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Abstract 

Malware (Malicious Software) is any software which performs malicious activities on computer-based systems 

without the user's consent. The number, severity, and complexity of malware have been increasing recently. The 

detection of malware becomes challenging because new malware variants are using obfuscation techniques to hide 

themselves from the malware detection systems. In this paper, a new behavioral-based malware detection method 

is proposed based on file-registry operations. When malware features are generated, only the operations which are 

performed on specific file and registry locations are considered. The file-registry operations are divided into five 

groups: autostart file locations, temporary file locations, specific system file locations, autostart registry locations, 

and DLLs (Dynamic link libraries) related registry locations. Based on the file-registry operations and where they 

performed, the malware features are generated. These features are seen in malware samples with high frequencies, 

while rarely seen in benign samples. The proposed method is tested on malware and benign samples in a virtual 

environment, and a dataset is created. Well-known machine learning algorithms including C4.5 (J48), RF (Random 

Forest), SLR (Simple Logistic Regression), AdaBoost (Adaptive Boosting), SMO (Sequential Minimal 

Optimization), and KNN (K-Nearest Neighbors) are used for classification. In the best case, we obtained 98.8% 

true positive rate, 0% false positive rate, 100% precision and 99.05% accuracy which is quite high when compared 

with leading methods in the literature. 

Keywords: Cybersecurity, malware detection, behavior-based detection, file-registry behaviors, machine 

learning 

1. Introduction 

In simple terms, malware can be defined as a set of symbols which performs undesirable changes to the 

computer hardware as well as operating system resources. There are various types of malware including 

virus, worm, rootkit, Trojan horse, backdoor, spyware, and so on. The number, complexity and damage 

of malware to the world economy is increasing everyday. According to scientific reports, the cost of 

cyber-based attacks to the world economy is estimated in trillions of dollars, and most of these damages 

come from malware. 

To protect the computer based systems from malware, malware needs to be detected before entering the 

victim system or during the infection. Thus, malware samples need to be examined by using relevant 

tools. There are two common ways to analyze the malware: static and dynamic analysis [1]. In static 

analysis, the malware samples are analyzed without running the actual code. Program structures, used 

strings, imported and exported functions are obtained during the static analysis. However, in dynamic 

analysis, the codes of malware are performed under the protected environment (Virtual machines or 

sandboxes), and execution traces which represent the behaviors of the malware are collected. After the 

malware execution traces are collected, the features are generated. There are several approaches to detect 

malware which use static and dynamic analysis, namely, signature-based, behavioral-based, heuristic-

based, model checking-based, deep learning-based, cloud-based, and mobile and IoT (Internet of 

Things)-based [2]. The names of the approaches vary according to the platform on which the detection 

algorithm is proposed and the method used. 

At the beginning, the signature-based detection approach was widely used. However, due to the 

increasing complexity of malicious software in recent years, it has been insufficient to detect new 
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generation malware [3]. Therefore, over time, researchers have developed behavioral-based, heuristic-

based and model checking-based detection approaches. In these approaches, models are created by 

determining the behaviors or static features of malware samples, and malicious software is detected by 

using these models [2]. These approaches can detect some malware that has not been seen before. 

Furthermore, deep learning-, cloud-, mobile- and IoT-based detection approaches have also been used 

especially in the last few years. 

In this paper, a behavioral-based malware detection approach is used which identifies the specific file 

and registry operations. We divided file-registry operations into five groups including autostart file 

locations, temporary file locations, specific system file locations, autostart registry locations, and DLLs 

(Dynamic link libraries) related registry locations. After behaviors are created by using specified 

locations, the features and their frequencies are calculated. The most significant features are selected by 

using information gain measures. After features are selected, the machine learning classifiers including 

C4.5 (J48 version), RF (Random Forest), SLR (Simple Logistic Regression), AdaBoost (Adaptive 

Boosting), SMO (Sequential Minimal Optimization), and KNN (K-Nearest Neighbors) are used for 

classification. 

In practice, current malware detectors cannot effectively recognize the zero-day malware variants. The 

proposed approach decreased the deficiencies that current studies have on malicious software detection 

and improved the performances. In the proposed method, only specific file directories and registry 

locations are considered when detecting malware. This is because the majority of malware strains show 

similar behaviors on specific file and registry locations, which cannot be seen on benign samples. To 

increase the model performance while decreasing the time complexity of the proposed method, the same 

behaviors on different instances of the same resources match into the same feature, but the frequency of 

the feature is increased. 

The rest of the paper is organized as follows: Section 2 provides background information about malware 

types, malware analysis, and detection processes. Section 3 reviewed the literature studies on malware 

detection methods. A proposed method is presented in section 4, and an implementation is given in 

section section 5. Results and discussion is explained in section 6 and conclusion is given in section 7. 

2. Background Information  

In this section, definition and types of malware as well as malware analysis process, and detection 

approaches are explained in detail. 

2.1 Malware Definitions and Types of Malware 

Any program which performs malicious payloads on victim machines can be defined as malware. There 

are several malware variants created everyday including virus, worm, Trojan Horse, rootkit, backdoor, 

ransomware, and many more. The detection of those malware variants becomes challenging because 

one malware type can present other malware features. Besides, for complicated and targeted attacks, 

various malware strains work together to increase the impact of the cyber attacks. In addition, new 

devices and technologies are connected to computer networks everyday, and most of those devices and 

technologies have several vulnerabilities for hackers to exploit. Code obfuscation techniques are hiding 

malicious codes from the malware detection system [2]. All of these reasons make the malware detection 

process more difficult. To effectively detect the different malware variants, the main definitions and 

features that malware present needs to be examined deeply. Thus, the well-known malware variants are 

explained shortly as follows: 

⮚ Virus: It is a malicious software which injects its code into other files to reproduce. During the 

propagation, it changes its appearance to become undetectable by antivirus scanners [4]. 

⮚ Worm:  Unlike the virus, worms do not need other programs to reproduce, instead worms use 

computer networks to spread. It identifies the vulnerable machines on the network and then copies 
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itself into those vulnerable systems [5]. Most worms open backdoors in the victim system as well 

as enable unauthorized access. They delete their own files to hide themselves in the infected system. 

⮚ Trojan Horse: It appears to be useful benign software, however, it contains malicious code blocks. 

The attachment program needs to be performed to infect the victim system. It can create backdoors, 

cause unauthorized access, and reveal sensitive information to the third parties. 

⮚ Rootkit: A set of programs that conceal its existence from the operating system. It is a kind of man 

in the middle attack because it intercept and change the communications between the interfaces and 

several os components [6]. Rootkits are generally used by hackers to hide their existence in the 

system and provide root level access privileges. Rootkits are also combined with other malware 

strains in order to perform more sophisticated attacks. It is almost impossible to detect kernel 

rootkits since they run in kernel mode.  

⮚ Backdoor: It is a program that bypasses the traditional security mechanisms and opens the system 

to remote access for attackers [4]. The created backdoors are used by hackers and other malicious 

softwares to launch more complicated cyber attacks. Backdoors are mostly installed on victim 

systems by using Worms and Trojan horses. 

⮚ Ransomware: Ransomware is one of the most destructive types of malware which is designed to 

prevent or limit access to a computer system [7] until some amount of ransom is paid as a 

cryptocurrency. Recently, the number and impact of ransomware attacks on big companies have 

been increasing rapidly. 

2.2 Malware Analysis and Detection Processes 

To effectively detect malware from celanware, malware needs to be analyzed by relevant tools 

automatically. During the analysis process, program structures or behaviors are obtained. Malware 

analysis process divided into two subcategories: static and dynamic analysis. In static analysis, the 

content of the malware is analyzed without performing the actual codes, on the other hand, in dynamic 

analysis, the code of the malware is analyzed under dynamic analysis tools and malicious activities are 

collected [1]. There are a variety of static and dynamic tools including BinText, Md5deep, PEiD, 

PEview, IDA Pro, API Monitor, Regshot, Process Explorer, Process Monitor, Wireshark and 

Sandboxes. After malware execution traces are collected by relevant tools, feature generation as well as 

selection process take place. During the feature creation and selection processes, data mining (DM) and 

machine learning (ML) techniques are used. Furthermore, ML classifiers are used for the detection 

process as well. The relationship between malware analysis method, detection approaches, and machine 

learning techniques can be seen in figure 1. 

There are several malware detection approaches which mostly use ML-based detection techniques. The 

name of the malware detection approaches change on the feature generation and selection processes as 

well as the platform that is used. The malware detection approaches are broadly divided into signature-

based, heuristic-based, behavioral-based and model checking-based detection, and also can be divided 

further as deep learning-based, cloud-based, mobile devices-based, and IoT-based detection [2]. In each 

approach, the feature extraction method is different from one another. One detection approach certainly 

cannot be said to work better than the others, as each approach has its own advantages and 

disadvantages. The way the approach is used, the feature extraction and classification method affect its 

success. Traditional malware variants can be detected with high accuracy using the signature-based 

approach, but signature-based approach cannot demonstrate the same success when detecting new 

malware strains. A considerable amount of unknown malware samples are detected using behavioral-, 

heuristic-, and model-based detection approaches. However, they are insufficient to detect some new 

generation malware. Similarly, deep learning-, cloud- and mobile and IoT-based approaches fall short 

of detecting malicious software that constantly changes itself [2]. Different approaches can be combined 

to detect more complex as well as unknown malware. In this study, dynamic analysis is used for malware 

feature creation, and behavioral-based approach is used for detection. 
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Figure 1 Malware analysis methods and detection approaches 

3. Leading Methods in the Literature  

There are several scientific papers written about malware detection. In each paper, the method used to 

distinguish malware from benign is different from one another. In this section, related studies are 

summarized based on proposed methods as well as measured performances. 

Luckett et al. proposed a neural network based rootkit detection by using system call timing behaviors 

[8]. They collected system calls as well as corresponding execution times from the infected and 

uninfected system. They used KBeast rootkit for analysis. For training and detection, the zero is assigned 

for infected, 1 is assigned for uninfected. MATLAB is used to evaluate the collected features. They used 

two neural network architectures, namely, a static feedforward architecture, and recurrent nonlinear 

auto-regressive architecture, for experiments. According to the authors, the best experiment results 

obtained when combining a radial base and hyperbolic tangent transfer functions. 

A static malware analysis technique, which uses static tools such as Bintext, PEID, PEview, MD5deep, 

Dependency walker, and IDA Pro as well as antivirus scanners, suggested in our previous study [9]. In 

the proposed method, collected malware and benign samples were analyzed under the static analysis 

tools with domain experts. For analyzed samples, important strings, reverse compiling results, hashes, 

and imported and exported functions were used to separate malware from the cleanware. The test case 

was performed on different versions of Windows virtual machines. As stated in the paper that antivirus 

scanners were fast and preferable for known malware, while static analysis tools performed better for 

zero-day malware 

A malware detection method, which uses virtual memory access patterns was proposed by Xu et al. 

[10]. The study utilized hardware-assisted technique which monitored and classified memory access 

1. Malware Analysis 

Dynamic analysis 

2. Malware Execution Traces 

Static analysis 

3. Malware Detection Approaches 

Signature-based 

Behavior-based 

Heuristic-based 

Model checking-based 

Deep learning-based 

Mobile and IoT-based 

4. Feature 

Extraction and 

Selection 

5. Classification 

and Detection 

ML techniques DM and ML 
techniques 

Cloud-based 



Sakarya University Journal of Computer and Information Sciences 

 

Aslan and Akın 

138 

 

patterns by using ML. According to the authors, malware may modify the control flow or data structures, 

which leaves fingerprint traits on program memory accesses. They used three markers including system 

calls, function calls, and the complete program run to collect the memory accesses. After the execution 

traces were collected, the feature selection was performed to specify the most relevant features. Finally, 

LR (Logistic Regression), SVM (Support Vector Machines) and RF classifiers were used for 

classification. As stated in the paper, the analysis rootkits were detected with 99% DR and less than 5% 

FPR. 

Rosli et al. proposed a behavior-based detection method which uses registry data [11]. The suggested 

behavioral-based method used k-means clustering technique to separate malware based on the registry 

activities. According to the authors, the unsupervised clustering techniques are crucial in order to group 

the similar malware behaviors. In the proposed method, first, malware properties were extracted and 

chosen from the computer registry. Then, the k-means clustering detection model was used to separate 

suspicious behaviors from the normal ones. The experiment test results indicated that the proposed 

method clustered the normal and suspicious behaviors with more than 90% accuracy.  

Bahador et al. presented a hardware level method which uses behavioral signatures to distinguish 

malware from the benign ones [12]. The proposed method used performance counter traces in order to 

detect and disable the malicious program samples immediately at the beginning of the execution. The 

paper stated that each behavior signature consists of a few number of singular values obtained from the 

hardware performance counter traces of known malware variants. When two performance counter traces 

are similar, the corresponding values should be proportional to each other. The collected malware and 

benign samples were analyzed under virtual machines. The test results indicated that the proposed 

method achieved the performance of 95.19%, 89.96%, and 92.50% for precision, recall, and f-measure, 

respectively.  

Zhang et al. proposed a malware detection method which uses behavior chains [13]. Initially, the 

proposed method monitored the behavior points by using API calls. Then, the behavior chain was 

constructed by using the calling sequence of those behavior points.  In the end, a LSTM (Long short-

term memory) was used to specify malicious behaviors from the behavior chains. For experiment, 

54.324 malware and 53.361 benign samples were collected and tested on Windows operating systems. 

The proposed method achieved 98.64% accuracy with less than 2% FPR. 

The malware detection method for Industrial Internet of Things (IIoT) based on the behavior graph is 

proposed by Sun et al. [14]. API calls were obtained by running the malware and benign samples under 

Cuckoo sandbox. Then, parameter normalization and n-gram were applied to decrease the number of 

API traces. CBG (classified behavior graph) was created by selected APIs. The CBGs are the original 

program features which are generated for each sample. Similar behaviors were removed by using CNSG 

(crucial n-order subgraph). Then, CBGs were optimized to the key CBGs. Finally, NB, SVM, and 

AdaBoost classifiers were applied to key CBGs to separate malware from the benign samples. 

According to the papers, the proposed method achieved a high detection accuracy for tested malware 

and benign samples. 

Azeez et al. proposed an ensemble learning approach to detect Windows PE malware strains [15]. The 

proposed approach consisted of fully connected and CNNs (Convolutional neural networks) which used 

the ExtraTrees classifier as a meta-learner. The base phase classification was performed by using a 

stacked ensemble of fully-connected and one-dimensional CNNs. In this phase for end-stage 

classification, machine learning (ML) classifiers were applied. Fifteen ML algorithms were used for 

meta-learner, and five ML algorithms including RF, NB, DT (decision three), AdaBoost, and gradient 

boost were used for comparison. For experiments, Windows PE files were used. As stated in the paper, 

the more satisfactory results were obtained when an ensemble of seven neural networks as well as the 

ExtraTrees classifier for final-phase was used. 

Rey et al. presented a federated learning at detecting malicious software samples in IoT devices [16]. 

They applied supervised as well as unsupervised federated methods to recognize malware variants for 

IoT devices. For this purpose, N-BaIoT dataset which consists of many real IoT devices’ network traffic 

that were affected by malicious software were used. In addition, the obtained performances were 
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compared with participants which train a model locally (does not share the data) and participants which 

train a model globally (share data with the central). As mentioned in the paper, using the divergent data 

increases the performance of the federated models. To test the strength of the federated methods, 

adversarial attacks were used. According to the test results, the basic federated learning models are prone 

to adversarial attacks. However, their federated model is more robust to adversarial attacks. The 

robustness of the used federated learning model against adversarial attacks should be improved in the 

future. 

A dynamic malware detection method which used IP (Internet protocol) reputation and ML techniques 

was explained by Usman et al. [17]. The suggested method computed the malicious behaviors of IP 

addresses’ at run time. For this purpose, big data forensic was used to calculate the risk score of IP 

addresses. They used weighted risk score to identify the re-attempt of the causing damage, and 

confidence level to specify the degree of maliciousness. Paper stated that the experiments were carried 

out with a few ML classifiers including NB, SVM, MBK (mini batch k-means), DT, and best results 

were obtained when DT was used. The false alarm rate was high in the proposed method, in the future 

the false alarm rate should be reduced to improve the model performance. 

Vu et al. suggested CNN-on-matrix technique to classify Android malware variants [18]. Each Android 

application was used as an image. First, for each application, the adjacency matrix was constructed. 

Then, constructed matrices were used as input images, and given to the CNN (Convolutional Neural 

Network) model. Finally, CNN model recognized each image sample as malware or benign. In this 

phase, the family of each malware apps were specified as well. According to the paper, the proposed 

approach could detect the Android apps with 94.3% when the drebin dataset was used and 97% accuracy 

is obtained for different malware families. The proposed method is limited with Android apps, and needs 

to be extended to support other mobile platforms. 

In the related works, several malware detection methods were reviewed based on the suggested methods, 

used ML techniques and measured performances. Most of the studies used static and dynamic tools to 

analyze the malware. After the malware analysis stage was completed, data mining (DM) and ML 

techniques were applied to create malware features from the execution traces. Most of the papers were 

performed on specific malware variants or only a few malware samples which cannot be generalized to 

detect all malware types. In practice, current malware detection methods cannot detect unknown 

malware variants efficiently as well. The proposed method decreased the deficiencies that current 

studies have on malware detection and improved the detection and accuracy rates. Even though some 

of the existing studies results are close to the proposed method performances, the time complexity of 

the proposed method is lower. Besides, the proposed method can detect high percentage of the zero-day 

malware as well as different variants of malware including virus, worm, rootkit, ransomware, and 

obfuscated malware. 

4. Proposed Method 

We proposed a malware detection method which can be categorized in a behavioral-based approach that 

uses file and registry operations. In general, most of the malware performs operations on specific file 

directories and registry locations. This is because the majority of malware samples display similar 

behaviors on specific file and registry locations, which cannot be seen on benign samples. The proposed 

malware detection architecture seen in figure 2.  

https://www.sciencedirect.com/topics/computer-science/baseline-model
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Figure 2 Malware detection architecture 

 

Instead of all file and registry related operations, we only consider the file and registry operations which 

can rarely be seen in benign samples, however, mostly seen in malware samples. For instance, most of 

the malware types perform read and write operations to spread or inject itself into system processes or 

commonly used DLLs. In addition, most of the malware variants perform on specific folder locations 

including temporary file locations, as well as specific file and registry automatic startup (autostart) 

locations. When execution traces are collected following file-registry locations are considered: 

1. Autostart file locations:  

Shell:startup 

Shell:common startup 

%appdata%\Microsoft\Windows\Start Menu\Programs\Startup 

C:\Users\USERNAME\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup 
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C\Windows\Temp 
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4. Autostart registry locations: 

HKLM\Software\Microsoft\Windows\Currentversion\Run 

HKLM \Software\Microsoft\Windows\Currentversion\Runonce 

HKEY_Local_Machine\Software\Microsoft\Windows\Currentversion\Run 

HKCU\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run 

HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\Run 

HKCU\Control Panel\Desktop\Scrnsave.exe 

HKCU\Software\Microsoft\Windows\CurrentVersion\RunServices 

HKLM\ Software \Wow6432Node\Microsoft\Active Setup\Installed 

HKLM\ Software \Microsoft\Windows\CurrentVersion\Explorer\ShellServiceObjects 

HKLM\ Software \Microsoft\Windows\CurrentVersion\Explorer\Shell Folders 

HKLM\ Software\ Microsoft\Windows NT\ CurrentVersion\Winlogon\UserIni 

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Drivers32 

5. DLLs related registry locations: 

       HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs 

       HKLM\Software\Microsoft\Windows NT\ CurrentVersion\ Windows\AppInit_DLLs 

After the execution traces are collected based upon specific file-registry locations, behaviors and 

features are created. When creating behaviors from the file-registry operations, one or more operations 

can create behaviors on the same file and registry instance. When creating features from the behaviors, 

ten consecutive orders are placed and behaviors are grouped based on file and registry operations. The 

same behaviors on different instances of the same resources match into the same feature, but the 

frequency of the feature is increased. Even if the behaviors are performed on different resources 

including file and registry, they can create features when relation is observed based on used locations. 

After the feature generation process is completed, the frequency of each feature is computed. 

When the feature generation process is completed, most significant features are selected by using 

information gain. The information gain selects the features with maximum gain which decrease the 

information needed for the next split. Most of the time, if the dataset is properly constructed, the 

information gain is chosen for the most significant features in the dataset. We can compute the 

information gain as follows: 

Information 𝑔𝑎𝑖𝑛 (𝐴) = 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷) − 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐴(𝐷) (1) 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷) = -∑ 𝑝𝑖𝑣
𝑗=1 𝑙𝑜𝑔2 (𝑝𝑖) (2) 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐴(𝐷)= -∑
|𝐷𝑗|

|𝐷|

𝑣

𝑗=1
𝑙𝑜𝑔2 (

|𝐷𝑗|

|𝐷|
) 

(3) 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷) shows the average amount of information needed to identify the class labels in the 

dataset, while 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐴(𝐷) indicates the amount of information needed after each partitioning 

during classification for features. After the most significant features are selected by using information 

gain feature selection criteria, the learning and testing phases are performed. For classification, well-

known ML algorithms are used including C4.5 (J48), RF, SLR, AdaBoost, SMO, and KNN. We present 

the effectiveness of our proposed method by applying and comparing the outcomes of these ML 

algorithms.  

5. Implementation 

For the experiments, Windows 10 was used as a host machine with Oracle VirtualBox installed. 

Windows 7 and Windows 8 are installed on Oracle VirtualBox as guest machines. The collected 

malware and benign samples are performed on virtual machines Windows 7, 8, and 10. The malware 

samples are collected from several sources including ViruSign, Malshare, and Tekdefense [19, 20, 21]. 

The collected malware samples are from different malware types such as virus, worm, rootkit, backdoor, 

ransomware, spyware, and so on. The collected malware samples are labeled by using VirusTotal. 
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VirusTotal is a website which contains several antivirus scanners. The tested benign files are different 

system and third party’ softwares. After each malware sample performed, the execution traces of file-

registry operations are collected by using Process Monitor as well as Regshot, and Autoruns. Each time, 

the clean version of the guest machine is used. The collected execution file-registry traces are analyzed 

by using Python language in Windows 10 environment. 

Totally, 582 malware and 300 benign samples are tested. After the file-registry traces are collected, 

behaviors are formed. Only five types of file and registry operations are used for behavior creation: 

autostart file locations, temporary file locations, specific system file locations, autostart registry 

locations, and DLLs related registry locations. After behaviors are created, features and their frequencies 

are computed. During the feature creation, ten consecutive orders are used. Then, most significant 

features are chosen by using information gain measures. That way, the most distinctive file and registry 

based features are generated. To correctly classify the most distinctive features, which are mostly seen 

in malware but rarely seen in benign samples, ML classifiers including C4.5 (J48), RF, SLR, AdaBoost, 

SMO, and KNN are used. 

Our dataset consists of different types of malware including virus, worm, rootkit, backdoor, Trojan, 

ransomware and packed malware. To label the malware samples, the VirusTotal is used which contains 

several antivirus scanners. To identify each malware sample, the kind of file signature MD5 (message-

digest algorithm) hashes are used. For each feature, the frequency of the properties is written int the 

dataset. If the related feature is not given, 0 is written as a frequency. 

To measure the feasibility and efficiency of the proposed method: TPR, FPR, precision, and accuracy 

are used on our created dataset. Confusion matrix is used to calculate these values (Table 1).  

Table 1 Confusion Matrix 

Predicted Class 

 

Actual Class 

 Yes No 

Yes 

 No 

TP 

FP 

FN 

TN 

In the confusion matrix, TP shows the number of malware samples correctly labeled as malware, TN 

shows the number of benign samples correctly labeled as benign, FP represents the number of benign 

samples being accidentally labeled as malware, and FN represents the number of malware mistakenly 

labeled as benign. These values are used to compute the TPR, FPR, precision, and accuracy as follows: 

TPR = TP/ (TP+FN) (4) 

FPR = FP/ (FP+TN) (5) 

Precision = TP/ (TP + FP) (6) 

Accuracy = (TP+TN)/ (TP+TN+FP+FN) (7) 

6. Results and Discussion 

This section shows the experiment results and evaluates the model performances. Learning and testing 

phases are performed on classifiers by using 10-fold cross-validation and holdout 75%, 25% split. The 

results are summarized in table 2, figure 3, table 3, and table 4.  

Table 2 presents the various ML algorithms’ performances on created malware dataset. The 

performances of classifiers based on TPR, FPR, and precision metrics are quite high. For example, when 

RF is selected as a classifier TPR, FPR, and precision measured as 98.6%, 0%, and 100%, respectively. 

In the same way, AdaBoost performance measures as 98.8%, 3.7%, and 98.1%, respectively. Similar 

performances are obtained when SLR, and J48 are used. The performances of KNN and SMO are lower 



Sakarya University Journal of Computer and Information Sciences 

 

Aslan and Akın 

143 

 

than other classifiers. Our performance results present that the proposed method can effectively separate 

malware from benign samples.  

Table 2 Proposed method performances on 

 different ML classifiers 

 

 

 

 

Figure 3 shows the accuracy results on several ML algorithms. As it can be seen from the figure 3 that 

the best accuracies are obtained in order of RF, SLR, J48, AdaBoost, KNN, and SMO. Since, 

information gain is used as a feature selection, RF (99.05% accuracy), SLR (98.42% accuracy), J48 

(98.11% accuracy), and AdaBoost (97.95% accuracy) classifiers performed pretty well. However, SMO 

classifier accuracy is measured as 87.52% which is lower than other classifiers. When we use correlation 

coefficients for the feature selection process, the performance of the SMO is increased up to a certain 

degree.  

 
 

Figure 3 Various ML Classifiers accuracy on created dataset 

Our dataset consists of 45 features. The table 3 shows the 27 file-registry related properties  (which are 

generally seen in autostart file locations,  temporary file locations, specific system file locations, 

autostart registry locations, and DLLs related registry locations) mostly seen in malware files with high 

frequency and rarely seen in cleanware. Even if a few of the listed features may be seen in cleanware, 

the frequency of those properties are very low when compared to the frequency of properties counted in 

malware samples.  CreateFileReadFile, ReadFileWriteFile, WriteFile, SetBasicInformationFile, 

CreateFileWriteFile, CreateFileMapping, QueryStandardInformationFile, QuerySecurityFile, 

RegOpenKey, RegQueryValue, RegSetInfoKey, RegCreateKey, RegSetInfoKeyRegEnumKey, and 

RegDeleteValue properties are mostly seen in malware samples with high frequencies in substantial file 

and registry locations. 
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RF 99,05

SLR 98,42
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AdaBoost 97,95
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0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
g
es

(%
)

Classifier TPR (%) FPR (%) Precision 

RF   98.6 0 100 

AdaBoost 98.8 3.7 98.1 

SLR 98.1 0.9 99.5 

J48   98.1 1.8 99 

KNN 92.6 4.2 97.9 

SMO 88 13.3 92.8 
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Table 3 The list of file and registry related properties which mostly seen in malware 

seldomly seen in cleanware files (The order of the features are not preserved) 

ReadFileLoadImage 

ReadFileWriteFile 

WriteFileCreateFile 

WriteFile 

CreateFileSetBasicInformationFile 

SetBasicInformationFile 

CreateFileWriteFile 

WriteFileCreateFileMapping 

CreateFileReadFile 

QueryBasicInformationFileReadFile 

QueryBasicInformationFileCreateFileMapping 

CreateFileMapping 

CreateFileMappingLoadImage 

LoadImageReadFile 

QueryBasicInformationFileQueryDirectory 

CreateFileMappingCreateFile 

QueryStandardInformationFile 

QuerySecurityFile 

RegOpenKey 

RegQueryValue 

RegSetInfoKey 

RegSetInfoKeyRegQueryKey 

RegCreateKey 

RegSetValue 

RegQueryKeyRegSetInfoKey 

RegSetInfoKeyRegEnumKey 

RegDeleteValue 

Table 4 shows the comparison results of the proposed method against the state-of-the-art methods in the 

literature. The proposed method generated remarkable results among the other methods. For instance, 

the proposed behavioral-based file-registry operations performance was measured as 99.05% when RF 

was used as a classification algorithm (Table 4). On the other hand, system call timing behaviors 

performance was 82.8% and memory access patterns performance was 88.4%. The best performance 

obtained from the sequence of behavioral points (behavioral chains) by 98.64% which was still lower 

than the proposed method performance (99.05%). Besides, the proposed method's feature space is much 

lower than the other methods that are mentioned in table 4. 

Table 4. Shows the proposed method performances against leading methods in the literature 
Paper Year Feature Representation ML Algorithm Performance(%) 

Luckett et al. [8] 2016 System call timing behaviors Neural Network 82.8 

Xu et al. [10] 2017 Memory access patterns RF 88.4 

Rosli et al. [11] 2019 Behavior-based registry data K-Means 90 

Bahador et al.[12] 2019 Behavioral signatures on performance counter traces RF 82.65 

Zhang et al. [13] 2020 Sequence of behavioral points LSTM 98.64 

Sun et al. [14] 2021 Classified behavior graphs SVM 97 

Proposed Method 2022 Behavioral-based file-registry operations RF 99.05 

7. Conclusion 

The number, severity, and complexity of malware have been increasing rapidly. To protect the computer 

based systems from malware, malware needs to be detected whenever it infect the victim system. 

However, the detection of malware becomes harder since new malware variants are more intelligent and 

use obfuscation techniques to hide themselves from the malware detection systems.  

This paper proposed a new behavioral-based malware detection method based on file-registry 

operations. Only the operations which are performed on specific file and registry locations are 

considered during the features generation. These features are seen frequently in malware samples rarely 
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seen in benign samples. Hence, most of the malware variants are detected with our approach. After 

features are generated, information gain is used for feature selection. Finally, several machine learning 

classifiers including RF, J48, AdaBoost, SLR, SMO, and KNN are used for classification. The test case 

is performed on Windows virtual machines 7, 8, and 10. Proposed method could effectively detect the 

malware with high percentages. For instance, 98.8% true positive rate, 0% false positive rate, and 

99.05% accuracy are obtained to distinguish malware from cleanware. As a future study, we aim to 

analyze more malware and benign samples, and also examine network related features by using 

Wireshark. 
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