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Abstract 

Collaborative filtering algorithms are efficient tools for providing recommendations with reasonable accuracy 

performances to individuals. However, the previous research has realized that these algorithms propagate an 

undesirable bias in favor of blockbuster items in their recommendations, resulting in recommendation lists 

dominated by such items. As one most prominent types of collaborative filtering approaches, neighborhood-based 

algorithms aim to produce recommendations based on neighborhoods constructed by considering similarities 

between users/items. Therefore, the utilized similarity function and the size of the neighborhoods are critical 

parameters for their recommendation performances. This study considers three well-known similarity functions, 

i.e., Pearson, Cosine, and Mean Squared Difference, and varying neighborhood sizes and observes how they affect 

the algorithms’ blockbuster bias and accuracy performances. The extensive experiments conducted on two 

benchmark data collections conclude that as the size of neighborhoods decreases, these algorithms generally 

become more vulnerable to blockbuster bias while their accuracy increases. The experimental works also show 

that using the Cosine metric is superior to other similarity functions in producing recommendations where 

blockbuster bias is treated more. However, it leads to having unqualified recommendations in terms of predictive 

accuracy as they are usually conflicting goals. 

Keywords: Recommender systems, neighborhood-based collaborative filtering, blockbuster bias, 

similarity function, neighborhood size.  

1. Introduction 

With the increasing Internet usage in recent years, individuals are inevitably faced with a vast amount 

of available information, making their decision-making process more complicated as they cannot find 

relevant services/products. Recommender systems (RSs) are highly-effective intelligent devices to cope 

with such an information overload problem [1]; since they aim to guide individuals by suggesting a list 

of preferable contents that are filtered out based on their preferences in the past [2]. Due to their 

significant advantages for both business and user sides, they have become more widespread in many 

digital systems on the Internet in different areas such as music1, e-commerce2, hotel accommodation3, 

movies4, etc.   

In a typical recommendation scenario, a user (also called the active user) requests from the RS a 

numerical prediction for an item (also called the target item) untasted by himself or a ranked 

recommendation list containing preferable items. Researchers have recently introduced several methods 

for these recommendation tasks, such as collaborative filtering (CF) [3], content- or demographic-

oriented filtering [4], or hybrid strategies [5]. CF techniques are the most prevalent among these methods 

as they are highly effective in achieving accurate recommendations. Also, studies have long been 

focusing on enhancing these algorithms in quantitative terms such as scalability, coverage, and accuracy. 

Finally, according to the following mechanism, CF techniques are commonly classified as memory- or 

model-based. While former methods usually provide recommendations based on similarities between 

users/items, the latter construct a model of the preference data for producing recommendations [2].  

 
1 https://spotify.com/ 
2 https://www.ebay.com/ 
3 https://www.booking.com/ 
4 https://www.netflix.com/ 
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As a prominent type of memory-based CF approaches, k-nearest neighbor (kNN) CF algorithms assume 

that people who have similar tastes in the past will show similar behaviors in the future [6]. Based on 

this assumption, they provide recommendations based on the neighborhoods constructed with the most 

similar users (also known as the user-based kNN) or items (also known as the item-based kNN) by 

performing a user-item rating matrix that includes the past choices of individuals on items [3]. The 

recommendation process of kNN CF algorithms is usually a two-step. Initially, it is located like-minded 

individuals called neighbors, and then a prediction score is computed based on the past preferences of 

neighbors on the target item. Also, it is a known phenomenon that their general success is firmly bound 

to the phase of neighborhood formation [7]. Therefore, the previous research has verified that the utilized 

similarity function and considered neighborhood size become vital parameters in properly locating 

neighborhoods, and the accuracy performance of the kNN algorithms is strongly related to how the 

tuning of such parameters [8]–[11]. 

CF algorithms are generally evaluated based on their accuracy performances. However, recent research 

on RSs has realized that CF algorithms are strongly biased towards popular and highly-liked items, also 

called the blockbuster items [12], [13], in their produced referrals due to their internal mechanism or 

imbalances in the rating data. This issue leads to having ranked lists where such a few blockbuster items 

in the catalog have appeared too often, while other vast items can not get the deserved chance even when 

they might be desirable for users. Unfortunately, such blockbuster bias propagation of the CF algorithms 

leads to low-qualified recommendations for beyond-accuracy dimensions like coverage and diversity 

[12]. In addition, this bias leads to having a system where unfair competition occurs, as the products of 

different providers are not equally treated. Moreover, this issue makes the system more unguarded to 

shilling attacks or social bots of malicious stakeholders to increase the visibility of their products and 

thus sale rates. Therefore, recent research on RSs has aimed to profoundly investigate the impacts of 

such a bias against blockbuster or popular items in recommendations and develop beneficial treatment 

approaches to counteract its adverse effects [13]-[15].   

The presented study comprehensively evaluates how the blockbuster bias propagated by the kNN 

algorithms differentiates based on their parameter tuning. In the following, we summarize the main 

contributions of our study. 

1. We consider three famous similarity functions: Pearson Correlation Coefficient, Cosine 

Similarity, and Mean Squared Difference Similarity. We observe how they affect the 

blockbuster bias of two prominent kNN CF methods, i.e., user- and item-based kNN, via an 

adopted efficient blockbuster bias evaluation protocol on two real-world datasets.  

2. We also consider varying neighborhood sizes when applying kNN algorithms and investigate 

how they are related to the blockbuster bias in produced recommendations.  

3. In addition, we analyze how these parameters of kNN algorithms affect the quality of the 

provided recommendation lists in terms of predictive accuracy.  

We organize the remaining of this paper as follows: Section 2 gives a literature review on bias issues, 

especially those towards blockbuster items, in RSs. Section 3 gives some background information about 

our study, including the working mechanism of the kNN CF algorithms and blockbuster items. Section 

4 presents the experimental studies realized to analyze how blockbuster bias performance of the kNN 

CF algorithms changes based on their parameter-tuning. Finally, Section 5 concludes the presented work 

and introduces our future directions.  

2. Related work 

In recent years, one of the main concerns of RSs has been exploring bias issues in recommendations, 

such as position [16], selection [17], conformity [18], and popularity [19], and treating their adverse 

effects on recommendation quality [14], [20], [21].  

Popularity bias is the most prominent among such bias types, and it is known as the intrinsic tendency 

of recommendation algorithms to recommend popular items too frequently while not giving the 

unpopular ones enough chance [19]. Therefore, previous research has primarily aimed at exploring the 
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degree of popularity bias induced by different recommendation strategies for different areas like music 

[22], movies [23], and online education [24]. Also, several studies attempt to explore how the parameter-

tuning of some CF algorithms affects their popularity bias performance [19], [24]. Besides, several 

previous research attempts to develop efficient procedures to achieve more qualified referrals by treating 

this problem. The existing popularity bias treatment approaches are usually classified as pre-processing, 

in-processing, and post-processing [21], according to how they are involved in the phase of 

recommendation generation. More specifically, pre-processing methods aim to decrease the degree of 

imbalances in the original rating matrix where algorithms are trained [25]. The methods of in-processing 

try to modify the mechanism of the recommendation algorithms for achieving recommendations where 

popularity bias is treated [26]. Finally, post-processing methods create new recommendation lists or re-

sort products in the produced ranked lists [21], [27].  

In a recent study [12], the authors have evaluated item popularity from a different perspective and 

hypothesized that the popularity of a product does not always mean that it is strongly preferable for 

users or vice versa. Therefore, they consider blockbuster items, both popular and highly-liked by users, 

and show that some well-known recommendation algorithms, including neighborhood-based CF ones, 

are unfortunately biased in favor of such blockbuster items in generated recommendations. In other 

words, they have introduced a new bias type, referred to as blockbuster bias, in recommendations. To 

achieve more diverse recommendations by mitigating this bias issue, they have also introduced an 

efficient post-processing method that motivates re-sorting the produced ranked lists by penalizing 

blockbuster items [13]. However, more explorative analyses of blockbuster bias in recommendations 

are required by considering the parameters of the CF algorithms.   

Considering neighborhood-based algorithms are the most used CF methods, many previous studies have 

analyzed the parameterization of these algorithms on the success of recommendations [8], [9], [11]. 

However, these studies usually consider predictive accuracy and examine how the similarity function 

and neighborhood size affect the accuracy performances of the algorithms. Such analyses are also 

performed for different types of RSs, such as multi-criteria [28] and group recommender systems [29].  

However, to the best of our knowledge, there is no study investigating how such parameters of 

neighborhood-based algorithms influence their bias issues, especially those towards blockbuster items. 

Therefore, this study mainly aims to elaborate on how the blockbuster bias of the neighborhood-based 

CF methods changes according to their parameter-tuning.   

3. Preliminaries 

This section introduces background information on the kNN CF algorithms, similarity functions, and 

blockbuster items. 

3.1. The kNN CF algorithms  

In traditional RSs, the kNN algorithms are the most prominent approaches to providing referrals to 

individuals. They operate a user-item rating matrix that contains preference information from n users to 

m items. Such preferences are mostly numerical values in a specified rating scale or sometimes binary 

ratings such as like or dislike, depending on the choices of the service providers. During an online 

interaction with an RS, an active user (𝒂) requests a prediction value for a target item (𝒒) after sharing 

her available preferences. The kNN algorithms perform the prediction estimation process in two steps: 

(i) initially determining neighbors by calculating correlations/similarities between 𝒂 and all other 

available individuals in the system, and then (ii) computing a prediction value as a weighted average 

based on neighbors' ratings on 𝒒. Such correlations between 𝒂 and any user 𝒖 can be computed using 

various methods referred to as similarity functions [8], [30]. In this study, we consider three famous 

similarity functions explained in detail in the following.  

• Pearson Correlation Coefficient (Pearson): This similarity function is a type of correlation 

coefficient that represents the linear relationships between two variables measured on the same 

ratio scale [31]. Also, the Pearson measures the strength of the association between two 
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continuous variables. More formally, in RSs domain, it calculates the similarity (𝒘𝒂𝒖) between 

𝒂 and any user 𝒖, as in the formula given in Equation 1.   

𝒘𝒂𝒖 =
∑ [(𝒓𝒂𝒊 − 𝒓𝒂̅̅ ̅)(𝒓𝒖𝒊 − 𝒓𝒖̅̅ ̅)]𝒊∈𝑰𝒂𝒖

√∑ (𝒓𝒂𝒊 − 𝒓𝒂̅̅ ̅)𝟐
𝒊∈𝑰𝒂𝒖 √∑ (𝒓𝒖𝒊 − 𝒓𝒖̅̅ ̅)𝟐

𝒊∈𝑰𝒂𝒖

 
(1) 

where 𝒓𝒂𝒊 and 𝒓𝒖𝒊 denote the ratings for the item 𝒊 by users 𝒂 and 𝒖, respectively. Similarly, 𝒓𝒖̅̅ ̅ 

and 𝒓𝒂̅̅ ̅ demonstrate the average votes of 𝒖 and 𝒂, respectively, and 𝑰𝒂𝒖 indicates the set of co-

voted items by both 𝒂 and 𝒖.  

To calculate the similarity value (𝒘𝒒𝒕) between 𝒒 and any item 𝒕, the Pearson function can be 

modified as in the formula given in Equation 2. 

𝒘𝒒𝒕 =
∑ [(𝒓𝒖𝒒 − 𝒓𝒒̅̅ ̅)(𝒓𝒖𝒕 − 𝒓�̅�)]𝒖∈𝑼𝒒𝒕

√∑ (𝒓𝒖𝒒 − 𝒓𝒒̅̅ ̅)𝟐
𝒖∈𝑼𝒒𝒕 √∑ (𝒓𝒖𝒕 − 𝒓�̅�)𝟐

𝒖∈𝑼𝒒𝒕

 
(2) 

where 𝒓𝒖𝒒 and 𝒓𝒖𝒕 are the votes for 𝒖 on items 𝒒 and 𝒕, respectively, and 𝒓𝒒̅̅ ̅ and 𝒓�̅� denote the 

average votes of 𝒒 and 𝒕, respectively. The 𝑼𝒒𝒕 denotes the set of individuals who rated both 𝒒 

and 𝒕.  

• Cosine similarity (Cosine): In traditional settings, the Cosine metric calculates the cosine of 

the angle observed between two vectors in n-dimensional [9]. It can be considered the dot 

product of such vectors divided by the product of their magnitudes or lengths. Therefore, the 

Pearson explained above can be considered as centered cosine similarity. More formally, in an 

RS scenario,  it calculates the similarity (𝒘𝒂𝒖) between 𝒂 and any user 𝒖, as in the formula given 

in Equation 3.   

𝒘𝒂𝒖 =
∑ 𝒓𝒂𝒊 𝒓𝒖𝒊𝒊∈𝑰𝒂𝒖

√∑ 𝒓𝒂𝒊
𝟐

𝒊∈𝑰𝒂𝒖 √∑ 𝒓𝒖𝒊
𝟐

𝒊∈𝑰𝒂𝒖

 
(3) 

or the similarity value (𝐰𝐪𝐭) between 𝐪 and any item 𝐭, as in the formula given in Equation 4. 

𝒘𝒒𝒕 =
∑ 𝒓𝒖𝒒 𝒓𝒖𝒕𝒖∈𝑼𝒒𝒕

√∑ 𝒓𝒖𝒒
𝟐

𝒖∈𝑼𝒒𝒕 √∑ 𝒓𝒖𝒕
𝟐

𝒖∈𝑼𝒒𝒕

 
(4) 

• Mean Squared Difference (MSD): It is based on the geometrical principles of the well-known 

Euclidean distance metric [8] and computes the similarity (𝒘𝒂𝒖) between 𝒂 and any user 𝒖, as 

in the following. 

𝒘𝒂𝒖 =
𝟏

(
𝟏

|𝑰𝒂𝒖|
∑ (𝒓𝒂𝒊 − 𝒓𝒖𝒊)

𝟐
𝒊∈𝑰𝒂𝒖

) + 𝟏
 

(5) 

or the similarity value (𝒘𝒒𝒕) between 𝒒 and any item 𝒕, as in the formula given in Equation 6. 

𝒘𝒒𝒕 =
𝟏

(
𝟏

|𝑼𝒒𝒕|
∑ (𝒓𝒖𝒒 − 𝒓𝒖𝒕)𝟐

𝒖∈𝑼𝒒𝒕
) + 𝟏

 
(6) 

where +𝟏 is utilized to shirk dividing by zero, which is the case of any co-rated item set not 

being constructed.  
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After computing similarities between users (or items), the most similar 𝒌 users (or items) are labeled as 

neighbors. The user-based kNN algorithm produces a prediction for 𝒂 on 𝒒, denoted with 𝒑𝒂𝒒, as a 

weighted average of the ratings of active user’s neighbors on 𝒒, using the formula given in Equation 7. 

𝒑𝒂𝒒 = 𝒓𝒂̅̅ ̅ +
∑ [(𝒓𝒖𝒒 − 𝒓𝒖̅̅ ̅) × 𝒘𝒂𝒖]𝒖∈𝒌

∑ 𝒘𝒂𝒖𝒖∈𝒌

 (7) 

or the item-based kNN estimates the  𝒑𝒂𝒒 value as the weighted average of the ratings of the target 

item’s neighbors on 𝒒, as in Equation 8. 

𝒑𝒂𝒒 = 𝒓𝒒̅̅ ̅ +
∑ [(𝒓𝒖𝒊 − 𝒓�̅�) × 𝒘𝒒𝒋]𝒋∈𝒌

∑ 𝒘𝒒𝒋𝒋∈𝒌

 (8) 

where 𝒘𝒂𝒖 represents the similarity weight between the user 𝒂 and 𝒖 for the user-based kNN algorithm. 

Similarly, for the item-based kNN algorithm, 𝒘𝒒𝒋 indicates the similarity weight between items 𝒒 and 

𝒋. 

3.1. Definition of blockbuster items  

In RSs, the blockbuster term is used to describe items that are both popular (i.e., evaluated by many 

users) and highly liked (i.e., evaluated with high ratings) at the same time. The literature has verified 

that recommendation algorithms are biased toward such blockbuster items and therefore produce 

recommendation lists a few blockbuster items have dominated [12]. On the other hand, many other items 

in the catalog are under-represented in the produced recommendation lists. Although recommending 

such blockbuster items seem to be desired for satisfying users, it can negatively affect the system's 

overall success for some critical aspects. For example, featuring only blockbuster items makes it difficult 

to discover new items and, therefore, negatively affects getting diverse recommendations. Also, any 

system subject to blockbuster bias might lack opportunities to discover more obscure items, resulting in 

a system where a few large service providers or well-known products have dominated. Therefore, such 

a system becomes more homogeneous; thus, it offers fewer options for creativity and diversification.  

Recent studies have analyzed potential bias issues in favor of blockbuster items in generated 

recommendations [12] and tried to alleviate its adverse effects to achieve more qualified 

recommendations on beyond-accuracy sides such as coverage, diversity, and novelty [13]. In doing so, 

their primary concern is how blockbuster items should be defined and formulated. A relevant study has 

proposed a practical formulation that labels whether a product/item is blockbuster or not based on the 

characteristics of its received votes. In this study, we have adopted this strategy in analyzing blockbuster 

bias performances of the kNN algorithms.  

This strategy mainly aims to calculate the blockbuster level for the item by incorporating its popularity 

and liking-degree through harmonic combination. Suppose that 𝑟𝑢𝑖 is the rating value of user 𝑢 on the 

item 𝑖, it initially determines a popularity value for the 𝑖 referred as to 𝑃𝑖 by considering total number 

of individuals who rated 𝑖, and a liking-degree value referred as to 𝑙𝑑𝑖 for 𝑖, as in the following. 

𝒍𝒅𝒊 =
∑ 𝒓𝒖𝒊𝒖∈𝑼𝒊

|𝑷𝒊|
 (9) 

where 𝑈𝑖 is the set of users who provided a rating for 𝑖.  

Accordingly, the obtained 𝑃𝑖 values inevitably vary a broader interval when compared to 𝑙𝑑𝑖. For the 

former, the maximum possible value corresponds to the total number of users, while for the latter, it 

equals the highest rating score in the used rating scale. Such differences in observed values require a 

normalization process to scale them on the same interval before operating a combination process. To 

this end, this strategy firstly transform 𝑃𝑖 and 𝑙𝑑𝑖 values into [0, 1] interval through well-known min-

max normalization, and then incorporates the normalized 𝑃�̅� and 𝑙𝑑𝑖
̅̅ ̅̅  using a harmonic combination 

procedure to calculate 𝐵𝑖 scores that indicate the blockbuster levels of the items, as in Equation 10. The 

followed harmonic combination strategy is also helpful in balancing the potential trade-off between such 
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two properties of items as they might be conflicting properties in some circumstances. In other words, 

the obtained 𝐵𝑖 scores properly reflect such two features of the products.  

𝑩𝒊 =
𝟐 × 𝑷𝒊

̅̅ ̅  × 𝒍𝒅𝒊
̅̅ ̅̅̅

𝑷𝒊
̅̅ ̅ + 𝒍𝒅𝒊

̅̅ ̅̅̅
 (10) 

4. Evaluating how kNN parameters affect their blockbuster bias performance 

This section presents and discusses the observed outcomes of extensive experimental studies performed 

to observe how the parameters of the kNN algorithms affect the blockbuster bias of these algorithms. 

The following sections give detailed information about the used data collections, evaluation metrics, 

experimental findings, and discussions.  

4.1. Datasets  

We have used two real-world publicly-available benchmark data collections in the conducted trials, 

namely  MovieLens-100K (MLP) and MovieLens-1M (MLP), released by GroupLens Research Team5. 

Both include users' preferences for movies, and the ratings are discrete and on a five-star rating scale. 

Table 1 presents the properties of the MLP and MLM datasets. 

Table 1 Details of used datasets 

Dataset Number of Users Number of items Number of Ratings Density (%) 

MLP 943 1,682 100,000 6.3 

MLM 6,040 3,952 1,000,209 4.3 

4.2. Evaluation protocols 

To analyze the blockbuster bias of the kNN algorithms, we have adopted Blockbuster Recommendation 

Frequency (BRF) metric that has recently been proposed to measure how much blockbuster items 

overwhelm the generated top-N ranked lists [13]. When using the BRF metric, it is required to categorize 

items in the catalog as the blockbuster or not. To this end, we sort items in descending order according 

to their blockbuster level scores calculated using the formula given in Equation 10, and split them into 

two different classes, i.e., head and tail, through the well-known Pareto principle [32]. Hence, items in 

the head class are the most blockbuster, which have received 20% of all ratings in the dataset. On the 

other hand, the tail class contains the remaining underappreciated items in the catalog.  

After determining head and tail item classes, the BRF measures the blockbuster bias degree of a 

recommendation algorithm in a two-step process: (i) It initially counts how many times head items have 

been observed in generated top-N lists, and then (ii) calculates its ratio to the total number of 

recommended items. Therefore, higher BRF results indicate more unwanted blockbuster bias and worse 

top-N lists in terms of beyond-accuracy perspectives.  

More formally, assume that ℕ is the multiset of the recommendations generated by stacking top-N 

ranked lists provided for each individual by a proper recommendation method. The BRF score of the 

employed method is estimated as in Equation 11. 

𝑩𝑹𝑭 =
∑ 𝟙 (𝒊 ∈ 𝑯)𝒊∈ℕ

|ℕ|
 (11) 

where 𝑯 is the set of items in the head class.  

To better understand how the BRF metric works, we provide a toy example in the following. Assume 

that {𝒊𝟏, 𝒊𝟐, … , 𝒊𝟓} is the set of available items in the system, and 𝒊𝟏 and 𝒊𝟓 are the items classified as the 

head. Also, suppose that there exist two available individuals and generated top-3 lists through any 

 
5 http://www.grouplens.org/ 
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algorithm for them are {𝒊𝟒, 𝒊𝟐, 𝒊𝟏} and {𝒊𝟏, 𝒊𝟓, 𝒊𝟐}. For such a recommendation scenario, the multiset of 

top-N lists, i.e., ℕ, is constructed as {𝒊𝟒, 𝒊𝟐, 𝒊𝟏, 𝒊𝟏, 𝒊𝟓, 𝒊𝟐}. Thus, the BRF value for the employed 

algorithm is computed as the ratio of how many times the items in the head class, i.e., 𝒊𝟏 and 𝒊𝟓, have 

appeared in the ℕ to the size of the ℕ, which is equivalent to 3/6=0.5. This calculated BRF value 

demonstrates that half of the recommended items are in the head class, and this observation concludes 

that an unwanted bias towards blockbuster items has occurred in the recommendations.  

In the evaluation phase, we also measure the accuracy performances of the kNN algorithms via the 

normalized Discounted Cumulative Gain (nDCG) metric [13], [33], which is widely used in previous 

research on RSs. It is a metric aimed at measuring the quality level of the suggested items by considering 

their actual ratings and their positions in the produced top-N recommendation lists. Suppose that 𝑟𝑢𝑖 is 

the actual vote of user 𝑢 on the item 𝑖 and {𝑖1, 𝑖2, … , 𝑖𝑁} is the produced top-N item list for 𝑢, then the 

Discounted Cumulative Gain (DCG) and nDCG for that user are calculated as in Equations 12 and 13, 

respectively.  

𝑫𝑪𝑮𝑵
𝒖 = 𝒓𝒖,𝒊𝟏

+ ∑
𝒓𝒖,𝒊𝒏

𝐥𝐨𝐠𝟐(𝒏)

𝑵

𝒏=𝟐

 (12) 

 

𝒏𝑫𝑪𝑮𝑵
𝒖 =

𝑫𝑪𝑮𝑵
𝒖

𝑰𝑫𝑪𝑮𝑵
𝒖  (13) 

where 𝐼𝐷𝐶𝐺𝑁
𝑢 is the maximum possible gain for user 𝑢, and it is observed by re-sorting N items to 

achieve the perfect order for 𝑢 based on her actual ratings. Note that higher nDCG scores mean more 

accurate recommendation lists.  

4.3. Experimentation strategy 

As the experimentation methodology, we have followed the well-known all-but-one strategy. 

Accordingly, we consider one of the users in the original data as the test user and the remaining ones as 

the train set. For each item of the test user, we produce a prediction value applying the user- or item-

based kNN algorithm on the train set and then select the top-10 items with the highest prediction scores 

as the recommendation list for the test user. This process is repeatedly performed for each user in the 

data collection. When applying the user- or item-based kNN algorithm, we also consider different 

similarity measures and neighborhood sizes to monitor how they affect the recommendation quality in 

terms of blockbuster bias in recommendations. Finally, we measure the quality of the top-10 lists 

produced for each user with BRF and nDCG metrics and average them to achieve final BRF and nDCG 

scores for each considered kNN variant. We employ a well-known Python library named Surprise6 to 

implement the kNN algorithms.  

4.4. Experiment results  

In this section, we present the results of the experiments realized to investigate how the parameters of 

the kNN algorithms affect both their blockbuster bias and accuracy performances. Our experiments 

consider three similarity functions, i.e., Pearson, Cosine, and MSD, and six maximum neighborhood 

sizes (k) varying from 5 to 100. Accordingly, we first present the BRF results of top-10 

recommendations obtained on both MLP and MLM datasets for two variants of kNN algorithms, i.e., 

UserKNN and ItemKNN, in Figures 1 and 2, respectively.  

 
6 http://surpriselib.com/ 
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Figure 1 BRF results for the UserKNN algorithm 

 

 

Figure 2 BRF results for the ItemKNN algorithm 

As shown in Figures 1 and 2, the highest BRF results, i.e., the most blockbuster biased 

recommendations, are obtained for both UserKNN and ItemKNN algorithms when the number of 

neighbors (k) is selected as 5. However, the BRF results obtained for both algorithms significantly 

decrease as the value of k increases, concluding that they become less biased towards blockbuster items 

with large neighborhoods. Such BRF trends of the algorithms also hold regardless of the utilized dataset 

and similarity functions. However, as can be seen from Figures 3 and 4, choosing relatively larger 

neighborhoods leads to significant decreases in the ranking accuracy performance of both algorithms 

due to the well-known trade-off between recommendation accuracy and diversification [11]. The 

obtained results also suggest that both UserKNN and ItemKNN algorithms show similar BRF 

performances for the MLP. However, the former algorithm seems to be more vulnerable to blockbuster 

bias than the latter for the MLM dataset. A similar trend is observed for nDCG scores; both algorithms 

have identical nDCG scores for the MLP, but the UserKNN is superior to the ItemKNN for the MLM 

dataset. 

The experimental results also indicate that the obtained BRF and nDCG results converge at a constant 

level with neighbors bigger than 50, even if there are slight decrements for the MLM dataset for 

neighborhood size larger than 50. This finding is because of the size of the utilized dataset, making it 

challenging to find at least k numbers of similar individuals who have rated target items or k numbers 

of similar products evaluated by the active users. It leads to obtaining identical BRF or nDCG results 

after a specific number of neighbors, and such threshold value is relatively smaller for MLP than the 

MLM as the number of available users/items in the MLP is relatively smaller than those in the MLM 

dataset.   
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Figure 3 nDCG results for the UserKNN algorithm 

 

 

Figure 4 nDCG results for the ItemKNN algorithm 

As shown in Figures 3 and 4, the worst recommendations in terms of accuracy are usually obtained 

when the Cosine similarity function is utilized. However, it seems to be the most robust metric against 

blockbuster bias, as shown from the BRF results in Figures 1 and 2. On the other hand, as shown in 

Figures 3 and 4, Pearson is the most prominent similarity function in terms of ranking accuracy, except 

only for the UserKNN algorithm on the MLM dataset. The underlying reason for the success of the 

Pearson metric is that it carries out an adjusted normalization step with the average of the ratios of each 

user since there may be users with an inclination to evaluate very negatively and others with a propensity 

to evaluate very positively. This finding is also strongly parallel with the outcomes in previous related 

studies [8]. Even if employing the Pearson metric for kNN algorithms helps produce recommendations 

with high accuracy, it propagates a significant bias in favor of blockbuster items in the referrals, as 

depicted in Figures 1 and 2. One explanation for this finding is that the accuracy and beyond-accuracy 

qualities of the recommendations are usually assumed as conflicting goals.  

The experimental results also demonstrate that the kNN algorithms, especially the UserKNN, slightly 

achieve higher BRF results for the MLM when compared to MLP dataset, as can be followed in Figures 

1 and 2. This observation is caused by the sparsity ratio of the data collection; the CF algorithms become 

more inclined to feature the most blockbuster items in the generated top-N ranked lists since the dataset 

on which they are trained becomes sparser. However, it positively affects the recommendation accuracy 

since the algorithms show more successful nDCG performances for the MLP dataset, followed by 

Figures. 3 and 4.  
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4.5. Insights and discussion 

One of the most important findings of our analysis is that both user- and item-based kNN algorithms 

become less biased blockbuster items with large neighborhoods. The main reason for this observation 

is that as the neighborhood size increases, more users (for the UserKNN) or items (for the ItemKNN) 

contribute to the computed prediction score. Therefore, users' degree of variance is averaged out over 

the more significant numbers, which improves the chance of including non-popular or not highly-liked 

items into recommendation lists. This fact enables to produce more diverse and thus less blockbuster-

biased ranked lists. On the other hand, selecting relatively larger neighborhoods provides more accurate 

recommendations for both algorithms. This observation also verifies the trade-off between accuracy and 

biased performances of the algorithms.  

Our study also concludes that the Cosine is the worst similarity metric in predictive accuracy. One 

explanation for this finding is that this metric considers individuals who rated very different votes as 

highly similar users. For example, in a [1, 5] rating scale, if an individual rated two items as strongly 

bad (1, 1) and another one rated them as highly perfect (5, 5), this similarity function becomes ultimately 

unsuccessful since it outputs the maximum likelihood of similarity between these quite different 

individuals, by its nature. Even if it is assumed that the probability of maintaining the proportionality in 

the ratios of two individuals is low for larger datasets, this metric still leads to achieving the worst 

ranking accuracy performance in our experiments. However, another important finding of our analysis 

is that such drawback of the Cosine ends with improving beyond-accuracy aspects of recommendations 

and, as a result, provides having less blockbuster biased ranked lists compared to both Pearson and MSD 

metrics.  

5. Conclusion and future work 

As a prominent type of memory-based collaborative filtering (CF) algorithms, neighborhood-based, i.e., 

also referred to as k-nearest neighbor (kNN) CF methods, are widely used in recommender systems due 

to their success in providing personalized recommendations. It is a known phenomenon that parameter-

tuning, such as similarity function and neighborhood size, significantly impacts their accuracy 

performances when locating neighborhoods. Also, they are subject to blockbuster bias issues, i.e., they 

expose blockbuster (i.e., both popular and highly-liked) items more in their recommendations than other 

ones.     

This study mainly focuses on evaluating how the parameters of two well-known kNN algorithms affect 

their blockbuster bias performances through an efficient evaluation protocol. We consider three different 

similarity functions, namely Pearson, Cosine, and Mean Squared Difference, and varying neighborhood 

sizes. Also, we investigate how these parameters influence their recommendation accuracy 

performances. Experiments conducted on two benchmark datasets demonstrate that as the neighborhood 

size decreases, the kNN algorithms generally become more vulnerable to blockbuster bias while their 

accuracy increases. One explanation for this finding is that more users (for the UserKNN) or items (for 

the ItemKNN) contribute to the computed prediction with larger neighborhoods, achieving more diverse 

and thus less blockbuster biased recommendations. Also, using the Cosine metric for the kNN 

algorithms is superior to other similarity functions in producing recommendations where blockbuster 

bias is treated more; however, it leads to having unqualified recommendations in terms of predictive 

accuracy as they are usually conflicting goals. On the other hand, we found that the Pearson usually 

performs better than other functions regarding recommendation accuracy, which is also parallel with the 

outcomes in previous related studies [11]. In conclusion, our analysis provides inference on how 

parameter-tuning of the kNN algorithms should be performed according to the purposes of the service 

providers. 

Improving beyond-accuracy quality while maintaining accuracy is essential for recommender systems 

in several aspects. Therefore, our future direction is to develop a mitigation strategy modifying the 

prediction calculation step of the kNN algorithms by including a tuning parameter penalizing 

blockbuster items to alleviate the effects of such blockbuster bias on recommendation quality. 
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