
SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES

VOL. 5, NO. 3, DECEMBER 2022

DOI: 10.35377/saucis.05.03.1122506

Research Article

Software Development for the Use of Generalized Parabolic Blending

in Data Prediction Processes

Hakan Üstünel1

1 Corresponding Author; Department of Software Engineering, Faculty of Engineering, Kirklareli University,

Kirklareli, Türkiye; hakanustunel@hotmail.com; hakanustunel@klu.edu.tr

Received 27 May 2022; Revised 26 September 2022; Accepted 18 November 2022; Published online 31 December 2022

Abstract

Parabolic blending (PB) is one of the important topics in applied mathematics and computer graphics. The use of

generalized parabolic blending (GPB) for different scenarios adds flexibility to the polynomial. Overhauser (OVR)

elements is a special case in GPB (r=0.5, s=0.5). GPB can also be used in estimation. In this study, data obtained

from thickness distribution of a 3mm thick high impact polystyrene product after thermoforming using a mold was

used for data estimation. For this purpose, software has been developed. The software development steps and

formula usages are explained. Using the developed software, polynomials for GPB and default PB (OVR) were

created. The data set was compared with the y values produced by the polynomials for certain x values. At the end

of the research, it was determined that the results obtained from the GPB were 0.1728 percent more accurate than

the data obtained from the PB for the default values.

Keywords: Generalized parabolic blending, computer graphics, visualization, software development, thickness

distribution

1. Introduction

Curves have been an important subject of mathematics and applied sciences for hundreds of years. It

has been possible for curves to be applied in many different fields and to be defined in different ways

in this old subject. In its general definition, it is possible to define a curve with at least a quadratic

function.

A curve can also be created by defining a function for the curve using existing vertices (control points,

vectors). The basic approach in this matter can be shown by defining the smallest degree polynomial

passing through all control points, as in the Lagrangian interpolation polynomial or the Newton divided

difference polynomial. Parabolic curves also find a place in the areas of practical solutions of theoretical

calculations such as multi-segment trajectory tracking of the redundant space robot for smooth motion

[1], free vibration analysis of a variable stiffness composite laminate square plate with circular cutout

[2] and describing the viscoelastic behavior of a shape memory polymer blend [3].

Curves can also be defined using the parabolic blending (PB) approach by following a different path

than curve interpolation. PB, which is preferred especially in places where smooth transition should

occur, is an important subject of computer graphics. Overhauser [4] created the primary definitions of

PB. In later studies, PB was also referred to as Overhauser elements, Overhauser's parabolic blending

interpolation, or Overhauser's curve [5-7]. Brewer & Anderson [8] presented the applications of PB in

computer graphics. Schneider [9] has worked on adding tension to the formula. PB can be applied in

boundary conditions [10-14] as Boundary Element Method (BEM). PB has also been an important field

of study in the estimation process [18].

Having four control vertices/points/vectors in PB is sufficient to define the curve. The main difference

between PB and the interpolation polynomial generation process is that the weights of the control

vertices on the curve are calculated in different ways. When the interpolation polynomial is constructed

for the curve passing through a multi-element series of vertices, the polynomial will have a high degree.

This will cause cumbersome operations, especially for programs with multiple repetitions.

https://orcid.org/0000-0001-9903-593X
https://orcid.org/0000-0001-9903-593X

Sakarya University Journal of Computer and Information Sciences

Üstünel

357

Hadavinia et al. [17] named their work as general parabolic blending (GPB) elements by formulating

the variation of the parameters used to give the general form of the PB and corresponding to the

intermediate vertices. Thus, Overhauser (OVR) elements are shown as a special case of GPB.They

claimed that the results obtained with the GPB elements would be more accurate than the OVR, and

they formulated the parameter variation for the intermediate vertices in its general form. They supported

their claims with the results they obtained from the sample functions they had used in their studies.

In this study, the notation that Hadavinia et al. [17] call GPB is explained with examples for different

parameters. Afterwards, multi-repetitive software was developed to be used in the estimation process to

be run on a real dataset. The results obtained are visualized to facilitate comparison.

2. Parabolic Blending for Changing Parameters

The process of creating a cubic between two parabolas is called PB [17,18] (also called OVR elements).

Three vertices are selected from four control vertices (P1-P4) to form two parabolas (Figure 1). P1-3

defines the P(r) parabola, while P2-4 defines the Q(s) parabola [4,18].

Figure 1 Parabolas, parameters and control vertices that define parabolic blending

With the effect of the weights of these two parabola, C(t) is given its general form. The effect of P(r)

and Q(s) on C(t) is linear (line equation) (Formula 1).

 𝑪(𝒕) = (𝟏 − 𝒕)𝑷(𝒓) + 𝒕 ∗ 𝑸(𝒔) (1)

In Formula 1, the weight of the parabolas on C(t) changes depending on the value of t (0≤ t ≤1). For the

value of t 0.5, the weights of the parabolas on C(t) are equal. If the t value is less than 0.5, the effect of

P(r) on the curve is greater than that of Q(s). If the t value is greater than 0.5, the effect of P(r) on the

curve is less than that of Q(s). Depending on the t value, any vertices on C(t) (x,y) can also be reached

depending on the control vertices. Equations of parabolas P(r) and Q(s) must be formed.

If the general P(r) equation is created depending on the r values, Formula 2 is obtained (0≤ r ≤1). [B] is

the coefficient matrix to be calculated based on the control vertices where the r parameter is equalized.

 𝑃(𝒓) = [𝒓𝟐 𝒓 𝟏][𝑩] (2)

At this stage, the r value is used to give P(r) its general form. If the r value is 0, the P1 is obtained, and

if the r value is 1, the P3 is obtained. Any r value between these two vertices is equated with the P2 to

form the parabola equation. The value of r for P2 will give P(r) its general form. The default r value for

P2 is 0.5 in parabolic blending.

𝒓 = 𝟎 => 𝑷(𝟎) = 𝑷𝟏; 𝑷𝟏 = [𝟎𝟐 𝟎 𝟏][𝑩]

𝒓 = 𝟎. 𝟓 => 𝑷(𝟎. 𝟓) = 𝑷𝟐; 𝑷𝟐 = [𝟎. 𝟓𝟐 𝟎. 𝟓 𝟏][𝑩]

𝒓 = 𝟏 => 𝑷(𝟏) = 𝑷𝟑; 𝑷𝟑 = [𝟏𝟐 𝟏 𝟏][𝑩]

Sakarya University Journal of Computer and Information Sciences

Üstünel

358

Formula 3 occurs when the accepted r values for control vertices are combined to the side. If the r value

was 0.3 for P2, the row with index 1 of the matrix would be [0.32 0.3 1].

(3)

If the matrix that creates the r values for the selected control vertices is called [Mp] and then [B] is left

alone, Formula 4 is obtained.

(4)

If Formula 4 is substituted in Formula 2, Formula 5 is obtained.

(5)

As can be seen, depending on the r value at the P2, [Mp] and therefore [Mp]-1 will change, so the P(r)

equation will also change (Formula 5). This change will also affect the general form of C(t) (Formula

1).

While creating the P(r) equation, it has been accepted that the P2 will be reached if the r value is 0.5

(default state for PB). Until this stage, the equation will change, since [Mp] values will change for

different values of the r value. For example, if P2 corresponds to r=0.2 or r=0.7 value instead of 0.5

value of r;

Formula 6 is obtained when the operations performed in P(r) are repeated for the vertices P2-4 to calculate

the Q(s) equation. While creating the Q(s) equation, it has been accepted that P3 will be reached if the s

value is 0.5 (default state for PB). Similar to P(r), it matters for the general form of Q(s) at which P3 is

reached, versus which value of s (0≤ s ≤1).

(6)

If Formula 5 and Formula 6 are substituted in Formula 1, Formula 7 is obtained.

(7)

After Formula 7 is created, the value of r and s must be calculated for any value of t (for vertices where

P(r) and Q(s) intersect with C(t); P2, P3). The variation of r with respect to t is their line equation

(Formula 8).

𝒓 = 𝒌𝟏 ∗ 𝒕 + 𝒌𝟐 (8)

[
𝑷𝟏
𝑷𝟐
𝑷𝟑

] = [
𝟎 𝟎 𝟏

𝟎. 𝟐𝟓 𝟎. 𝟓 𝟏
𝟏 𝟏 𝟏

] [𝑩]

[
𝑷𝟏
𝑷𝟐
𝑷𝟑

] = [𝑴𝒑][𝑩];

𝑷(𝒓) = [𝒓𝟐 𝒓 𝟏][𝑴𝒑]−𝟏 [
𝑷𝟏
𝑷𝟐
𝑷𝟑

]

[𝑩] = [𝑴𝒑]−𝟏 [
𝑷𝟏
𝑷𝟐
𝑷𝟑

]

[𝑴𝒑] = [
𝟎 𝟎 𝟏

𝟎. 𝟎𝟒 𝟎. 𝟐 𝟏
𝟏 𝟏 𝟏

]

[𝑴𝒑] = [
𝟎 𝟎 𝟏

𝟎. 𝟒𝟗 𝟎. 𝟕 𝟏
𝟏 𝟏 𝟏

]

𝑸(𝒔) = [𝒔𝟐 𝒔 𝟏][𝑴𝒒]−𝟏 [
𝑷𝟐
𝑷𝟑
𝑷𝟒

]

𝑪(𝒕) = (𝟏 − 𝒕) ∗ [𝒓𝟐 𝒓 𝟏][𝑴𝒑]−𝟏 [
𝑷𝟏
𝑷𝟐
𝑷𝟑

] + t*[𝒔𝟐 𝒔 𝟏][𝑴𝒒]−𝟏 [
𝑷𝟐
𝑷𝟑
𝑷𝟒

]

Sakarya University Journal of Computer and Information Sciences

Üstünel

359

In Formula 5, the k1 and k2 values must be calculated. If P2 is reachable for the default value (0.5) of r,

Formula 9 is obtained.

 𝑷𝟐: 𝒓 = 𝟎. 𝟓; 𝒕 = 𝟎 => 𝒓 = 𝒌𝟏 ∗ 𝒕 + 𝒌𝟐 𝟎. 𝟓 = 𝒌𝟏 ∗ 𝟎 + 𝒌𝟐 => 𝒌𝟐 = 𝟎. 𝟓

𝑷𝟑: 𝒓 = 𝟏; 𝒕 = 𝟏 => 𝒓 = 𝒌𝟏 ∗ 𝒕 + 𝒌𝟐 𝟏 = 𝒌𝟏 ∗ 𝟏 + 𝟎. 𝟓 => 𝒌𝟏 = 𝟎. 𝟓

 𝒓(𝒕) = 𝟎. 𝟓 ∗ 𝒕 + 𝟎. 𝟓 (9)

If P2 is reachable for the 0.3 of r, Formula 10 is obtained.

𝑷𝟐: 𝒓 = 𝟎. 𝟑; 𝒕 = 𝟎 => 𝒓 = 𝒌𝟏 ∗ 𝒕 + 𝒌𝟐 𝟎. 𝟑 = 𝒌𝟏 ∗ 𝟎 + 𝒌𝟐 => 𝒌𝟐 = 𝟎. 𝟑

𝑷𝟑: 𝒓 = 𝟏; 𝒕 = 𝟏 => 𝒓 = 𝒌𝟏 ∗ 𝒕 + 𝒌𝟐 𝟏 = 𝒌𝟏 ∗ 𝟏 + 𝟎. 𝟑 => 𝒌𝟏 = 𝟎. 𝟕

 𝒓(𝒕) = 𝟎. 𝟕 ∗ 𝒕 + 𝟎. 𝟑 (10)

For different values of r, Formula 8 will change. If a pattern is extracted using Formula 8, Formula 9

and Formula 10, the equation k1=1-r and k2=r can be formed. In this way, Formula 11 is obtained when

Formula 5 is generalized.

 𝒓(𝒕) = (𝟏 − 𝒓) ∗ 𝒕 + 𝒓 (11)

With r(t) in Formula 11, an instant r value depending on the t value is obtained. It is the position of P2

that gives its general form to P(r), with the r parameter on the right side of the equation. In order not to

confuse the terms in the next stages, rinstant(t) will be used instead of r(t) and after the equality is solved,

the value obtained is called rinstant and the formula is rearranged (Formula 12).

 𝒓𝑰𝒏𝒔𝒕𝒂𝒏𝒕(𝒕) = (𝟏 − 𝒓) ∗ 𝒕 + 𝒓 (12)

As with the t-dependent change in the r value, the t-dependent change in the s value is also a line equation

(Formula 13).

 𝒔 = 𝒌𝟑 ∗ 𝒕 + 𝒌𝟒 (13)

In Formula 13, the k3 and k4 values must be calculated. If P2 is reachable for the default value (0.5) of

s, Formula 14 is obtained.

𝑷𝟐: 𝒔 = 𝟎; 𝒕 = 𝟎 => 𝒔 = 𝒌𝟑 ∗ 𝒕 + 𝒌𝟒; 𝟎 = 𝒌𝟑 ∗ 𝟎 + 𝒌𝟒 => 𝒌𝟒 = 𝟎

𝑷𝟑: 𝒔 = 𝟎. 𝟓; 𝒕 = 𝟏 => 𝒔 = 𝒌𝟑 ∗ 𝒕 + 𝒌𝟒 𝟎. 𝟓 = 𝒌𝟑 ∗ 𝟏 + 𝟎 => 𝒌𝟑 = 𝟎. 𝟓

 𝒔(𝒕) = 𝟎. 𝟓 ∗ 𝒕 (14)

If P2 is reachable for the 0.1 of s, Formula 15 is obtained.

𝑷𝟐: 𝒔 = 𝟎; 𝒕 = 𝟎 => 𝒔 = 𝒌𝟑 ∗ 𝒕 + 𝒌𝟒; 𝟎 = 𝒌𝟑 ∗ 𝟎 + 𝒌𝟒 => 𝒌𝟒 = 𝟎

𝑷𝟑: 𝒔 = 𝟎. 𝟏; 𝒕 = 𝟏 => 𝒔 = 𝒌𝟑 ∗ 𝒕 + 𝒌𝟒 𝟎. 𝟏 = 𝒌𝟑 ∗ 𝟏 + 𝟎 => 𝒌𝟑 = 𝟎. 𝟏

 𝒔(𝒕) = 𝟎. 𝟏 ∗ 𝒕 (15)

For different values of s the Formula 13 will change. If a pattern is extracted using Formula 13, Formula

14 and Formula 15, the equation k3=r and k4=0 can be formed. In this way, Formula 16 is obtained when

Formula 13 is generalized.

𝒔(𝒕) = 𝒔 ∗ 𝒕 (16)

With s(t) in Formula 16, an instant s value depending on the t value is obtained. It is the position of P2

that gives its general form to Q(s) with the s parameter on the right side of the equation. In order not to

confuse the terms in the next stages, sinstant(t) will be used instead of s(t) and after the equality is solved,

the value obtained is called sinstant and the formula is rearranged (Formula 17).

𝒔𝑰𝒏𝒔𝒕𝒂𝒏𝒕(𝒕) = 𝒔 ∗ 𝒕 (17)

As a result, it is first necessary to determine which r and s values will be used to reach the vertices P2

and P3, respectively. Since these values will change the values of the matrices in the formula for P(r)

Sakarya University Journal of Computer and Information Sciences

Üstünel

360

and Q(s) (Formula 5, Formula 6), the weights of the parabolas on C(t) will also change. In the next step,

the rinstant and sinstant values for a given t value will be calculated using generalized formulas (Formula

12, Formula 17), and should be written into the general formula (Formula 7).

3. Methodology

In this section, the dataset and the pattern used in the research and the purpose of the research are

mentioned. The dataset of this study was taken from a previous study, in which the author of this study

was one of the researchers [18]. This dataset was created as a result of measuring the thickness

distribution of a 3mm thick high impact polystyrene product after thermoforming using a mold (Column

2 in Table 2). In a study by Ekşi and Üstünel [16], PB was used to estimate the thickness distribution of

the thermoformed plate. With the coded program, correct estimation was performed with a 4.3866

percent error value. In the same study, while determining the PB steps, P2 and P3vertices were accessed

for the 0.5 value of the r and s parameters; that is, the default values were used. In this research, while

determining the PB steps, instead of a fixed value such as 0.5 for the r and s parameters, access to the

P2 and P3 vertices was provided for the values in a varying range depending on a certain precision value.

This process can be expressed as optimizing the PB process depending on the r and s values that change

independently of the t value. In order to compare the results obtained in the optimization of the PB with

the results of the previous research [16], the same dataset and pattern were used in this study.

The aim of this research is to ensure that more accurate results can be produced in the estimation

processes by optimizing PB. For this purpose, software has been developed, and its steps are explained.

Afterwards, the results of the error calculations performed using the software were examined. In C(t),

the value of y is calculated based on the calculated x value for any value of t. Then, the error value is

calculated by comparing this data with the dataset([16], Table 3 Column 2-4) regarding the thickness

distribution of the thermoformed material. In this study, after this step, the case where the r and s

parameters are 0.5 will be called the default PB (instead of OVR elements). In addition, the situation in

which C(t) also changes with each change of the r and s parameters will be called GPB, depending on

the nomenclature of Hadavinia et al. [17].

The flow chart of the developed program is shown in Figure 2. Under this heading, flowchart sections

are explained. In Section 1, variable definitions and value assignments, especially precision, are carried

out. The program has been implemented as a Visual Studio 2019 C# form application. The results

obtained from the calculations were transferred to an spreadsheetfile by the ptogram. The output file

(spreadsheet file) is processed in MatLAB® in the next step, and the results are finally visualized.

The developed software mainly consists of the following parts. Assigning the initial values (section 1),

selecting the precision values to be used in the calculations (section 2), performing the assignments for

the P(r) values (Section 3), performing the assignments for the Q(s) values (Section 4), for the C(t)

values performing assignments and generating error values and saving them to the spreadsheet file

(Section 5).

Sakarya University Journal of Computer and Information Sciences

Üstünel

361

Figure 2 General flow diagram of the software

Sakarya University Journal of Computer and Information Sciences

Üstünel

362

Assignment operations required for four different precision (i) values are performed in Section 2. For

example, if the value of i is equal to 1 (Section 2.2.1), the precision value will be 0.1. A range for r and

s will be defined, and C(t) will be calculated on this range. The closed interval [0.2, 0.9] is defined for

r and s. A value of 0.1 (precision1) is determined as r/sDown and a value of 0.9 as r/sUp. For r and s

values, the number of iterations to be made in the outer two-dimensional loop must be specified (Section

2.8).

After the first cycle of the loop, the results were filtered and examined. In case the i value is 2, 3 and 4

(Section 2.2 – Section2.4), the necessary value assignment (r/sDown,r/sUp) operations were performed

manually (Section 2.6 and Section 2.7). If i is equal to 3 (Section 2.4), precision value 0.001 (Section

2.4.1) will be selected.

For example, if the interval values for r and s were chosen as [0.45, 0.55], [0.32, 0.51], respectively, the

calculated values for precision=0.01 (i=2) would be as shown below.

𝑟𝐶𝑜𝑢𝑛𝑡 ← (
𝑟𝑈𝑝 − 𝑟𝐷𝑜𝑤𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) + 1

𝑟𝐶𝑜𝑢𝑛𝑡 ← (
0.55 − 0.45

0.01
) + 1

𝑟𝐶𝑜𝑢𝑛𝑡 ← 11

𝑠𝐶𝑜𝑢𝑛𝑡 ← (
𝑠𝑈𝑝 − 𝑠𝐷𝑜𝑤𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) + 1

𝑠𝐶𝑜𝑢𝑛𝑡 ← (
0.51 − 0.32

0.01
) + 1

𝑠𝐶𝑜𝑢𝑛𝑡 ← 20

Thus, calculations will be made for rCount*sCount (11*20)with 220 different C(t) (Formula 7).P(r) will

be in the row of the two-dimensional loop, where C(t) will be calculated for different r and s values

(Section 3). P(r) will be in the row of the two-dimensional loop where C(t) will be calculated for different

r and s values. For a certain value of r, the matrix [Mp] (Section 2.2) and the inverse matrix [Mp]-

1(Section 2.3) must be calculated. Then, the precision value, which has been assigned a value based on

the value of i, is assigned to r. At each step of the loop, the s value is determined as the lower limit

(sDown) of the range.

The operations for r in Section 3 are repeated for s in Section 4. At the end of Section 4, the error and t

values are also reset.

After generating C(t) for a given r and s values, rinstant and sinstant values are calculated based on the

t value. These three parameters are written into their places in Formula 7. This process is repeated twice

for the x and y values of C(t). The x values of the control vertices are used in the calculation for x, and

the y values of the control vertices are used for y. Thus, x and y values are produced for any value of t.

For a given r-s combination, a C(t) is generated. In this study, C(t) is calculated by choosing the

sensitivity value 10-5 for the sequential increase of the t value. For any value of t, when x parameters of

control vertices are used in Formula 7, x value for C(t) is produced. For the same t value, when the y

values of the control vertices are used in Formula 7, the y value for c(t) is produced. Thus, (x,y) values

are produced for a certain t value. When this x value produced by the program matches the x value in

the dataset, the relative difference between the y value in the dataset and the y value produced by the

program creates the error value. The resulting error value is calculated by averaging these error values

(16 vertices in the dataset).

In the reference study, this error value was calculated as 4.386 for the default r-s values used for PB

[16]. In this study, the aim is to obtain a lower error rate by changing C(t) and by changing the r-s values

of PB.

Sakarya University Journal of Computer and Information Sciences

Üstünel

363

4. Experimental Study and Results

A program was written using C# programming language to generate different C(t) equations using

different r*s combinations. The results produced by the program were compared with the reference

dataset (Column 2 in Table 2). The program exports these comparison results to the spreadsheet files.

As a result of filtering the data in the exported file separately for each different precision value, the

interval value for r and s in the next step (precision) is determined. An example of the results produced

by the program for different r and s parameters is shown in Figure 3. The blue colored curve (“Real”) is

the reference dataset used in the study.

Figure 3 Calculated c(t) values for different r-s➔P2-P3; precision0.1

The r and s interval values for precision=0.1 were determined as [0.2, 0.9] and [0.1, 0.8], respectively.

Therefore, the r value is calculated as 8 and the s value as 8 (Figure 2, Section 2.2.1).

𝑟𝐶𝑜𝑢𝑛𝑡 ← (
𝑟𝑈𝑝 − 𝑟𝐷𝑜𝑤𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) + 1

𝑟𝐶𝑜𝑢𝑛𝑡 ← (
0.9 − 0.2

0.1
) + 1

𝑟𝐶𝑜𝑢𝑛𝑡 ← 8

𝑠𝐶𝑜𝑢𝑛𝑡 ← (
𝑠𝑈𝑝 − 𝑠𝐷𝑜𝑤𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) + 1

𝑠𝐶𝑜𝑢𝑛𝑡 ← (
0.8 − 0.1

0.1
) + 1

𝑠𝐶𝑜𝑢𝑛𝑡 ← 8

In this way, 8*8 (r*s) C(t) formulas are created (Formula 7). 64 error values are calculated by comparing

the values calculated using these formulas with the measured thickness distribution of a 3mm thick high

impact polystyrene product after thermoforming using a mold values ("Real" in Figure 3). The error

values obtained for some r and s values from these 64 different error values are shown in Table 1 (Branch

A).

Sakarya University Journal of Computer and Information Sciences

Üstünel

364

Table 1 Examples of error values calculated based on r and s values for different precision

Branch R S Average Error

A
precision 0.1

i=1

0.3 0.8 44.5248

0.4 0.7 16.3331

0.5 0.5 4.3861

0.5 0.8 36.0096

0.7 0.5 35.2096

0.9 0.5 46.6825

B
precision 0.01

i=2

0.49 0.53 4.2374

0.49 0.51 4.3546

0.49 0.54 4.239

0.49 0.56 4.3507

0.48 0.59 4.6175

0.41 0.61 17.7456

C
precision 0.001

i=3

0.487 0.539 4.2201

0.487 0.541 4.2148

0.487 0.543 4.22

0.491 0.531 4.2416

0.502 0.501 4.557

0.502 0.506 4.5979

D
precision 0.0001

i=4

0.487 0.5405 4.2139

0.487 0.5407 4.2133

0.4876 0.5387 4.2168

0.4881 0.546 4.248

0.4937 0.5403 4.3049

0.4862 0.5259 4.4408

The data related to these error values obtained were transferred to MatLAB® and graphed (Figure 4).

In this graph, the vertices where the error value is small (r,s) are seen as darker blue.

Figure 4 Visualization of the results achieved, precision0.1

Sakarya University Journal of Computer and Information Sciences

Üstünel

365

The r and s interval values for precision=0.01 were determined as [0.40, 0.60] and [0.10, 0.70],

respectively. Therefore, the r value is calculated as 21 and the s value as 61 (Figure 2, Section 2.3.1 -

2.8).

𝑟𝐶𝑜𝑢𝑛𝑡 ← (
𝑟𝑈𝑝 − 𝑟𝐷𝑜𝑤𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) + 1

𝑟𝐶𝑜𝑢𝑛𝑡 ← (
0.60 − 0.40

0.01
) + 1

𝑟𝐶𝑜𝑢𝑛𝑡 ← 21

𝑠𝐶𝑜𝑢𝑛𝑡 ← (
𝑠𝑈𝑝 − 𝑠𝐷𝑜𝑤𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) + 1

𝑠𝐶𝑜𝑢𝑛𝑡 ← (
0.70 − 0.10

0.01
) + 1

𝑠𝐶𝑜𝑢𝑛𝑡 ← 61

In this way, 21*61 (r*s) C(t) formulas are created, and1,281 error values are calculated by comparing

the values calculated using these formulas with the dataset. Some error values for r and s from these

1,281 different error values are shown in Table 1 (Branch B). In addition, the results obtained are shown

in Figure 5 as a graph.

Figure 5 Visualization of the results achieved, precision0.01

The r and s interval values for precision=0.001 were determined as [0.480, 0.510] and [0.480, 0.570],

respectively. Therefore, the r value is calculated as 31 and the s value as 91 (Figure 2, Section 2.4.1 –

2.8).

𝑟𝐶𝑜𝑢𝑛𝑡 ← (
𝑟𝑈𝑝 − 𝑟𝐷𝑜𝑤𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) + 1

𝑟𝐶𝑜𝑢𝑛𝑡 ← (
0.510 − 0.480

0.001
) + 1

𝑟𝐶𝑜𝑢𝑛𝑡 ← 31

Sakarya University Journal of Computer and Information Sciences

Üstünel

366

𝑠𝐶𝑜𝑢𝑛𝑡 ← (
𝑠𝑈𝑝 − 𝑠𝐷𝑜𝑤𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) + 1

𝑠𝐶𝑜𝑢𝑛𝑡 ← (
0.570 − 0.480

0.001
) + 1

𝑠𝐶𝑜𝑢𝑛𝑡 ← 91

In this way, 31*91 (r*s) C(t) formulas are created, and 2,821 error values are calculated by comparing

the values calculated using these formulas with the dataset. Some error values for r and s from these

2,821 different error values are shown in Table 1 (Branch C). In addition, the results obtained are shown

in Figure 6 as a graph.

Figure 6 Visualization of the results achieved, precision0.001

The r and s interval values for precision=0.0001 were determined as [0.4860, 0.4940] and [0.5175,

0.5475], respectively. Therefore, the r value is calculated as 81 and the s value as 301 (Figure 2, section

2.5.1 – 2.8).

𝑟𝐶𝑜𝑢𝑛𝑡 ← (
𝑟𝑈𝑝 − 𝑟𝐷𝑜𝑤𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) + 1

𝑟𝐶𝑜𝑢𝑛𝑡 ← (
0.4940 − 0.4860

0.0001
) + 1

𝑟𝐶𝑜𝑢𝑛𝑡 ← 81

𝑠𝐶𝑜𝑢𝑛𝑡 ← (
𝑠𝑈𝑝 − 𝑠𝐷𝑜𝑤𝑛

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) + 1

𝑠𝐶𝑜𝑢𝑛𝑡 ← (
0.5475 − 0.5175

0.0001
) + 1

𝑠𝐶𝑜𝑢𝑛𝑡 ← 301

In this way, 81*301 (r*s) C(t) formulas are created, and 24,381 error values are calculated by comparing

the values calculated using these formulas with the dataset. Some error values for r and s from these

24,381 different error values are shown in Table 1 (Branch D). In addition, the results obtained are

shown in Figure 7 as a graph.

Sakarya University Journal of Computer and Information Sciences

Üstünel

367

Figure 7 Visualization of the results achieved, precision0.0001

The error value decreased as the interval value for r and s values was reduced in a controlled manner,

taking into account the precision value. The error value for r=0.487, s=0.5407 was calculated as 4.2133

percent (Table 1, Branch D). This value was calculated as 4.3861 percent for r=0.5, s=0.5 (Table 1,

Branch A) for PB's default state. This value also confirms the value obtained in the reference study. By

optimizing the PB, the error value was reduced by 0.1728 percent.

The total absolute percentage relative error value for generalized C(t) was calculated as 67.4132

(∑ |𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑒𝑟𝑟𝑜𝑟|23
𝑛=8), and the average absolute percentage relative error value was

calculated as 4.2133 ((∑ |𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑒𝑟𝑟𝑜𝑟|23
𝑛=8)/16) (Table 2). This value means that the

program produced a more accurate result in this study than in the previous study [16].

Table 2 PB curve values (default PB and GPB) for dataset

X axis values

Measured thick

ness value (mm)

Default PB(r=0.5; s=0.5) GPB (r=0.4870; s=0.5470)

Y axis value produced

by the program, C(t)

Relative error

(%)

Y axis value produced

by the program, C(t)

Relative error

(%)

0.8 0.4283 0.4283 0 0.4283 0

0.9 0.3866 0.4381 13.3213 0.4328 11.9503

1 0.3883 0.4694 20.8859 0.4582 18.0015

1.1 0.4716 0.5244 11.1959 0.5069 7.4852

1.2 0.5816 0.6055 4.1094 0.5817 0.0172

1.3 0.7183 0.7153 0.4177 0.6856 4.5524

1.4 0.8766 0.8563 2.3158 0.8221 6.2172

1.5 1.07 1.0312 3.6262 0.9948 7.028

1.6 1.2383 1.2417 0.2746 1.2068 2.5438

1.7 1.4566 1.4881 2.1626 1.4597 0.2128

Sakarya University Journal of Computer and Information Sciences

Üstünel

368

Table 2 PB curve values (default PB and GPB) for dataset (cont.)

X axis values

Measured thick

ness value (mm)

Default PB(r=0.5; s=0.5) GPB (r=0.4870; s=0.5470)

Y axis value produced

by the program, C(t)

Relative error

(%)

Y axis value produced

by the program, C(t)

Relative error

(%)

1.8 1.69 1.7667 4.5385 1.7509 3.6036

1.9 2.01 2.0676 2.8657 2.0691 2.9403

2 2.4483 2.3711 3.1532 2.3896 2.3976

2.1 2.675 2.6471 1.043 2.6738 0.0449

2.2 2.8683 2.8606 0.2685 2.8803 0.4184

2.3 2.9833 2.9833 0 2.9833 0

The mean percent error with the GPB was calculated as 4.2133. This value was 4.3861 for the default

PB (Table 1 Branch A and [16]). By optimizing the PB, an improvement of 0.1728 percent was achieved

in the error value.

Figure 8 Default PB and GPB versus dataset (real measurement results)

5. Conclusion

The comparison of the calculated C(t) for the default r:s values and the calculated C(t) for the generalized

r:s values with the dataset is shown in Figure 8. When the figure is examined, it is seen that C(t)

calculated with the GPB outside the range of [1.2, 1.6] approaches the dataset with less error than the

GPB.

The dataset used in this research was created as a result of measuring the thickness distribution of a 3

mm thick high-impact polystyrene product after thermoforming using a mold. For this dataset, the most

suitable r and s values that can be used with a precision of 10-4 were calculated as r=0.487 and s=0.5407.

These r and s values may vary for another dataset. With the algorithm and software developed in this

study, the most appropriate r and s values can be determined for a new dataset. In every study where PB

can be applied, the optimization steps revealed in this study can be applied.

Sakarya University Journal of Computer and Information Sciences

Üstünel

369

OVR is a special case of GPB for the values for which it will take the r and s parameters. For this reason,

it is not possible to say unconditionally that GBP produces more accurate results in all cases or for all

types of datasets. Hadavinia et al. [17], working on sample functions, stated that GPB can produce more

accurate results than OVR. In this study, the results obtained by working on a real dataset were

evaluated. The results obtained confirm the results and claims of Hadavinia et al. In addition, the results

obtained through this study have been visualized in an easy-to-follow manner, and a software

development process algorithm has been presented for use in further studies. In addition, it will be less

costly for the software development process to fit curves in a flexible structure using four vertices

instead of creating a high-order interpolation polynomial using all vertices.

References

[1] Shrivastava, A., & Dalla, V. K. (2022). Multi-segment trajectory tracking of the redundant space

robot for smooth motion planning based on interpolation of linear polynomials with parabolic

blend. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, 09544062221088723, doi.org/10.1177/09544062221088723

[2] Hachemi, M., Hamza-Cherif, S. M., & Houmat, A. (2017). Free vibration analysis of variable

stiffness composite laminate plate with circular cutout. Australian Journal of Mechanical

Engineering, doi.org/10.1080/14484846.2017.1385694

[3] Ben Abdallah, A., Kallel, A., Hassine, T., Gamaoun, F., & Tcharkhtchi, A. (2022). Modeling of

viscoelastic behavior of a shape memory polymer blend. Journal of Applied Polymer

Science, 139(13), 51859, doi.org/10.1177/09544062221088723

[4] Overhauser, A. W. (2005). Analytic definition of curves and surfaces by parabolic blending.

arXiv preprint cs/0503054.

[5] Liu, Y., & Rizzo, F. J. (1991). Application of Overhauser C 1 Continuous Boundary Elements to

“Hypersingular” BIE for 3-D Acoustic Wave Problems. In Boundary elements XIII (pp. 957-

966). Springer, Dordrecht, doi.org/10.1007/978-94-011-3696-9_75

[6] Walters, H. G., & Gipson, G. S. (1994). Evaluation of overhauser splines as boundary elements

in linear elastostatics. Engineering analysis with boundary elements, 14(2), 171-177,

doi.org/10.1016/0955-7997(94)90093-0

[7] Durodola, J. F., & Fenner, R. T. (1996). Overhauser triangular elements for three‐dimensional

potential problems using boundary element methods. International journal for numerical methods

in engineering, 39(24), 4183-4198, doi.org/10.1002/(SICI)1097-

0207(19961230)39:24%3C4183::AID-NME38%3E3.0.CO;2-9

[8] Brewer, J. A., & Anderson, D. C. (1977). Visual interaction with overhauser curves and surfaces.

ACM SIGGRAPH Computer Graphics, 11(2), 132-137, doi.org/10.1145/965141.563883

[9] Schneider, W. (1986). A simple technique for adding tension to parabolic blending interpolation.

Computers & Mathematics with Applications, 12(11), 1155-1160, doi.org/10.1016/0898-

1221(86)90019-2

[10] Qian, X., Yuan, H., Zhou, M., & Zhang, B. (2014). A general 3D contact smoothing method

based on radial point interpolation. Journal of Computational and Applied Mathematics, 257, 1-

13.

[11] El‐Abbasi, N., Meguid, S. A., & Czekanski, A. (2001). On the modelling of smooth contact

surfaces using cubic splines. International Journal for Numerical Methods in Engineering, 50(4),

953-967, doi.org/10.1002/1097-0207(20010210)50:4%3C953::AID-NME64%3E3.0.CO;2-P

[12] Chung, K. H., Kim, J. W., Ryu, K. W., Lee, K. T., & Lee, D. J. (2006). Sound generation and

radiation from rotor tip-vortex pairing phenomenon. AIAA journal, 44(6), 1181-1187,

doi.org/10.2514/1.22548

[13] De Almeida Barros, P. L., & de Mesquita Neto, E. (2000). Singular‐ended spline interpolation

for two‐dimensional boundary element analysis. International Journal for Numerical Methods in

Engineering, 47(5), 951-967.

[14] Kunz, T., & Stilman, M. (2012). Time-optimal trajectory generation for path following with

bounded acceleration and velocity. Robotics: Science and Systems VIII, 1-8.

Sakarya University Journal of Computer and Information Sciences

Üstünel

370

[15] Burgoyne, C. J., & Crisfield, M. A. (1990). Numerical integration strategy for plates and shells.

International journal for numerical methods in engineering, 29(1), 105-121,

doi.org/10.1002/nme.1620290108

[16] Ekşi, O., & Üstünel, H. (2020). Application of parabolic blending for the estimation of thickness

distribution in thermoformed products. Journal of Elastomers & Plastics, 0095244320959801,

doi.org/10.1177%2F0095244320959801

[17] Hadavinia, H., Travis, R. P., & Fenner, R. T. (2000). C1-continuous generalised parabolic

blending elements in the Boundary Element Method. Mathematical and Computer Modelling,

31(8-9), 17-34, doi.org/10.1016/S0895-7177(00)00057-1

[18] Rogers DF and Adams JA. Mathematical elements for computer graphics. 2nd ed. New York:

McGraw-Hill, 1989.

Notation List

P, Q : Parabolas

C : Cubic function (curve)

Pn : nth point (It can take integer values between 1 and 4)

r,s,t : Parameters of P, Q and C respectively (it can take float values between 0 and 1,

including limit values)

[B] : Coefficient matrix for P

kn : Coefficients of the line equation used in the calculation of t-dependent change in the r

and s values (1 and 2 for r, 3 and 4 for s)

rinstant (t) : The calculated r value for any value of the t parameter

sinstant (t) : The calculated s value for any value of the t parameter

rCount : The number of steps in the loop for the precision value set for r (in the software)

sCount : The number of steps in the loop for the precision value set for s (in the software)

rUp, rDown) : Upper and lower limit value for r value used when calculating rCount (in the

software)

sUp, sDown) : Upper and lower limit value for s value used when calculating sCount (in the

software)

