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Deep Learning-based Classification of Breast Tumors using Raw
Microwave Imaging Data

Highlights

7

« Microwave imaging (MWI), combined with a novel convolutional neural network (CNN) model, offers a cost-
effective and efficient approach for detecting and classifying breast tumor scatterers.

«» The proposed CNN model, trained and tested on MWI simulation data, achieves exceptional accuracy rates
of 99.61% and 99.75% for tumor detection and classification, respectively.

< The integration of microwave imaging and deep learning techniques provides a cutting-edge computer-aided
diagnosis (CAD) solution for breast cancer, enabling swift and precise interpretation of measurements to
support early-stage treatment decisions.

- - - =

Graphical Abstract

This study proposes a novel convolutional neural network (CNN) model for the detection and classification of tumor
scatterers in microwave imaging (MWI) simulation data, aiming to overcome the limitations of existing breast
screening techniques by leveraging the potential of MWI as a cost-effective and non-ionizing imaging modality.
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Figure. Data generation and classification procedure using CNN model
Aim

The aim of this study is tggfropose anovel CNN model for detecting and classifying tumor scatterers in MWI
simulation data. }\ N

Design & Methodofogy

The study involved the development of a comprehensive dataset and the construction of a multi-layered CNN model
with five convolutional blocks.

Originality

The originality of this research lies in the development of a CNN model specifically tailored for the analysis of MWI
simulation data.

Findings

The findings demonstrate the effectiveness of the proposed CNN model in accurately detecting and classifying tumor
scatterers in MWI simulation data.

Conclusion

In conclusion, this study presents a novel CNN model for the detection and classification of tumor scatterers in MWI
simulation data, highlighting the potential of MWI as a valuable imaging modality for breast cancer detection.
Declaration of Ethical Standards
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ABSTRACT

and cost, have motlvated researchers to investigate novel imaging and detection modalltles
extensively studied due to its low-cost structure and ability to perform measurements usin

positions were developed, and the simulation results were derived using

presented CNN structure was trained using 8000 pieces of simulation data, an
accuracy rates of 99.61% and 99.75%, respectively. The proposed model is
dataset in terms of classification performance. The results demonstrate that th

well in detecting and classifying tumor scatterers.

Keywords: Breast cancer, classification, convolutional neg’al n

1. INTRODUCTION

Breast cancer is a slow-growing type of cancer that can
lead to fatal outcomes when it metastasizes to other
tissues and organs, making early diagnosis and treatment
of breast tumors crucial [1], [2]. Breast screening
currently relies heavily on primary modalities such as x-
ray mammography, ultrasonography imaging (USI), and
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r (SAR) technique. The
ta were used for testing, achieving
-of-the-art models on the same
oposed Modél effectively performs effectively

eep learfitng, microwave imaging.

rilerini Kullanarak

yaygmn tiirdeki kotii huylu tiimor hastaligidir. Meme taramasi, x-1§1n1
ve ultrasonografi gibi gii¢lii teknikleri yogun bir sekilde kullanir. Bu teknolojilerin

anseri, stmiflandirma, evrisimli sinir aglari, derin 6grenme, mikrodalga goriintiileme.

magnetic resonance imaging (MRI) [2], [3]. Since x-ray
mammaography utilizes high-frequency ionizing waves at
low energy levels, it cannot be used repetitively on
patients. Additionally, the requirement to compress the
patient’s  breast for better imaging and the
recommendation to use it for women over the age of 40
(since the breast structures typically contain adipose
tissue) are among the drawbacks of the x-ray. While MRI
can be used to overcome many of the drawbacks of
mammography, it does have some adverse
circumstances, including discomfort and prolonged



measurement time, limited mobility, a high cost, and the
potential for unnecessary biopsies. Although it may
appear to be an alternative to these methods, the USI,
which employs sound waves to image at frequencies
beyond the hearing range of the human ear, can only
detect the presence of neoplasms within the breast
structure and requires additional modalities such as x-ray
mammography, MRI, or biopsy for more accurate results.
Microwave imaging (MWI), which is widely used in
underground, through-the-wall, under-rubble, and tree-
interior imaging, as well as hidden object identification
and border surveillance in the defense applications, has
tremendous potential in the imaging and treatment of
diseases. Due to its low cost, portability, low energy
level, and low spectral range, MWI overcomes the
disadvantages of traditional techniques and has gained
attention from researchers studying early-stage breast
cancer detection [4]-[19].

The most critical procedure in computer-aided diagnosis
(CAD) is the classification of medical images. While
recent advancements in medical image classification
techniques with machine learning tools assist doctors and
specialists, it provides convenience in monitoring and
managing disease progression. Rapid and accurate
interpretation of the measurements enables rapid and
precise treatment decisions to be made during the ear&
stages. Furthermore, knowing the number of tumorgi

the raw measurement data prior to producing the resultafit
image assists in appropriately interpreting the image.

In the literature, numerous researches

support vector machines (SVM) to extr.
classify mammograms using
shifting selection (SFFS) te

e imaging (DCE-MRI) method. In the
rve (TIC) categorization using data with
and 71 benign breast lesions, sensitivity,
specificity, and accuracy values were 83.5%, 80.3%, and
82.1%, respectively [23]. Abdel-Nasser et al. [25]
demonstrated a random forest classifier model for
classifying USI that contained 31 malignant and 28
benign cases with an AUC of 0.99. Conceicao et al. [27]
extracted the features from the radar target signature
(RTS) data using principal component analysis (PCA)
and classified the extracted features based on their size
and shape using a novel SVM-based classification
approach. They classified the size of 352 breast tumors

with an accuracy of 94.89% and 86.93% for coarse and
fine groups, respectively [27].

The focus of this research is to present a novel
convolutional neural network (CNN) model for
determining the number of breast tumors in a data set
using the numerical breast model. A numerical breast
model was built to accomplish this, and backscattered
electric field data for 10001 distinct scenarios were
computed using the monostatic synthetic aperture radar
(SAR) approach. Following that, a CNN model with five
convolutional blocks was constructed. Fhe proposed
model was trained employing 80% of the and tested
on 20% of the data to demonstrate the per

to that of Xception [
DenseNet201 [30] models.
validation results for th

c aperture radar (SAR) approach.
AR is a technique that involves rotating the

prede rmined angles and acquiring the scattering

gai#fC field. In SAR, the object to be imaged remains
stationary and concentrically aligned with the transceiver
antenna [31]. Figure 1 depicts the numerical setup based
on the monostatic SAR concept, which includes
transceiver antennas and the breast model to generate
breast imaging data.
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Figure 1. Configuration for the generation of electric field
data using the SAR approach



In the numerical setup illustrated in Figure 1, a
monostatic measurement setup consisting of a skin
structure formed by ns discrete perfect point scatterers, a
tumor formed by n: discrete scatterers, and transceiver
antennas positioned concentrically with the skin may be
observed. The electric field reflected by the skin
scatterers was assumed to have an amplitude twenty
times that of the tumor scatterers. The skin radius was s,
the distance between the antenna and the center was
determined as ra > rs + Dgap, and the position of the tumor
was randomly chosen as 0 < r; < 2rs. Dgap denotes the
space between the antenna and the surface of the skin.
The antenna rotates in a counterclockwise direction at an
angle of 0 < ¢ < 2. The radiation pattern of the antenna
is considered to cover the entire imaging region. In the
SAR principle, the scattered electric field from each
discrete scatter for any angle and frequency value is
calculated according to Equation (1) [31].

E(f.¢)=Ae " 1)
In Equation (1), Ao, f, v, R, and ¢ parameters denote the
amplitude of the scattered electric field, the frequency,
the velocity of the electromagnetic wave within a
medium, the Euclidean distance function, and the a@’
formed by the antenna with respect to the x-aXig
respectively. Equation (2) defined the Euclidean functiql
denoted by R [31].

R(¢)= \/( Xy — Rxcosqﬁ)2 +(Ya

speed of 3
mediu

V= . (3)

While an electromagnetic wave propagates with the
speed of light (c) in a vacuum, it travels at a slower speed
in a dielectric medium. For the sake of simplicity, the
environment covering the numerical model is considered
to be a homogeneous vacuum medium. Equation (1) can
be rearranged as given in Equation (4) using these
assumptions [9].

j ﬂ]w)

Es(f,¢):zn:Ae_( ‘ @)
i=1

M and R; are the numbers of scatterers in the imaging area
and the Euclidean distance between the antenna and the
scatterers, respectively, in Equation (4). The frequency-
domain calculations were performed using stepped
frequency continuous wave (SFCW). Each frequency
sweep in SFCW was handled by N frequencies (fi, f2, f3,
..., Tn). Thus, using Equation (4), scatteregr electric field
data (Es[f, ¢]) was obtained for all
fundamental parameters and values utiliz
the data are listed in Table 1'

o
Table 1. Variables and valygs for

scattered electrical field

Variable Quantity
Lower Frequency 1 GHz
Upper Freqyen 64 GHz
Number®F Fréq 128
(0,0

7cm

2¢cm

10

360

360

1 mm

er of Scenarios 10001

.. 0<rt<rs,

ga0r Position (R, ¢) 0<¢<2n
Number of Tumors 1-5
Amplitudes for Tumor Scatterers (V/m) 0-0.05

The scattered electric field data at various positions,
amplitudes, and tumor count were computed based on the
SAR approach using the values in Table 1. As shown in
Table 1, the data set was collected using an SFCW with
128 frequencies between 1 GHz to 64 GHz. The range
resolution for theoretical data was computed using
Equation (5) by considering the frequency range [31].

c
Ar = — 5
B ®)

The range resolution, which is a measure of the
distinctness between the two scatterers, was calculated to
be 2.4 mm using Equation (5). Thus, each discrete step
of the signal converted from the frequency domain to the
time domain indicates the distance of 2.4 mm, and since
the computations are performed for 128 frequency steps,
the resulting data provide information on the area in the
range of 30.72 cm. Due to the fact that the area outside
the breast model is irrelevant, only 61 data containing
information about the imaging area were extracted from
the data. As a result, the dimensions of the electric field
data matrix Es were obtained as 61x360.
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Figure 2. The proposed CNN-based classifier model
3. CLASSIFICATION OF SCATTERED only amplitude informati®h was
ELECTRIC FIELD DATA images. The generated i

Convolutional neural networks (CNNs) are the most the amplitude of the
extensively used classification and regression networks ~ 100%100 pixels to be use
in deep learning, particularly for two-dimensional data  Table 2 presen i
such as images and videos. The deep learning concepthas ~ model dgg
gained the attention of researchers studying in the  Figure 2.
machine learning field. Deep learning models extract the
features of the data in the network, allowing for direct s and d classifier. The initial convolution
utilization of the raw data. In this study, a CNN model is model reduces redundant data
constructed for estimating the number of tumors usiRg ing the features of the 100x100 image used
the scattered electric field data. The data for the comfile maintain optimal performance during
backscattered electric field obtained using numeri esting, the kernel sizes in all convolution
set to be 3x3, and maximum pooling layers
gmployed. In blocks #4 and #5, it is aimed to obtain
¥ features by increasing the number of convolution
layers and their depth. To avoid overfitting, batch
normalization was utilized in the convolution blocks #1,

Output Shape  Additional Properties Parameters
100, 100, 16 Filter Size: 3x3 91
100, 100, 16 64
100, 100, 16 0
50, 50, 16 Pool Size: 2x2 0
50, 50, 32 Filter Size: 3x3 688
inear Unit Activation Layer 50, 50, 32 0
MaxigAum 2D Pooling Layer 25, 25, 32 Pool Size: 2x2 0
thwise Separable 2D Convolution Layer 25, 25, 64 Filter Size: 3x3 2400
atch Normalization Layer 25, 25, 64 256
Rectified Linear Unit Activation Layer 25, 25, 64 0
Maximum 2D Pooling Layer 12,12, 64 Pool Size: 2x2 0
Depthwise Separable 2D Convolution Layer 12,12, 128 Filter Size: 3x3 8896
Depthwise Separable 2D Convolution Layer 12,12, 128 Filter Size: 3x3 17664
Rectified Linear Unit Activation Layer 12,12,128 0
Maximum 2D Pooling Layer Layer 11,131,128 Pool Size: 2x2, Stride: 1x1 0
Depthwise Separable 2D Convolution Layer 11, 11, 256 Filter Size: 3x3 34176
Depthwise Separable 2D Convolution Layer 11, 11, 256 Filter Size: 3x3 68096
18 Convolution Block #5 Depthwise Separable 2D Convolution Layer 11, 11, 256 Filter Size: 3x3 68096
19 Batch Normalization Layer 11,11, 256 1024
_20 Rectified Linear Unit Activation Layer 11,11, 256 0
21 Maximum 2D Pooling Layer 5,5, 256 Pool Size: 2x2 0
22 Flatten Layer 6400 0
23 Fully Connected Layer 2048 13109248
24 . Dropout Layer 2048 Dropout Rate: 0.25 0
g5 Classifier Block Fully Connected Layer 2048 4196352
26 Dropout Layer 2048 Dropout Rate: 0.25 0

27 Output Layer 5 Activation: SoftMax 10245




#3, and #5, while dropout layers were utilized in the
classifier block between the dense layers. The variable
Number of Tumors in Table 1 indicates the number of
classes in the proposed model.

The Adam optimization approach with a learning rate of
0.001 and the He uniform weight initializer are used
during the training phase. The network was trained using
8000 randomly chosen data points from a total of 10001,
and the model was tested using the remaining data points.
The data for each class were chosen to have equal
proportions. The model was trained on an Nvidia RTX
2060 GPU. The training procedure was performed
several times with randomly selected new training and
test data until the desired level of training and test
accuracy was achieved. To evaluate the performance of
the developed model, Xception [28], ResNet152V2 [29]
and DenseNet201 [30] models were utilized, with all
models performing five-foldcross-validation. State-of-
the-art models were trained utilizing pre-trained weights
from the ImageNet [32] data set, as well as the data set
collected in this study.

4. RESULTS AND DISCUSSION

Equation (4) and the values in Table 1 were used
generate the backscattered electric field data for egc
class, and the amplitude information was scaled
100100 pixels for network training. Figure, 3a
illustrates randomly chosen images from the ra ri
field data for one to five tumors.

©

Figure 3. Raw data samples for (a) 1, (b) 2, (c) 3, (d) 4, and
(e) 5 tumors in various positions

8000 randomly selected data points, some
illustrated in Figure 3. The mode jeved
99.75% accuracy for traig’ L
resulting from the training. i

the categorical cross-en
graphs for training an tin
—~

Categorical Cross Entropy Loss

Accuracy

100 25 150 175 200 25 250

Epochs

(b)
Figure 4. (a) Categorical cross-entropy loss and (b) accuracy
curves for train and test process

As illustrated in Figure 4, there are peaks in both loss and
accuracy curves at certain epochs.

Table 3. The performance measures of the proposed model for training and test data

Class Precision Recall F1-score Support

Train Test Train Test Train Test Train Test

1 1.000 1.000 1.000 1.000 1.000 1.000 1616 404

2 0.997 1.000 1.000 1.000 0.998 1.000 1582 396

3 0.994 0.995 0.997 1.000 0.995 0.997 1522 381

4 0.991 0.993 0.995 0.995 0.993 0.994 1682 421

5 0.999 1.000 0.989 0.992 0.994 0.996 1598 399
Average 0.997 0.998 0.997 0.998 0.997 0.998 8000 2001




The model becomes trapped in a local minimum in the
solution space at specific points yet continues to improve
the findings by correcting its error in subsequent epochs.
Over the 300 epochs, the model provided a generally
steady evolution. The performance metrics of the
proposed model for both training and test data are
summarized in Table 3. The support column indicates the
number of data points used to evaluate the model. As
shown in Table 3, test data containing 1, 2, and 3 tumors
were successfully classified. However, metrics for data
with four and five classes were obtained at a lower level.
Table 4 contains a confusion matrix table related to the
classification of test data.

Table 4. Confusion matrix table obtained by the proposed
model for test data

Predicted Classes

1 2 3 4 5
1 404 0 0 0 0
28 2 0 396 0 0 0
223 o0 0 38 0 0
FO 4 0 0 2 419 0
5 0 0 0 3 396

As seen in Table 4, the network with a lower

misclassification rate of up to three tumors %&
misclassify as the number of tumors increases. The tabjé
indicates that the proposed model made the highegi

effective at classifying microwave images of
verify the success of the model, five-folgcross-

was performed on both the model and the state-of-the-art
models. For five-foldcross validation, the epoch number
and batch size were adjusted at 200 and 64, respectively.
The cross-validation accuracies of the models are listed
in Table 5. According to Table 5, state-of-the-art models
have a lower accuracy when pre-trained weights are used,
but a higher accuracy is obtained when all model weights
are optimized utilizing the dataset. While the model
proposed has the most accuracy in the third and fifth
folds, the ResNet152V2 model achieves the most
accuracy in the second and fourth folds, and the

in the fourth fold.
that the accuracy value

of the mo st CCE loss value is not higher.

ss training time than the state-of-the-art
difference between using pre-trained

be bet§iveen 2.6 and 3.4 times for the other models. Table
Begfpares the number of parameters of the models used
in this study.

Table 5. five-foldcross-validation accuiacies oT¥Qe proposed model, Xception, ResNet152V2 and DenseNet201

Accuracy (%)

Fold #

ResNet152V?2 DenseNet201

Our Model

" Xchgtion
i N Trained Pre-trained Fully Trained Pre-trained  Fully Trained

© 98.90 85.81 98.55 91.20 99.00
98.55 86.35 99.05 91.75 98.90
98.95 86.05 99.00 91.15 98.80
99.00 87.00 99.15 91.55 99.10
98.85 85.55 98.90 90.65 99.05

98.85+0.18  86.15+0.56  98.93+0.23  91.26+0.42  98.97+0.12

-validation CCE losses of the proposed model, Xception, ResNet152V2 and DenseNet201
Loss (Categorical Cross-Entropy (CCE))
Fold # Xception ResNet152V?2 DenseNet201

Our Model

Pre-trained  Fully Trained Pre-trained Fully Trained Pre-trained Fully Trained

1 0.10 1.02 0.09 1.22 0.11 0.91 0.10

2 0.06 1.10 0.10 1.53 0.06 0.92 0.07

3 0.11 0.86 0.06 1.01 0.07 0.91 0.08

4 0.05 1.04 0.08 1.12 0.08 0.92 0.06

5 0.08 0.81 0.08 1.63 0.06 0.91 0.05
Average  0.11+0.03  0.97+0.12 0.08+0.01 1.30+0.27 0.08+0.02 0.91+0.01 0.07+0.02




Table 7. five-foldcross-validation durations of the proposed model, Xception, ResNet152V2 and DenseNet201
Training Time (sec)

Fold # our Model Xception ResNet152V2 DenseNet201
Pre-trained Fully Trained Pre-trained Fully Trained Pre-trained Fully Trained
1 1596.85 1840.50 6277.41 4993.03 14092.49 3093.26 8262.26
2 1596.20 1835.15 6279.95 4846.27 14234.79 2871.76 9079.41
3 1580.99 1849.53 6206.04 4795.85 13912.86 2945.62 8883.86
4 1598.72 1857.19 6320.46 4800.95 13994.94 2941.37 8926.51
5 1598.91 1841.86 6340.98 4795.71 13794.65 2945.23 9196.00

Average  1594.34+7.55  1844.85+8.60  6284.97+51.74  4846.36+84.69  14005.95+168.29  2959.45+81.11  8869.60+361.55

Table 8. Parameter comparison of the proposed model, Xception, ResNet152V2 and DenseNet201

Model Number of Trainable Parameters
Our Model 17,516,624
Xception with ImageNet Weights 18,880,517
P Fully Trained 20,817,197 °
with ImageNet Weights 33,560,581 o
ResNet152v2 Fully Trained 58,198,149
with ImageNet Weights 17,700,869
DenseNet201 Fully Trained 18,102,533 A

There are fewer parameters in the proposed model than ~ AUTHORg
in the other three models. The difference in the number  pustafaSBerka
of parameters between the pre-trained and fully trained
structures in state-of-the-art models is due to the number
of connections in the final layers of the models. As
illustrated in Tables 5 and 8, a large number of
parameters does not necessarily imply the best accurac®
It is demonstrated that the proposed model may*®hg
successfully applied to the classification of microwaye
imaging data.

: Conceived and designed the
rformed the analysis, wrote

6. CONCLUSION There is no conflict of interest in this study.

In this study, a multi-layered CNN
developed to be used along with the mic

method in the detection of tumo i
in breast cancer. The data set
generated within the scope i sing numerical
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