 [0, 1] [26], [27] 

Similarity 

measures 

considering 𝑑 

Russel-Rao 𝑎

𝑎 + 𝑏 + 𝑐 + 𝑑
 [0, 1] [26], [27] 

Sokal-Michener 𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 [0, 1] [26], [27] 

Sokal-Sneath-2 2 × (𝑎 + 𝑑)

2 × 𝑎 + 𝑏 + 𝑐 + 2 × 𝑑
 [0, 1] [26], [27] 

Roger-Tanimoto 𝑎 + 𝑑

𝑎 + 2 × (𝑏 + 𝑐) + 𝑑
 [0, 1] [26], [27] 

Gower-Legendre 𝑎 + 𝑑

𝑎 + 0.5 × (𝑏 + 𝑐) + 𝑑
 [0, 1] [26], [27] 

Faith 
𝑎 + 0.5 × 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
 [0, 1] [26], [27] 

Distances 

ignoring 𝑑 

Squared-Euclid √𝑏 + 𝑐
2
 [0, ∞) [26], [27] 

Manhattan 𝑏 + 𝑐 [0, ∞) [26], [27] 

Distances 

considering 𝑑 

Mean- Manhattan 
𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑
 [0, 1] [26], [27] 

Size-Difference 
(𝑏 + 𝑐)2

(𝑎 + 𝑏 + 𝑐 + 𝑑)2
 [0, 1] [26], [27] 

Shape-Difference 
𝑛 × (𝑏 + 𝑐) − (𝑏 − 𝑐)2

(𝑎 + 𝑏 + 𝑐 + 𝑑)2
 [0, 1] [26], [27] 
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mutual presence over non-mutual presence. In terms of set theory, it is the cardinality of the intersection 

over the sum of the cardinalities of relative differences. However, such a measure as Kulcznyski range 

between 0 and ∞. To avoid it, we use the updated Kulcznyski formula [28]. Sorgenfrei and Ochiai 

measures are similar, where Ochiai is the extension of Cosine similarity when vectors are binary. 

Sorgenfrei, on the other hand, is the square of Ochiai measure. 

Another group of measures utilizes 𝑑 in a very similar nature. Russel-Rao is similar to Jaccard; however, 

it measures mutual presences over all elements. Sokal-Michener does not weigh any of 𝑎, 𝑏, 𝑐, 𝑑 while 

Sokal-Sneath-2, Roger-Tanimoto, Faith, and Gower-Legendre utilize weighting on some of them. 

Distance measures need to be transformed into similarities. Squared-Euclid and Manhattan value can 

range between 0 and ∞; therefore, we converted them to 1/(1 + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒), where distance is either 

Squared-Euclid or Manhattan score. Likewise, the rest of the distance metrics are converted into (1 −
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) because their range is between 0 and 1.  

4.2 Weighting Similarities in Multi-Criteria Collaborative Filtering by Binary Vector Similarity 

Measures 

As introduced, PCC and ACS are the most prevalent techniques to calculate similarities in item- and 

user-based MCCF. Considering the item-based MCCF for brevity, both methods compute the item-item 

similarities based on users who rate the related items. Assume that we need to calculate item1’s similarity 

to item2 and item3 and the number of common users who rate item1 and item2 is 1 while the number of 

users who both rate item1 and item3 is 100. The similarity score between item1 and item2, which is based 

on a single user, might be greater than the similarity between item1 and item3. Since PCC and ACS do 

not take the number of users who rate both items into account, the similarity scores may become 

controversial. According to Herlocker et al. [8], similarities become more credible if items are co-rated 

by many users. Therefore, similarities can be weighted by the number of users co-rating both items. For 

this purpose, we will utilize binary vector similarities to weigh item-item similarities as given in 

Equation 8, which gives the average aggregation, and Equation 9, which gives the minimum 

aggregation. Here, the item-item similarity for each criterion, 𝑠𝑖𝑚𝑐, is multiplied by the binary similarity 

measure, which is 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟𝑐, which can be adopted from Table 3. 

𝒔𝒊𝒎𝒂𝒗𝒈
′ (𝒊, 𝒋)  =  

∑ 𝒔𝒊𝒎𝒄(𝒊, 𝒋)  ×  𝒘𝒆𝒊𝒈𝒉𝒕𝒊𝒏𝒈𝑭𝒂𝒄𝒕𝒐𝒓𝒄(𝒊, 𝒋)𝒌
𝒄=𝟎

𝒌 + 𝟏
 (8) 

𝒔𝒊𝒎𝒎𝒊𝒏
′ (𝒊, 𝒋)  =  𝐦𝐢𝐧

𝒄=𝟎,𝟏,…,𝒌
𝒔𝒊𝒎𝒄(𝒊, 𝒋)  ×  𝒘𝒆𝒊𝒈𝒉𝒕𝒊𝒏𝒈𝑭𝒂𝒄𝒕𝒐𝒓𝒄(𝒊, 𝒋) (9) 

We briefly discuss item-based MCCF to weight similarities, the very similar idea can be applied to the 

user-based MCCF. In user-based settings, user-user similarities must be weighted by the binary vector 

similarities that are constructed for the co-rated items between users. Each calculated similarity between 

users for each criterion is multiplied by the corresponding binary vector similarity measure computed 

by the related user vectors. Again, these measures can be adopted from Table 3. 

5. Experimental Evaluation 

5.1 Data set 

The most widely used dataset in MCCF, Yahoo!Movies, is used to test our proposed approaches. The 

dataset includes four sub-criteria and an overall rating for the movie domain. Users are asked to rate 

criteria such as direction, acting, story, and visuals. In addition, the average of four sub-criteria is 

calculated as the overall rating. Due to the extreme sparsity of the dataset, two subsets of Yahoo!Movies 

are created [29]. First, a subset of users and items with at least 10 ratings is created and called YM10. 

Likewise, YM20 dataset is also obtained with a subset of users and items with at least 20 ratings. Table 

4 displays YM10 and YM20 data sets and their corresponding number of users, items and the ratings 

they have. 
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Table 4 Datasets 

 

 

 

Yahoo!Movies includes 13 different ratings, and the rating range is from A+ to F. A+ indicates the 

highest rating, while F shows the lowest rating. Since CF systems usually use 5 star-scale, the ratings in 

Yahoo!Movies are converted into 5 star-scale. (A+, A, A-) is converted to 5, (B+, B, B-) is exchanged 

to 4, others are transformed to 3, 2, and 1 is assigned to the letter F [29]. A small example of the multi-

criteria user-item matrix is given in Figure 1. 

 𝒊𝒕𝒆𝒎𝟏 𝒊𝒕𝒆𝒎𝟐 𝒊𝒕𝒆𝒎𝟑 𝒊𝒕𝒆𝒎𝟒 

𝒖𝒔𝒆𝒓𝟏 - 𝐵+
𝐶+,𝐴+,𝐶+,𝐴 - 𝐵𝐵+,𝐶,𝐵,𝐴 

𝒖𝒔𝒆𝒓𝟐 𝐷𝐶,𝐹,𝐷,𝐷 - - 𝐹𝐹,𝐹,𝐹,𝐷− 

𝒖𝒔𝒆𝒓𝟑 𝐴𝐴+,𝐴,𝐴,𝐴 - 𝐶𝐵,𝐶,𝐶,𝐷 - 

𝒖𝒔𝒆𝒓𝟒 - 𝐴−
𝐴−,𝐵+,𝐴,𝐴− 𝐵𝐶,𝐴,𝐴,𝐶  - 

 

  𝒊𝒕𝒆𝒎𝟏 𝒊𝒕𝒆𝒎𝟐 𝒊𝒕𝒆𝒎𝟑 𝒊𝒕𝒆𝒎𝟒 

𝒖𝒔𝒆𝒓𝟏 - 43,5,3,5 - 44,3,4,5 

𝒖𝒔𝒆𝒓𝟐 23,1,2,2 - - 11,1,1,2 

𝒖𝒔𝒆𝒓𝟑 55,5,5,5 - 34,3,3,2 - 

𝒖𝒔𝒆𝒓𝟒 - 55,5,4,5 43,5,5,3 - 
 

Figure 1 An Example of the multi-criteria user-item matrix 

5.2 Methodology 

Experiments are conducted with YM20 and YM10 data sets. 5-fold cross-validation is utilized where 

each experiment is split into four training and one test set. Each time a prediction is produced for an 

active user (test user in the test set). For an active user, all rated items are listed and one of them is 

removed and the original value is stored for future tests, a prediction is produced for the removed target 

item, 𝑞. After the prediction is calculated, it is compared with the original value to calculate the accuracy 

metric, which is given in 6.3. Then, the removed original value is copied back for the next test. This 

strategy is repeated and known as leave-one-out. The number of neighbors is set to 40 [13], [16]. 

5.3 Evaluation Criteria 

Mean absolute error, MAE, is used as the evaluation criteria. MAE measures the prediction error in 

terms of absolute difference over all queries. Its formulation is given in Equation 10, where 𝑝𝑖 is the 

prediction, 𝑜𝑖  is the original rating, and 𝑅 is the number of predictions. It basically tells how much the 

predictions deviate from the original value.  

𝑴𝑨𝑬 =  
𝟏

𝑹
∑|𝒑𝒊 − 𝒐𝒊|

𝑹

𝒊=𝟏

 (10) 

5.4 Experiments 

5.4.1 Effects of binary vector similarity on item-based MMCF 

In the first experiment, we analyze how different binary similarity measures affect MAE scores when 

item-based MMCF is employed. Recall that PCC and ACS item-item similarities are aggregated with 

average and minimum. Table 5 displays the related results for both YM20 and YM10 data sets. Notice 

that bold table cells show that corresponding binary vector similarity weighting outperforms the original 

MCCF scheme.  

The traditional MCCF method performs around 0.661, 0.681, 0.590, and 0.602 when PCC and ACS are 

aggregated by average and minimum functions, respectively, for YM20 data set. When the binary vector 

similarity measures are introduced in the item-item similarity calculation, most of them outperform the 

traditional MCCF method as seen in Table 5. The most remarkable measures are Sorgenfrei, 

Kulczynski-I, for YM20 data set. Sorgenfrei, Kulczynski-I are always among the top three measures in 

terms of MAE improvement compared to the traditional MCCF. Soregnfrei achieves 8%, 6.7%, 6.3%, 

and 5.8%, and Kulczynski-I achieves 7.5%, 6.5%, 6.6%, and 4.7% improvements for PCC-AVG, PCC-

 YM10 YM20 

# users 1293 202 

# items 1164 247 

# ratings 34846 8157 
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MIN, ACS-AVG, and ACS-MIN, respectively. Sokal-Sneath-I accompanies these two measures in top-

three in terms of MAE improvement when item-item similarities are calculated by PCC-MIN, ACS-

AVG, and ACS-MIN. On the other hand, the worst performing measure is the Shape-Difference which 

always falls behind the traditional MCCF. However, it is prominent in this experiment to note that none 

of the binary vector similarities perform worse than the traditional MCCF except Shape-Difference for 

YM20 data set. Each of them, at least, achieves the same results with the traditional MCCF. Another 

interesting fact about binary similarity measures is that binary similarity measures ignoring 𝑑 always 

perform better than both traditional MCCF and the rest of the binary similarity measures except Russel-

Rao for YM20 data set. 

Table 5 MAE Results When Binary Vector Similarities Are Applied in Item-based MCCF 

Table 5 also displays the results for YM10 data set. The traditional method for MCCF records 0.760, 

0.772, 0.777, and 0.777 for PCC and ACS when aggregated with average and minimum function, 

respectively. In all tests, the top three improvement scores are achieved by measures that ignore 𝑑, 

Sorgenfrei, Kulczynski-I, and Sokal-Sneath-I. Sorgenfrei performs 12.5%, 9.3%, 22.4%, and 20.6% 

improvement for PCC-AVG, PCC-MIN, ACS-AVG, and ACS-MIN, respectively. Moreover, 

Sorgenfrei is always the best-performing measure. Kulczynski-I improves the traditional MCCF by 

11.3%, 8.4%, 22.4%, and 20.2%, while Sokal-Sneath-I achieves an improvement of 11.1%, 8.2%, 

22.3%, and 19.9% for PCC-AVG, PCC-MIN, ACS-AVG, and ACS-MIN, respectively. Beside these 

top three measures, the other binary vector similarity measures except Shape-Difference achieve an 

improvement over traditional MCCF.  

 YM20 YM10 

 
PCC 

AVG 

PCC 

MIN 

ACS 

AVG 

ACS 

MIN 

PCC 

AVG 

PCC 

MIN 

ACS 

AVG 

ACS 

MIN 

MCCF Traditional 0.661 0.681 0.590 0.602 0.760 0.772 0.777 0.777 

Jaccard 0.617 0.652 0.555 0.577 0.677 0.711 0.605 0.623 

Dice 0.622 0.654 0.558 0.579 0.679 0.714 0.609 0.624 

3W-Jaccard 0.627 0.658 0.560 0.581 0.682 0.717 0.610 0.625 

Sokal-Sneath-I 0.615 0.646 0.553 0.576 0.676 0.709 0.604 0.622 

Simpson 0.624 0.660 0.562 0.582 0.692 0.727 0.632 0.639 

Braun 0.623 0.655 0.559 0.580 0.685 0.715 0.613 0.628 

Johnson 0.622 0.657 0.559 0.579 0.684 0.720 0.615 0.627 

Kulczynski-I 0.611 0.637 0.551 0.574 0.674 0.707 0.603 0.620 

Sorgenfrei 0.608 0.635 0.553 0.567 0.665 0.700 0.603 0.617 

Ochiai 0.623 0.657 0.558 0.580 0.681 0.715 0.609 0.622 

Russel-Rao 0.613 0.648 0.560 0.579 0.680 0.714 0.620 0.625 

Sokal-Michener 0.658 0.681 0.584 0.600 0.757 0.769 0.755 0.752 

Sokal-Sneath-2 0.661 0.681 0.586 0.601 0.760 0.770 0.758 0.750 

Roger-Tanimoto 0.656 0.681 0.584 0.598 0.755 0.770 0.754 0.750 

Gower-Legendre 0.661 0.681 0.586 0.601 0.760 0.770 0.758 0.750 

Faith 0.652 0.678 0.581 0.598 0.755 0.768 0.747 0.748 

Squared-Euclid 0.647 0.676 0.579 0.594 0.736 0.756 0.715 0.727 

Manhattan 0.647 0.676 0.579 0.594 0.736 0.756 0.715 0.727 

Mean- Manhattan 0.658 0.681 0.584 0.600 0.757 0.769 0.755 0.752 

Size-Difference 0.662 0.681 0.588 0.602 0.760 0.770 0.759 0.750 

Shape-Difference 0.864 0.942 1.030 1.060 0.888 0.905 1.032 1.065 
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Since Table 5 includes experimental results of 22 different binary similarity measures for four different 

MCCF methods and two different data sets, we also illustrate the best performing binary similarity 

measures in Figure 2 for readers’ convenience. 

  

  

  Figure 2 The best performing binary similarity measures against Traditional MCCF in item-based MCCF 

 

We analyzed how binary similarity measures affect the MAE results when item-based MCCF is utilized. 

The experiment shows that weighting item-item similarities based on their binary vector representations 

can improve prediction accuracy in MCCF. Based on the experimental findings, binary vector 

similarities that ignore 𝑑 are relatively more successful than the measures that consider 𝑑. This 

phenomenon might occur due to the fact that mutual presences (occurrences of 1s) are more important 

than mutual absences (occurrences of 0s) in item-item similarity calculations. Because the data sets in 

CF are usually sparse; therefore, mutual absences do not reveal much. Besides, although dissimilarity 

measures usually contribute to the prediction accuracy in terms of MAE, Shape-Difference always falls 

behind the traditional MCCF. 

5.4.2 Effects of binary vector similarity on user-based MMCF 

This experiment analyzes the effect of binary vector similarities on the user-based MCCF. Unlike the 

previous example, the binary similarity of two user vectors is multiplied by the user-user similarity. 

Table 6 displays the corresponding results. Recall that bold cells are better than the traditional MCCF 

score. 

When user-based MCCF is applied on YM20 data set with binary vector similarity weighting, MAE 

scores are 0.552, 0.592, 0.497, and 0.623, for PCC-AVG, PCC-MIN, ACS-AVG, and ACS-MIN, 

respectively. Binary vector similarities ignoring 𝑑 comparably achieve better results than the traditional 

MCCF. In terms of measures considering 𝑑, they generally fall behind the traditional MCCF with PCC-

AVG and ACS-MIN; on the contrary, they are slightly better when item-item similarity calculation is 

based on PCC-MIN and ACS-AVG. The last group of binary vector similarities utilizes distance 
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functions, they perform similar to the group of measures that considers 𝑑. However, Shape-Difference, 

once more, is dramatically lower than the traditional MCCF.    

When user-based MCCF is applied to YM10 data set which is sparser than YM20, weighting user-based 

similarities by binary vectors similarities, in general, does not introduce an improvement for PCC-AVG, 

PCC-MIN, and ACS-AVG. The only setting that an increase in MAE is obvious occurs when ACS-

MIN is applied to weight user-user similarities. In this setting, the measures that consider 𝑑 and 

dissimilarity functions (except Shape-Difference) record some improvement.  

Table 6 MAE Results When Binary Vector Similarities Are Applied in User-based MCCF 

Unlike the previous experiment where item-based MCCF is tested, the effect of introducing binary 

vector similarity to weight user-user similarities is relatively limited. These two experiments show that 

if the MCCF algorithm utilizes an item-based approach, binary vector similarities, especially the ones 

ignoring 𝑑 can be integrated into the method for improved prediction accuracy. However, one should 

be informed about the fact that weighting might not help improve the prediction accuracy when user-

based MCCF is applied if the data set is sparse like YM10. 

Since Table 6 includes many experimental results and they are very close to each other five binary 

similarity measures are illustrated in Figure 3.  

6. Discussion 

MCCF approaches utilizing neighborhood methods need to calculate either user-user or item-item 

similarities. If the scheme is user-based, then the similarity calculation is performed on the co-rated 

 YM20 YM10 

 
PCC 

AVG 

PCC 

MIN 

ACS 

AVG 

ACS 

MIN 

PCC 

AVG 

PCC 

MIN 

ACS 

AVG 

ACS 

MIN 

MCCF Traditional 0.552 0.592 0.497 0.623 0.584 0.633 0.407 0.513 

Jaccard 0.548 0.585 0.495 0.596 0.606 0.645 0.528 0.538 

Dice 0.548 0.588 0.496 0.602 0.606 0.646 0.526 0.536 

3W-Jaccard 0.548 0.587 0.496 0.602 0.605 0.646 0.524 0.535 

Sokal-Sneath-I 0.548 0.584 0.494 0.597 0.605 0.644 0.528 0.539 

Simpson 0.551 0.586 0.501 0.593 0.609 0.640 0.522 0.532 

Braun 0.549 0.584 0.495 0.605 0.612 0.649 0.532 0.537 

Johnson 0.549 0.591 0.498 0.593 0.599 0.640 0.519 0.529 

Kulczynski-I 0.546 0.579 0.493 0.598 0.605 0.643 0.529 0.538 

Sorgenfrei 0.550 0.581 0.500 0.556 0.615 0.648 0.542 0.557 

Ochiai 0.547 0.587 0.497 0.601 0.603 0.647 0.520 0.535 

Russel-Rao 0.558 0.589 0.500 0.578 0.621 0.649 0.539 0.549 

Sokal-Michener 0.552 0.593 0.495 0.634 0.584 0.636 0.427 0.488 

Sokal-Sneath-2 0.552 0.590 0.496 0.629 0.583 0.634 0.425 0.486 

Roger-Tanimoto 0.554 0.593 0.496 0.635 0.587 0.632 0.426 0.489 

Gower-Legendre 0.552 0.590 0.496 0.629 0.583 0.634 0.425 0.486 

Faith 0.551 0.590 0.493 0.626 0.584 0.634 0.418 0.485 

Squared-Euclid 0.554 0.589 0.496 0.636 0.600 0.635 0.461 0.495 

Manhattan 0.554 0.589 0.496 0.636 0.600 0.635 0.461 0.495 

Mean- Manhattan 0.552 0.593 0.495 0.634 0.584 0.636 0.427 0.488 

Size-Difference 0.551 0.589 0.496 0.629 0.583 0.633 0.431 0.485 

Shape-Difference 0.881 0.694 0.768 0.891 0.969 0.938 0.861 0.917 
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items of associated users. Otherwise, in item-based schemes, co-rating users of associated items are 

utilized in the similarity calculation. Similarities, on the other hand, are calculated based on co-ratings, 

regardless of how many there are. The number of co-ratings, whether a few or many, does not prevent 

the similarity calculation. Similarities calculated with very few co-ratings may be misleading as they 

are not built on an overwhelming mutual presence of ratings. Therefore, the lack of enough co-ratings 

may affect the neighbor selection and prediction performance negatively. Similarity weighting is 

utilized to alleviate such concerns. The general idea is to associate the similarity calculation with mutual 

presences and absences or non-mutual presences and absences of corresponding vectors.  Such relations 

between different user or item vectors can be constructed by leveraging binary vector representations 

and similarities between binary vector representations can be employed as a weighting factor in neighbor 

selection while calculating similarities. 

  

  

  Figure 3 Successful binary similarity measures against Traditional MCCF in user-based MCCF 

 

We, in this study, discuss item- and user-based MCCF schemes and the literature of binary vector 

similarity in detail. Then, we design and conduct extensive experiments to evaluate the effects of 

similarity weighting on the prediction accuracy of both item- and user-based multi-criteria collaborative 

filtering when item-item and user-user correlations are measured by PCC and ACS similarity, which are 

widely in use. The binary vector similarities measures are grouped under similarity- and distance-based 

methods. Those measures are further categorized as the ones considering mutual absences or not. 

Because collaborative filtering data is usually very sparse, the assumption is that mutual presence 

becomes more important than mutual absences. Experimental findings confirm the assumption: 

similarities weighted by binary vector similarity measures that ignore mutual absences achieve 

comparably better results (in terms of mean absolute error) than measures considering mutual absences 

as well as the traditional item-based MCCF where no weighting is applied. Among the binary vector 

similarity measures, Sorgenfrei, Kulczynski-I, and Sokal-Sneath-I are worth mentioning because they 

are generally the top three measures contributing the highest improvement percentages. The highest 
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improvement is achieved by Sorgenfrei and Kulczynski-I weightings by 22.4% for YM10 data set. 

Unlike item-based MCCF, in the user-based setting, the effect of binary vector similarity weighting on 

the prediction performance remains relatively limited.  Therefore, one should consider the fact that 

similarity weighting may not improve the prediction accuracy in MCCF when user-based schemes are 

employed. Beyond the improvements achieved, one should be aware of the fact that employing Shape-

Difference distance metric as a weighting factor never contributes to the prediction accuracy.  

7. Conclusions 

In this study, we perform a detailed analysis of the effects of binary vector similarities on the prediction 

performance of the multi-criteria collaborative filtering. Twenty-one different binary vector similarity 

measures have been discussed and they are used as weighting factor to scale item- and user-based 

correlations. Experimental findings suggest that measures not considering mutual absences contribute 

to the prediction accuracy. As a future work, we plan to scrutinize different aspects of binary multi-

criteria collaborative filtering schemes in which the number of studies is limited. 
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