
SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES

VOL. 5, NO. 2, AUGUST 2022

DOI: 10.35377/saucis.05.02.1049798

Research Article

Malware Detection Method Based on File and Registry Operations

Using Machine Learning

Ömer Aslan1, Erdal Akın2
1Corresponding Author;17 Eylül University, Department of Software Engineering, Bandırma/Balıkesir Turkey;

omer.aslan.bisoft@gmail.com
2Bitlis Eren University, Department of Computer Engineering, Bitlis, Turkey; erdalakin1985@hotmail.com

Received 28 December 2021; Revised 18 April 2022; Accepted 25 May 2022; Published online 31 August 2022

Abstract

Malware (Malicious Software) is any software which performs malicious activities on computer-based systems

without the user's consent. The number, severity, and complexity of malware have been increasing recently. The

detection of malware becomes challenging because new malware variants are using obfuscation techniques to hide

themselves from the malware detection systems. In this paper, a new behavioral-based malware detection method

is proposed based on file-registry operations. When malware features are generated, only the operations which are

performed on specific file and registry locations are considered. The file-registry operations are divided into five

groups: autostart file locations, temporary file locations, specific system file locations, autostart registry locations,

and DLLs (Dynamic link libraries) related registry locations. Based on the file-registry operations and where they

performed, the malware features are generated. These features are seen in malware samples with high frequencies,

while rarely seen in benign samples. The proposed method is tested on malware and benign samples in a virtual

environment, and a dataset is created. Well-known machine learning algorithms including C4.5 (J48), RF (Random

Forest), SLR (Simple Logistic Regression), AdaBoost (Adaptive Boosting), SMO (Sequential Minimal

Optimization), and KNN (K-Nearest Neighbors) are used for classification. In the best case, we obtained 98.8%

true positive rate, 0% false positive rate, 100% precision and 99.05% accuracy which is quite high when compared

with leading methods in the literature.

Keywords: Cybersecurity, malware detection, behavior-based detection, file-registry behaviors, machine

learning

1. Introduction

In simple terms, malware can be defined as a set of symbols which performs undesirable changes to the

computer hardware as well as operating system resources. There are various types of malware including

virus, worm, rootkit, Trojan horse, backdoor, spyware, and so on. The number, complexity and damage

of malware to the world economy is increasing everyday. According to scientific reports, the cost of

cyber-based attacks to the world economy is estimated in trillions of dollars, and most of these damages

come from malware.

To protect the computer based systems from malware, malware needs to be detected before entering the

victim system or during the infection. Thus, malware samples need to be examined by using relevant

tools. There are two common ways to analyze the malware: static and dynamic analysis [1]. In static

analysis, the malware samples are analyzed without running the actual code. Program structures, used

strings, imported and exported functions are obtained during the static analysis. However, in dynamic

analysis, the codes of malware are performed under the protected environment (Virtual machines or

sandboxes), and execution traces which represent the behaviors of the malware are collected. After the

malware execution traces are collected, the features are generated. There are several approaches to detect

malware which use static and dynamic analysis, namely, signature-based, behavioral-based, heuristic-

based, model checking-based, deep learning-based, cloud-based, and mobile and IoT (Internet of

Things)-based [2]. The names of the approaches vary according to the platform on which the detection

algorithm is proposed and the method used.

At the beginning, the signature-based detection approach was widely used. However, due to the

increasing complexity of malicious software in recent years, it has been insufficient to detect new

https://orcid.org/0000-0003-0737-1966
https://orcid.org/0000-0002-2223-3927

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

135

generation malware [3]. Therefore, over time, researchers have developed behavioral-based, heuristic-

based and model checking-based detection approaches. In these approaches, models are created by

determining the behaviors or static features of malware samples, and malicious software is detected by

using these models [2]. These approaches can detect some malware that has not been seen before.

Furthermore, deep learning-, cloud-, mobile- and IoT-based detection approaches have also been used

especially in the last few years.

In this paper, a behavioral-based malware detection approach is used which identifies the specific file

and registry operations. We divided file-registry operations into five groups including autostart file

locations, temporary file locations, specific system file locations, autostart registry locations, and DLLs

(Dynamic link libraries) related registry locations. After behaviors are created by using specified

locations, the features and their frequencies are calculated. The most significant features are selected by

using information gain measures. After features are selected, the machine learning classifiers including

C4.5 (J48 version), RF (Random Forest), SLR (Simple Logistic Regression), AdaBoost (Adaptive

Boosting), SMO (Sequential Minimal Optimization), and KNN (K-Nearest Neighbors) are used for

classification.

In practice, current malware detectors cannot effectively recognize the zero-day malware variants. The

proposed approach decreased the deficiencies that current studies have on malicious software detection

and improved the performances. In the proposed method, only specific file directories and registry

locations are considered when detecting malware. This is because the majority of malware strains show

similar behaviors on specific file and registry locations, which cannot be seen on benign samples. To

increase the model performance while decreasing the time complexity of the proposed method, the same

behaviors on different instances of the same resources match into the same feature, but the frequency of

the feature is increased.

The rest of the paper is organized as follows: Section 2 provides background information about malware

types, malware analysis, and detection processes. Section 3 reviewed the literature studies on malware

detection methods. A proposed method is presented in section 4, and an implementation is given in

section section 5. Results and discussion is explained in section 6 and conclusion is given in section 7.

2. Background Information

In this section, definition and types of malware as well as malware analysis process, and detection

approaches are explained in detail.

2.1 Malware Definitions and Types of Malware

Any program which performs malicious payloads on victim machines can be defined as malware. There

are several malware variants created everyday including virus, worm, Trojan Horse, rootkit, backdoor,

ransomware, and many more. The detection of those malware variants becomes challenging because

one malware type can present other malware features. Besides, for complicated and targeted attacks,

various malware strains work together to increase the impact of the cyber attacks. In addition, new

devices and technologies are connected to computer networks everyday, and most of those devices and

technologies have several vulnerabilities for hackers to exploit. Code obfuscation techniques are hiding

malicious codes from the malware detection system [2]. All of these reasons make the malware detection

process more difficult. To effectively detect the different malware variants, the main definitions and

features that malware present needs to be examined deeply. Thus, the well-known malware variants are

explained shortly as follows:

⮚ Virus: It is a malicious software which injects its code into other files to reproduce. During the

propagation, it changes its appearance to become undetectable by antivirus scanners [4].

⮚ Worm: Unlike the virus, worms do not need other programs to reproduce, instead worms use

computer networks to spread. It identifies the vulnerable machines on the network and then copies

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

136

itself into those vulnerable systems [5]. Most worms open backdoors in the victim system as well

as enable unauthorized access. They delete their own files to hide themselves in the infected system.

⮚ Trojan Horse: It appears to be useful benign software, however, it contains malicious code blocks.

The attachment program needs to be performed to infect the victim system. It can create backdoors,

cause unauthorized access, and reveal sensitive information to the third parties.

⮚ Rootkit: A set of programs that conceal its existence from the operating system. It is a kind of man

in the middle attack because it intercept and change the communications between the interfaces and

several os components [6]. Rootkits are generally used by hackers to hide their existence in the

system and provide root level access privileges. Rootkits are also combined with other malware

strains in order to perform more sophisticated attacks. It is almost impossible to detect kernel

rootkits since they run in kernel mode.

⮚ Backdoor: It is a program that bypasses the traditional security mechanisms and opens the system

to remote access for attackers [4]. The created backdoors are used by hackers and other malicious

softwares to launch more complicated cyber attacks. Backdoors are mostly installed on victim

systems by using Worms and Trojan horses.

⮚ Ransomware: Ransomware is one of the most destructive types of malware which is designed to

prevent or limit access to a computer system [7] until some amount of ransom is paid as a

cryptocurrency. Recently, the number and impact of ransomware attacks on big companies have

been increasing rapidly.

2.2 Malware Analysis and Detection Processes

To effectively detect malware from celanware, malware needs to be analyzed by relevant tools

automatically. During the analysis process, program structures or behaviors are obtained. Malware

analysis process divided into two subcategories: static and dynamic analysis. In static analysis, the

content of the malware is analyzed without performing the actual codes, on the other hand, in dynamic

analysis, the code of the malware is analyzed under dynamic analysis tools and malicious activities are

collected [1]. There are a variety of static and dynamic tools including BinText, Md5deep, PEiD,

PEview, IDA Pro, API Monitor, Regshot, Process Explorer, Process Monitor, Wireshark and

Sandboxes. After malware execution traces are collected by relevant tools, feature generation as well as

selection process take place. During the feature creation and selection processes, data mining (DM) and

machine learning (ML) techniques are used. Furthermore, ML classifiers are used for the detection

process as well. The relationship between malware analysis method, detection approaches, and machine

learning techniques can be seen in figure 1.

There are several malware detection approaches which mostly use ML-based detection techniques. The

name of the malware detection approaches change on the feature generation and selection processes as

well as the platform that is used. The malware detection approaches are broadly divided into signature-

based, heuristic-based, behavioral-based and model checking-based detection, and also can be divided

further as deep learning-based, cloud-based, mobile devices-based, and IoT-based detection [2]. In each

approach, the feature extraction method is different from one another. One detection approach certainly

cannot be said to work better than the others, as each approach has its own advantages and

disadvantages. The way the approach is used, the feature extraction and classification method affect its

success. Traditional malware variants can be detected with high accuracy using the signature-based

approach, but signature-based approach cannot demonstrate the same success when detecting new

malware strains. A considerable amount of unknown malware samples are detected using behavioral-,

heuristic-, and model-based detection approaches. However, they are insufficient to detect some new

generation malware. Similarly, deep learning-, cloud- and mobile and IoT-based approaches fall short

of detecting malicious software that constantly changes itself [2]. Different approaches can be combined

to detect more complex as well as unknown malware. In this study, dynamic analysis is used for malware

feature creation, and behavioral-based approach is used for detection.

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

137

Figure 1 Malware analysis methods and detection approaches

3. Leading Methods in the Literature

There are several scientific papers written about malware detection. In each paper, the method used to

distinguish malware from benign is different from one another. In this section, related studies are

summarized based on proposed methods as well as measured performances.

Luckett et al. proposed a neural network based rootkit detection by using system call timing behaviors

[8]. They collected system calls as well as corresponding execution times from the infected and

uninfected system. They used KBeast rootkit for analysis. For training and detection, the zero is assigned

for infected, 1 is assigned for uninfected. MATLAB is used to evaluate the collected features. They used

two neural network architectures, namely, a static feedforward architecture, and recurrent nonlinear

auto-regressive architecture, for experiments. According to the authors, the best experiment results

obtained when combining a radial base and hyperbolic tangent transfer functions.

A static malware analysis technique, which uses static tools such as Bintext, PEID, PEview, MD5deep,

Dependency walker, and IDA Pro as well as antivirus scanners, suggested in our previous study [9]. In

the proposed method, collected malware and benign samples were analyzed under the static analysis

tools with domain experts. For analyzed samples, important strings, reverse compiling results, hashes,

and imported and exported functions were used to separate malware from the cleanware. The test case

was performed on different versions of Windows virtual machines. As stated in the paper that antivirus

scanners were fast and preferable for known malware, while static analysis tools performed better for

zero-day malware

A malware detection method, which uses virtual memory access patterns was proposed by Xu et al.

[10]. The study utilized hardware-assisted technique which monitored and classified memory access

1. Malware Analysis

Dynamic analysis

2. Malware Execution Traces

Static analysis

3. Malware Detection Approaches

Signature-based

Behavior-based

Heuristic-based

Model checking-based

Deep learning-based

Mobile and IoT-based

4. Feature

Extraction and

Selection

5. Classification

and Detection

ML techniques DM and ML
techniques

Cloud-based

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

138

patterns by using ML. According to the authors, malware may modify the control flow or data structures,

which leaves fingerprint traits on program memory accesses. They used three markers including system

calls, function calls, and the complete program run to collect the memory accesses. After the execution

traces were collected, the feature selection was performed to specify the most relevant features. Finally,

LR (Logistic Regression), SVM (Support Vector Machines) and RF classifiers were used for

classification. As stated in the paper, the analysis rootkits were detected with 99% DR and less than 5%

FPR.

Rosli et al. proposed a behavior-based detection method which uses registry data [11]. The suggested

behavioral-based method used k-means clustering technique to separate malware based on the registry

activities. According to the authors, the unsupervised clustering techniques are crucial in order to group

the similar malware behaviors. In the proposed method, first, malware properties were extracted and

chosen from the computer registry. Then, the k-means clustering detection model was used to separate

suspicious behaviors from the normal ones. The experiment test results indicated that the proposed

method clustered the normal and suspicious behaviors with more than 90% accuracy.

Bahador et al. presented a hardware level method which uses behavioral signatures to distinguish

malware from the benign ones [12]. The proposed method used performance counter traces in order to

detect and disable the malicious program samples immediately at the beginning of the execution. The

paper stated that each behavior signature consists of a few number of singular values obtained from the

hardware performance counter traces of known malware variants. When two performance counter traces

are similar, the corresponding values should be proportional to each other. The collected malware and

benign samples were analyzed under virtual machines. The test results indicated that the proposed

method achieved the performance of 95.19%, 89.96%, and 92.50% for precision, recall, and f-measure,

respectively.

Zhang et al. proposed a malware detection method which uses behavior chains [13]. Initially, the

proposed method monitored the behavior points by using API calls. Then, the behavior chain was

constructed by using the calling sequence of those behavior points. In the end, a LSTM (Long short-

term memory) was used to specify malicious behaviors from the behavior chains. For experiment,

54.324 malware and 53.361 benign samples were collected and tested on Windows operating systems.

The proposed method achieved 98.64% accuracy with less than 2% FPR.

The malware detection method for Industrial Internet of Things (IIoT) based on the behavior graph is

proposed by Sun et al. [14]. API calls were obtained by running the malware and benign samples under

Cuckoo sandbox. Then, parameter normalization and n-gram were applied to decrease the number of

API traces. CBG (classified behavior graph) was created by selected APIs. The CBGs are the original

program features which are generated for each sample. Similar behaviors were removed by using CNSG

(crucial n-order subgraph). Then, CBGs were optimized to the key CBGs. Finally, NB, SVM, and

AdaBoost classifiers were applied to key CBGs to separate malware from the benign samples.

According to the papers, the proposed method achieved a high detection accuracy for tested malware

and benign samples.

Azeez et al. proposed an ensemble learning approach to detect Windows PE malware strains [15]. The

proposed approach consisted of fully connected and CNNs (Convolutional neural networks) which used

the ExtraTrees classifier as a meta-learner. The base phase classification was performed by using a

stacked ensemble of fully-connected and one-dimensional CNNs. In this phase for end-stage

classification, machine learning (ML) classifiers were applied. Fifteen ML algorithms were used for

meta-learner, and five ML algorithms including RF, NB, DT (decision three), AdaBoost, and gradient

boost were used for comparison. For experiments, Windows PE files were used. As stated in the paper,

the more satisfactory results were obtained when an ensemble of seven neural networks as well as the

ExtraTrees classifier for final-phase was used.

Rey et al. presented a federated learning at detecting malicious software samples in IoT devices [16].

They applied supervised as well as unsupervised federated methods to recognize malware variants for

IoT devices. For this purpose, N-BaIoT dataset which consists of many real IoT devices’ network traffic

that were affected by malicious software were used. In addition, the obtained performances were

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

139

compared with participants which train a model locally (does not share the data) and participants which

train a model globally (share data with the central). As mentioned in the paper, using the divergent data

increases the performance of the federated models. To test the strength of the federated methods,

adversarial attacks were used. According to the test results, the basic federated learning models are prone

to adversarial attacks. However, their federated model is more robust to adversarial attacks. The

robustness of the used federated learning model against adversarial attacks should be improved in the

future.

A dynamic malware detection method which used IP (Internet protocol) reputation and ML techniques

was explained by Usman et al. [17]. The suggested method computed the malicious behaviors of IP

addresses’ at run time. For this purpose, big data forensic was used to calculate the risk score of IP

addresses. They used weighted risk score to identify the re-attempt of the causing damage, and

confidence level to specify the degree of maliciousness. Paper stated that the experiments were carried

out with a few ML classifiers including NB, SVM, MBK (mini batch k-means), DT, and best results

were obtained when DT was used. The false alarm rate was high in the proposed method, in the future

the false alarm rate should be reduced to improve the model performance.

Vu et al. suggested CNN-on-matrix technique to classify Android malware variants [18]. Each Android

application was used as an image. First, for each application, the adjacency matrix was constructed.

Then, constructed matrices were used as input images, and given to the CNN (Convolutional Neural

Network) model. Finally, CNN model recognized each image sample as malware or benign. In this

phase, the family of each malware apps were specified as well. According to the paper, the proposed

approach could detect the Android apps with 94.3% when the drebin dataset was used and 97% accuracy

is obtained for different malware families. The proposed method is limited with Android apps, and needs

to be extended to support other mobile platforms.

In the related works, several malware detection methods were reviewed based on the suggested methods,

used ML techniques and measured performances. Most of the studies used static and dynamic tools to

analyze the malware. After the malware analysis stage was completed, data mining (DM) and ML

techniques were applied to create malware features from the execution traces. Most of the papers were

performed on specific malware variants or only a few malware samples which cannot be generalized to

detect all malware types. In practice, current malware detection methods cannot detect unknown

malware variants efficiently as well. The proposed method decreased the deficiencies that current

studies have on malware detection and improved the detection and accuracy rates. Even though some

of the existing studies results are close to the proposed method performances, the time complexity of

the proposed method is lower. Besides, the proposed method can detect high percentage of the zero-day

malware as well as different variants of malware including virus, worm, rootkit, ransomware, and

obfuscated malware.

4. Proposed Method

We proposed a malware detection method which can be categorized in a behavioral-based approach that

uses file and registry operations. In general, most of the malware performs operations on specific file

directories and registry locations. This is because the majority of malware samples display similar

behaviors on specific file and registry locations, which cannot be seen on benign samples. The proposed

malware detection architecture seen in figure 2.

https://www.sciencedirect.com/topics/computer-science/baseline-model

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

140

Figure 2 Malware detection architecture

Instead of all file and registry related operations, we only consider the file and registry operations which

can rarely be seen in benign samples, however, mostly seen in malware samples. For instance, most of

the malware types perform read and write operations to spread or inject itself into system processes or

commonly used DLLs. In addition, most of the malware variants perform on specific folder locations

including temporary file locations, as well as specific file and registry automatic startup (autostart)

locations. When execution traces are collected following file-registry locations are considered:

1. Autostart file locations:

Shell:startup

Shell:common startup

%appdata%\Microsoft\Windows\Start Menu\Programs\Startup

C:\Users\USERNAME\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup

C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp

2. Temporary file locations:

%system%\Windows\Temp

C\Windows\Temp

%userprofiles%\AppData\Local\Temp

3. Specific system file locations:

\Windows\System32

Malware, and

benign samples

Process Monitor

Analyze file and registry operations

File related behaviors

Malware or benign

Create behaviors

Group the behaviors

Malware
labels

Registry related behaviors

Classification

Regshot Autoruns

Autostart file locations Temporary file locations

Specific file

locations

Autostart registry locations DLLs related

registry locations

Generated

features

Selected features

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

141

4. Autostart registry locations:

HKLM\Software\Microsoft\Windows\Currentversion\Run

HKLM \Software\Microsoft\Windows\Currentversion\Runonce

HKEY_Local_Machine\Software\Microsoft\Windows\Currentversion\Run

HKCU\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Run

HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows\Run

HKCU\Control Panel\Desktop\Scrnsave.exe

HKCU\Software\Microsoft\Windows\CurrentVersion\RunServices

HKLM\ Software \Wow6432Node\Microsoft\Active Setup\Installed

HKLM\ Software \Microsoft\Windows\CurrentVersion\Explorer\ShellServiceObjects

HKLM\ Software \Microsoft\Windows\CurrentVersion\Explorer\Shell Folders

HKLM\ Software\ Microsoft\Windows NT\ CurrentVersion\Winlogon\UserIni

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Drivers32

5. DLLs related registry locations:

 HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs

 HKLM\Software\Microsoft\Windows NT\ CurrentVersion\ Windows\AppInit_DLLs

After the execution traces are collected based upon specific file-registry locations, behaviors and

features are created. When creating behaviors from the file-registry operations, one or more operations

can create behaviors on the same file and registry instance. When creating features from the behaviors,

ten consecutive orders are placed and behaviors are grouped based on file and registry operations. The

same behaviors on different instances of the same resources match into the same feature, but the

frequency of the feature is increased. Even if the behaviors are performed on different resources

including file and registry, they can create features when relation is observed based on used locations.

After the feature generation process is completed, the frequency of each feature is computed.

When the feature generation process is completed, most significant features are selected by using

information gain. The information gain selects the features with maximum gain which decrease the

information needed for the next split. Most of the time, if the dataset is properly constructed, the

information gain is chosen for the most significant features in the dataset. We can compute the

information gain as follows:

Information 𝑔𝑎𝑖𝑛 (𝐴) = 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷) − 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐴(𝐷) (1)

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷) = -∑ 𝑝𝑖𝑣
𝑗=1 𝑙𝑜𝑔2 (𝑝𝑖) (2)

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐴(𝐷)= -∑
|𝐷𝑗|

|𝐷|

𝑣

𝑗=1
𝑙𝑜𝑔2 (

|𝐷𝑗|

|𝐷|
)

(3)

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷) shows the average amount of information needed to identify the class labels in the

dataset, while 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐴(𝐷) indicates the amount of information needed after each partitioning

during classification for features. After the most significant features are selected by using information

gain feature selection criteria, the learning and testing phases are performed. For classification, well-

known ML algorithms are used including C4.5 (J48), RF, SLR, AdaBoost, SMO, and KNN. We present

the effectiveness of our proposed method by applying and comparing the outcomes of these ML

algorithms.

5. Implementation

For the experiments, Windows 10 was used as a host machine with Oracle VirtualBox installed.

Windows 7 and Windows 8 are installed on Oracle VirtualBox as guest machines. The collected

malware and benign samples are performed on virtual machines Windows 7, 8, and 10. The malware

samples are collected from several sources including ViruSign, Malshare, and Tekdefense [19, 20, 21].

The collected malware samples are from different malware types such as virus, worm, rootkit, backdoor,

ransomware, spyware, and so on. The collected malware samples are labeled by using VirusTotal.

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

142

VirusTotal is a website which contains several antivirus scanners. The tested benign files are different

system and third party’ softwares. After each malware sample performed, the execution traces of file-

registry operations are collected by using Process Monitor as well as Regshot, and Autoruns. Each time,

the clean version of the guest machine is used. The collected execution file-registry traces are analyzed

by using Python language in Windows 10 environment.

Totally, 582 malware and 300 benign samples are tested. After the file-registry traces are collected,

behaviors are formed. Only five types of file and registry operations are used for behavior creation:

autostart file locations, temporary file locations, specific system file locations, autostart registry

locations, and DLLs related registry locations. After behaviors are created, features and their frequencies

are computed. During the feature creation, ten consecutive orders are used. Then, most significant

features are chosen by using information gain measures. That way, the most distinctive file and registry

based features are generated. To correctly classify the most distinctive features, which are mostly seen

in malware but rarely seen in benign samples, ML classifiers including C4.5 (J48), RF, SLR, AdaBoost,

SMO, and KNN are used.

Our dataset consists of different types of malware including virus, worm, rootkit, backdoor, Trojan,

ransomware and packed malware. To label the malware samples, the VirusTotal is used which contains

several antivirus scanners. To identify each malware sample, the kind of file signature MD5 (message-

digest algorithm) hashes are used. For each feature, the frequency of the properties is written int the

dataset. If the related feature is not given, 0 is written as a frequency.

To measure the feasibility and efficiency of the proposed method: TPR, FPR, precision, and accuracy

are used on our created dataset. Confusion matrix is used to calculate these values (Table 1).

Table 1 Confusion Matrix

Predicted Class

Actual Class

 Yes No

Yes

 No

TP

FP

FN

TN

In the confusion matrix, TP shows the number of malware samples correctly labeled as malware, TN

shows the number of benign samples correctly labeled as benign, FP represents the number of benign

samples being accidentally labeled as malware, and FN represents the number of malware mistakenly

labeled as benign. These values are used to compute the TPR, FPR, precision, and accuracy as follows:

TPR = TP/ (TP+FN) (4)

FPR = FP/ (FP+TN) (5)

Precision = TP/ (TP + FP) (6)

Accuracy = (TP+TN)/ (TP+TN+FP+FN) (7)

6. Results and Discussion

This section shows the experiment results and evaluates the model performances. Learning and testing

phases are performed on classifiers by using 10-fold cross-validation and holdout 75%, 25% split. The

results are summarized in table 2, figure 3, table 3, and table 4.

Table 2 presents the various ML algorithms’ performances on created malware dataset. The

performances of classifiers based on TPR, FPR, and precision metrics are quite high. For example, when

RF is selected as a classifier TPR, FPR, and precision measured as 98.6%, 0%, and 100%, respectively.

In the same way, AdaBoost performance measures as 98.8%, 3.7%, and 98.1%, respectively. Similar

performances are obtained when SLR, and J48 are used. The performances of KNN and SMO are lower

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

143

than other classifiers. Our performance results present that the proposed method can effectively separate

malware from benign samples.

Table 2 Proposed method performances on

 different ML classifiers

Figure 3 shows the accuracy results on several ML algorithms. As it can be seen from the figure 3 that

the best accuracies are obtained in order of RF, SLR, J48, AdaBoost, KNN, and SMO. Since,

information gain is used as a feature selection, RF (99.05% accuracy), SLR (98.42% accuracy), J48

(98.11% accuracy), and AdaBoost (97.95% accuracy) classifiers performed pretty well. However, SMO

classifier accuracy is measured as 87.52% which is lower than other classifiers. When we use correlation

coefficients for the feature selection process, the performance of the SMO is increased up to a certain

degree.

Figure 3 Various ML Classifiers accuracy on created dataset

Our dataset consists of 45 features. The table 3 shows the 27 file-registry related properties (which are

generally seen in autostart file locations, temporary file locations, specific system file locations,

autostart registry locations, and DLLs related registry locations) mostly seen in malware files with high

frequency and rarely seen in cleanware. Even if a few of the listed features may be seen in cleanware,

the frequency of those properties are very low when compared to the frequency of properties counted in

malware samples. CreateFileReadFile, ReadFileWriteFile, WriteFile, SetBasicInformationFile,

CreateFileWriteFile, CreateFileMapping, QueryStandardInformationFile, QuerySecurityFile,

RegOpenKey, RegQueryValue, RegSetInfoKey, RegCreateKey, RegSetInfoKeyRegEnumKey, and

RegDeleteValue properties are mostly seen in malware samples with high frequencies in substantial file

and registry locations.

Accuracy

RF 99,05

SLR 98,42

J48 98,11

AdaBoost 97,95

KNN 93,63

SMO 87,52

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
g
es

(%
)

Classifier TPR (%) FPR (%) Precision

RF 98.6 0 100

AdaBoost 98.8 3.7 98.1

SLR 98.1 0.9 99.5

J48 98.1 1.8 99

KNN 92.6 4.2 97.9

SMO 88 13.3 92.8

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

144

Table 3 The list of file and registry related properties which mostly seen in malware

seldomly seen in cleanware files (The order of the features are not preserved)

ReadFileLoadImage

ReadFileWriteFile

WriteFileCreateFile

WriteFile

CreateFileSetBasicInformationFile

SetBasicInformationFile

CreateFileWriteFile

WriteFileCreateFileMapping

CreateFileReadFile

QueryBasicInformationFileReadFile

QueryBasicInformationFileCreateFileMapping

CreateFileMapping

CreateFileMappingLoadImage

LoadImageReadFile

QueryBasicInformationFileQueryDirectory

CreateFileMappingCreateFile

QueryStandardInformationFile

QuerySecurityFile

RegOpenKey

RegQueryValue

RegSetInfoKey

RegSetInfoKeyRegQueryKey

RegCreateKey

RegSetValue

RegQueryKeyRegSetInfoKey

RegSetInfoKeyRegEnumKey

RegDeleteValue

Table 4 shows the comparison results of the proposed method against the state-of-the-art methods in the

literature. The proposed method generated remarkable results among the other methods. For instance,

the proposed behavioral-based file-registry operations performance was measured as 99.05% when RF

was used as a classification algorithm (Table 4). On the other hand, system call timing behaviors

performance was 82.8% and memory access patterns performance was 88.4%. The best performance

obtained from the sequence of behavioral points (behavioral chains) by 98.64% which was still lower

than the proposed method performance (99.05%). Besides, the proposed method's feature space is much

lower than the other methods that are mentioned in table 4.

Table 4. Shows the proposed method performances against leading methods in the literature
Paper Year Feature Representation ML Algorithm Performance(%)

Luckett et al. [8] 2016 System call timing behaviors Neural Network 82.8

Xu et al. [10] 2017 Memory access patterns RF 88.4

Rosli et al. [11] 2019 Behavior-based registry data K-Means 90

Bahador et al.[12] 2019 Behavioral signatures on performance counter traces RF 82.65

Zhang et al. [13] 2020 Sequence of behavioral points LSTM 98.64

Sun et al. [14] 2021 Classified behavior graphs SVM 97

Proposed Method 2022 Behavioral-based file-registry operations RF 99.05

7. Conclusion

The number, severity, and complexity of malware have been increasing rapidly. To protect the computer

based systems from malware, malware needs to be detected whenever it infect the victim system.

However, the detection of malware becomes harder since new malware variants are more intelligent and

use obfuscation techniques to hide themselves from the malware detection systems.

This paper proposed a new behavioral-based malware detection method based on file-registry

operations. Only the operations which are performed on specific file and registry locations are

considered during the features generation. These features are seen frequently in malware samples rarely

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

145

seen in benign samples. Hence, most of the malware variants are detected with our approach. After

features are generated, information gain is used for feature selection. Finally, several machine learning

classifiers including RF, J48, AdaBoost, SLR, SMO, and KNN are used for classification. The test case

is performed on Windows virtual machines 7, 8, and 10. Proposed method could effectively detect the

malware with high percentages. For instance, 98.8% true positive rate, 0% false positive rate, and

99.05% accuracy are obtained to distinguish malware from cleanware. As a future study, we aim to

analyze more malware and benign samples, and also examine network related features by using

Wireshark.

References

[1] Ö. Aslan, R. Samet, "Investigation of possibilities to detect malware using existing tools,"

IEEE/ACS 14th International Conference on Computer Systems and Applications

(AICCSA) pp. 1277-1284, October 2017.

[2] Ö. Aslan and R.Samet, "A comprehensive review on malware detection approaches," IEEE

Access, 8, 6249-6271, 2020.

[3] A. Souri and R. Hosseini, "A state-of-the-art survey of malware detection approaches using data

mining techniques," Human-centric Computing and Information Sciences, 8(1), 1-22, 2018.

[4] Ö. Aslan, R. Samet and Ö.Ö. Tanrıöver, "Using a Subtractive Center Behavioral Model to

Detect Malware, " Security and Communication Networks, 2020.

[5] J. Nazari, "Defense and Detection Strategies against Internet Worms," Artech House, 2004.

[6] S. Sparks and J. Butler. "Shadow walker: Raising the bar for rootkit detection," Black Hat

Japan, 11(63), 504-533, 2005.

[7] K. Savage, P. Coogan, and H. Lau, "The evolution of ransomware," Symantec report, August

2015, available at: https://its.fsu.edu/sites/g/files/imported/storage/images/information-

security-and-privacy-office/the-evolution-of-ransomware.pdf.

[8] P. Luckett, J. T. McDonald and J. Dawson, "Neural network analysis of system call timing for

rootkit detection," Cybersecurity Symposium (CYBERSEC) (pp. 1-6), April 2016.

[9] Ö. Aslan, "Performance comparison of static malware analysis tools versus antivirus scanners

to detect malware," In International Multidisciplinary Studies Congress (IMSC), 2017.

[10] Z. Xu, S. Ray, P. Subramanyan and S. Malik. "Malware detection using machine learning based

analysis of virtual memory access patterns," In Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017 (pp. 169-174), March 2017.

[11] N.A. Rosli, W. Yassin, M. A. Faizal and S. R. Selamat. "Clustering Analysis for Malware

Behavior Detection using Registry Data," International Journal of Advanced Computer

Science and Applications (IJACSA), 10, 12, 2019.

[12] M. B. Bahador, M. Abadi and A. Tajoddin, "HLMD: a signature-based approach to hardware-

level behavioral malware detection and classification," The Journal of

Supercomputing, 75(8), 5551-5582, 2019.

[13] H. Zhang, W. Zhang, Z. Lv, A. K. Sangaiah, T. Huang and N. Chilamkurti. MALDC: "A depth

detection method for malware based on behavior chains," World Wide Web, 23(2), 991-

1010, 2020.

[14] Y. Sun, A. K. Bashir, U. Tariq and F. Xiao, "Effective malware detection scheme based on

classified behavior graph in IIoT," Ad Hoc Networks, 102558, 2021.

[15] N. A. Azeez, O. E. Odufuwa, S. Misra, J. Oluranti and R. Damaševičius, "Windows PE malware

detection using ensemble learning," In Informatics, (Vol. 8, No. 1, p. 10). Multidisciplinary

Digital Publishing Institute, 2021.

[16] V. Rey, P. M. Sánchez, A. H. Celdrán and G. Bovet, "Federated learning for malware detection

in iot devices," Computer Networks, 108693, 2022.

Sakarya University Journal of Computer and Information Sciences

Aslan and Akın

146

[17] N. Usman, S. Usman, F. Khan, M. A. Jan, A. Sajid, M. Alazab and P. Watters, "Intelligent

dynamic malware detection using machine learning in IP reputation for forensics data

analytics," Future Generation Computer Systems, 118, 124-141, 2021.

[18] L. N. Vu, and S. Jung, "AdMat: A CNN-on-matrix approach to Android malware detection and

classification," IEEE Access, 9, 39680-39694, 2021.

[19] [Online]. Available: https://www.virusign.com/ [Accessed in November 2021].

[20] [Online]. Available: https://malshare.com/ [Accessed in November 2021].

[21] [Online]. Available: http://www.tekdefense.com/ [Accessed in November 2021].

https://www.virusign.com/
https://malshare.com/
http://www.tekdefense.com/

