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Abstract 

Physical layer authentication is an important technique for cybersecurity, especially in military scenarios. Device 

classification using radio frequency fingerprinting, which is based on recognizing device-unique characteristics of 

the transient waveform observed at the beginning of a transmission from a radio device, is a promising method in 

this context. In this study, the effect of the ambient temperature on the performance of radio device classification 

based on RF fingerprinting is investigated. The waveforms of the transient regions of the transmissions are 

recorded as images, and ResNet50 and InceptionV3 networks for image classification are used to determine the 

radio devices. The radio devices used in the study belong to the same brand, model, and production date, making 

the problem more difficult than classifying radio devices of different brands or models. Our results show that high 

levels of accuracy can be attained using convolutional neural network models such as ResNet50 and InceptionV3 

when the test data and the training data are collected at the same temperature, whereas performance suffers when 

the test data and the training data belong to different temperature values. We provide the performance figures of a 

blended training model that uses training data taken at various temperature values. A comparison of the two 

networks is also provided. 

Keywords: cybersecurity, device classification, radio frequency fingerprint, double sliding window, image 

classification, resnet50, inceptionV3 

1. Introduction 

Radio device recognition and classification is important from a cybersecurity point of view in many 

applications, such as law enforcement and military use cases. Radio frequency (RF) fingerprinting is 

one of the techniques that can be used in device classification. When a radio transmitter first turns on or 

starts broadcasting to the air, the signal emitted from the transmitter exhibits a transient behavior. The 

transient region duration may be in the order of microseconds, depending on the hardware of the 

transmitter. It has been shown that the transient behavior region contains unique features of the radio 

transmitter [1]. These unique features are due to the unique characteristics of hardware components such 

as analog converters, filters, power amplifiers, and frequency mixers used during the manufacturing of 

the transmitter layer, and various defects in the soldering process during the assembly of these 

components on the boards. In addition, the aging of the radio transmitter may cause the transient region 

to differ in devices with the same brand, model, and production date, even if they are products of a high 

quality manufacturing process. The signal characteristics in the transient region are different for each 

radio transmitter, which is called the RF fingerprint. 

Encryption algorithms are mainly used to identify a wireless device that has been authorized by the 

system. In an encrypted communication system, a two-way communication is required to generate a 

session key [2]. However, the security algorithm will be compromised during access to the key, thus 

making it difficult to distinguish a legitimate key. Such problems encountered in encrypted 

communication systems can be effectively solved by using physical layer security [3]. At this point, it 

would be correct to explain the physical layer security. Physical layer security is the practice of 

identifying wireless devices by extracting unique features embedded in the electromagnetic waves 
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emitted from transmitters [4]. Physical layer security based on the recognition of these unique features 

is known as Radio Frequency (RF) fingerprinting [5]. Radio frequency fingerprinting has been applied 

to various communication technologies and standards, including cognitive radio networks [6], Universal 

Mobile Telecommunications System (UMTS) [7], Wi-Fi [8], push-to-talk transmitters [9], bluetooth 

[10], and Radio-Frequency Identification (RFID) [11]. 

RF fingerprint extraction has been done by high-end receiver devices in many studies. Rehman et al. 

[12] showed that there is practically no need for high-level receiver equipment to obtain RF 

fingerprinting, but low-level receiver equipment can also be used. In addition, they tested the 

performance of the RF fingerprinting systems they developed against impersonation attacks. Tekbas et 

al. [13] classified different models and brands of radios with RF fingerprints and examined the effects 

of ambient temperature, battery voltage, and ambient noise on the classification success during 

classification. High-end receiver equipment is used for RF fingerprinting. Riyaz et al. [14] examined 

the use of convolutional neural networks for device classification with RF fingerprinting. Rehman et al. 

[15] counts the effects of the ages of the devices, the ambient temperature, and the mobility of the 

devices during the fingerprinting process on the fingerprints as further issues to be explored. Wang et 

al. [16] discussed the low performance of device classification by RF fingerprinting, and proposed deep 

complex residual networks as a new method to overcome this problem. The deep complex residual 

network has been integrated into the RF fingerprint extraction and the device classification model, and 

it has been found that the accuracy rates in device classification have increased. Suski et al. [17] 

investigated the use of RF fingerprinting for the security of commercial devices broadcasting in the 

IEEE 802.11a standard. In many studies, the ambient temperature is ignored as a parameter of the device 

classification with RF fingerprinting. 

In this study, narrowband radios with the same brand, model, and production date were used to 

investigate the effect of the ambient temperature on RF fingerprinting.  We also demonstrate that device 

classification, identification, and similar procedures can be performed at low cost using low-level 

receiver hardware for RF fingerprinting. RF fingerprints of the radios were obtained at ambient 

temperatures of −5, 10, 25, and 40 oC. The obtained RF fingerprints were classified at different 

temperatures with the convolutional neural network models ResNet50 and InceptionV3, which are 

branchs of deep learning. Contrary to the studies in the literature, the images of the waveforms of the 

transient regions of the radios were used to train the ResNet50 and InceptionV3 networks. In other 

words, RF fingerprint extraction is combined with image processing. The results show that the ambient 

temperature significantly affects the performance of device classification based on RF fingerprints.  

2. Radio Frequency Fingerprint 

Physical layer authentication is one of the key technologies used to secure wireless communications. 

RF fingerprints [18], which are the results of the electrical properties of the components on the device 

hardware, contain features that are difficult to clone. Classification of devices with RF fingerprinting 

consists of the steps shown in Figure 1. 

Figure 1 Device classification model with radio frequency fingerprint. 
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Figure 2 A sample transient region obtained during the study. 

For this study, radios with the same brand, model, and production date operating in the UHF band are 

used as transmitter radios. In order to avoid the possible effects of aging on RF fingerprinting, care has 

been taken to ensure that the production dates are the same. A low-level commercial product, Adalm 

Pluto software defined radio (SDR) was used as the receiving device. Data collection was carried out 

with the help of the Adalm Pluto plugin of the Matlab software. Transient region detection, feature 

extraction, and device classification processes were also performed on Matlab. 

2.1 Transient Region Detection 

Detection of the transient region and fingerprinting from this region is the most important step in device 

identification with RF fingerprinting. An incorrectly detected transient region may adversely affect the 

fingerprinting step, and the classification process may therefore be inaccurate. For transient region 

detection, the features of the signal in the time domain are extracted. Bayesian step change, threshold 

detection, and double sliding window are the most widely used methods for transient region detection 

[19]. All three methods basically use the differences in the amplitudes of the signals in the noise region 

and transient region. The noisy region is the period where the channel is not carrying any data signals. 

During the transition from this region to the transient region, a sudden change occurs in the signal. In  

For signals with gradual transitions, Bayesian step change and threshold detectors may be delayed to 

detect the beginning of the transient region. For this reason, their performance may suffer. Hence, the 

double sliding window method is preferred for the transient region detection. 

2.2 The Double Sliding Window Method 

The double sliding window method is a kind of rising edge detection algorithm that detects the energy 

increase in the incoming signal [20]. For this, the incoming signal is convolved with a two-window filter 

of a certain length. The signal energy covered under the right window is divided by the signal energy 

covered under the left window. At the starting point of the signal, the energy of the right window 

significantly exceeds the left window and an upward peak is formed in the running ratio. Likewise, 

when the double sliding window exits the signal, while the left window is still in the signal region, the 

right window switches to the noise section. Thus, the ratio of the energy of the signal corresponding to 

the right window to that of the left window peaks downward [19]. In Figure 3, the graph of the energy 

generated when the double sliding window moves over the signal while it passes into the transient region 

of the signal is demonstrated. 
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Figure 4 shows the detection of the beginning of the transient region with the double sliding window 

method on a sample signal obtained in the study. After the beginning of the transient region is 

determined, its end must also be determined. In this study, the end of the transient region was chosen 

based on the observations, going forward a certain time from the starting point on the time axis. 

 

Figure 4 Detection of the transient region by the double sliding window method. The red bar marks the peak of 

the energy ratios in the bottom figure, and the beginning of the transient region in the top figure. 

3. Methodology 

The effect of ambient temperature on device classification with RF fingerprinting was investigated in a 

laboratory environment. For transient region detection, which is the most important step for RF 

fingerprinting, the double sliding window method is used. After the beginning of the transient region 

was determined, the end of the transient region was determined empirically, based on the experimental 

study. Unlike other studies, instead of using the I/Q data of the signals in the transient region, images of 

Figure 2 The ratio of the energy of the signal in window A to the energy of the signal in window B in the double 

sliding window method. The peak marks the beginning of the transient region. 
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the transient region in png format were used. 288.6 Gb data was collected in baseband (.bb) format with 

the help of Adalm Pluto SDR for 5 different radios of the same brand, model, and year of manufacturing 

at 4 temperature values. ResNet50 and inceptionV3 convolutional neural network models, two of the 

most successful models for image classification, in Matlab library were used for classification. A 

Weisstechnik brand temperature cabinet, which is an advanced ambient temperature test cabinet, was 

used to adjust the temperature of the environment. This cabinet constantly monitors the temperature 

inside, and ensures that the surface temperature of the radio device and the temperature of the inside of 

the cabinet are equal. After the devices were placed inside the cabinet, they were kept for 1 hour until 

the desired ambient temperature was achieved. The radio device under test is programmed to 

automatically transmit for 2 seconds via an option cable extended outside through the heat-proof slots 

at the entrance of the cabinet, followed by a 3-second silence, periodically. 

In addition, an external thermocouple is mounted on the temperature pulse surface of the radio inside 

the cabinet. Thus, the temperature on the device was also monitored outside the cabinet’s own 

thermometer. It was observed during the tests that the temperature on the surface of the devices increased 

up to a further 2 degrees beyond the temperature of the test cabinet. Adalm Pluto SDR is positioned as 

far away from the temperature test cabinet as possible so that the radio under test is not affected by the 

signals that may be reflected from its body as well as the antenna, and to avoid noise. The power outputs 

are programmed to be 1 Watt so that the radios do not overheat while transmitting. Furthermore, in order 

not to be affected by ambient noise, the air interface was scanned with an Aeroflex IFR device, and a 

frequency value (415.125 MHz) with minimal noise was selected. During the test process, batteries with 

high capacity were used to avoid possible current fluctuations that may occur near the end of the battery 

charge. The test setup is shown in Figure 5. The ResNet50 and inceptionV3 models were run on an 

NVIDIA GEFORCE 940MX graphics card. 

4. Numerical Results 

5 radios of the same brand, model, and production year were used for the study. The radios were given 

identification labels as A, B, D, E, and X. Each of the radios were placed in the test cabinet at 

temperatures of −5, 10, 25, and 40 oC*. Each radio made 2200 transmissions at each temperature value. 

Therefore, a total of 𝟓 × 𝟒 × 𝟐𝟐𝟎𝟎 = 𝟒𝟒𝟎𝟎𝟎 png images were obtained as the data set. For each radio 

and temperature pair, 2000 images out of the total 2200 images were used for training the ResNet50 

model, and the remaining 200 images were used for testing the device classification. The total number 

of images taken from 5 radios at each temperature for the training of ResNet is 𝟓 × 𝟐𝟎𝟎𝟎 = 𝟏𝟎𝟎𝟎𝟎. 

Table 1 shows the ResNet50 performance of the classification by RF fingerprints from the baseband 

signals collected from these temperature values radios. We trained the model using the data from the 

four different temperature values, and tested for the four different temperature values. As can be seen in 

Table 1, the performance of the classification depends on the temperature. 

 
* Extreme increases were detected in the surface temperatures of the radios under test in the temperature cabinet, 

measured by thermocouple at temperatures of 55 oC, and hence, we decided not to collect data for 55 oC and 

above. 
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Table 1 ResNet50 classification performance of temperature dependent radios. 

 

The best classification performance, 96.39% accuracy, was obtained with training and test data both 

collected at 25 oC. On the other hand, the classification performance among the cases where the training 

and the test data belong to the same temperature value was the lowest at −5 oC with an accuracy of 

88.35%. While the performance is relatively high when training and test data come from the same 

temperature experiments, testing data from different temperatures than the training data was obtained 

seriously reduces the performance. The lowest performance was observed when the training data was 

taken at 40 oC and the test data at 10 oC.  

Figure 3 Data collection setup. 
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Table 2 shows the InceptionV3 performance of the classification by RF fingerprints under the same 

scenario. As can be seen from Table 2, the best classification performance, 96.47% accuracy, was 

obtained with training and test data both collected at 40 oC, closely followed by the case where the 

training and the test data both collected at 25 oC. In the case of using test and training data at the same 

temperature, the lowest performance was obtained at −5 oC with 86.42%. Similar to ResNet50, the 

classification performance obtained with the training and the test data selected at the same temperature 

in InceptionV3 is higher than the classification performance made with the test and training data at 

different temperatures. The lowest performance was observed when the training data was taken at 40 oC 

and the test data at 25 oC. 

 

Table 2 InceptionV3 classification performance of temperature dependent radios. 

 

 

As can be clearly understood from Tables 1 and 2, the ambient temperature is an important factor in 

device classification with RF fingerprinting and cannot be ignored. Another inference that can be made 

here is that the temperature of the devices significantly contributes to the RF fingerprints. Increases and 

decreases in ambient temperature cause the components in the hardware layer of the device to exhibit 

different characteristics, thus leading to somewhat different RF fingerprints for the same device at 

different temperatures. 

4.1 Device Classification with Blended Training Model 

In an effort to reduce the effect of ambient temperature on the performance, especially for the scenarios 

where the test case temperature differs from the temperature the training data was collected, the training 

data of the ResNet50 and InceptionV3 networks were selected for each radio in an equal amount from 

each temperature. Test data was given to these trained networks in an equal amount of data from each 

radio at every temperature, and the classification process was repeated. Classification performances are 

given in Tables 3 and 4 for ResNet50 and InceptionV3, respectively. As can be seen from the ResNet50 

classification performance in Table 3, while the performances of the model for the test data collected at 

10, 25, and 40 oC are decent, the performance at −5 oC turns out to be significantly lower. 

As can be seen from the InceptionV3 classification performance in Table 4, the lowest performance was 

obtained at the test temperature of −5 oC, as in ResNet50. On the other hand, at test temperatures of −5, 

10, and 25 oC, ResNet50 showed better performance than InceptionV3. At 40 oC, Inceptionv3 has a 

slightly better performance than ResNet50. 
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Table 3 ResNet50 classification performance of radios with training data including all temperatures. 

 

 

Table 4 InceptionV3 classification performance of radios with training data including all temperatures. 

 
 

 
4.2 Normalized Confusion Matrices 

 
Figure 6 shows the classification performances and errors in percentage of the 5 radios trained at −5 oC 

and classified with test data at −5 oC for ResNet50 and InceptionV3 models. The horizontal axis shows 

the estimated classes of the radios on the model outputs, and the vertical axis shows the correct classes. 

The diagonal elements of the matrix indicate the percentage of a radio being classified correctly, and 

the other elements indicate the percentages of misclassification. Similarly, Figures 7 – 9 show the 

confusion matrices for training and test at 10, 25, and 40 oC, respectively. Furthermore, Figures 10 – 13 

show the confusion matrices for the blended training model for tests with –5, 10, 25, and 40 oC. One 

observation from the confusion matrices is that in some settings, one or two radio devices are difficult 

to correctly classify, whereas the other devices are classified with high accuracy. One such example is 

radio device X under the setting where ResNet50 is used on the training and the test data collected at −5 
oC, seen in Figure 6. 

 

The results demonstrate that while device classification based on RF fingerprinting using transient 

region images is viable, a difference in the temperature values that the training data was taken and the 

classification is executed significantly affects the accuracy. When the blended training data is used, the 

accuracy is improved compared to the settings where the temperature values for the training and the test 

data are different. In this case, ResNet50 performs better than InceptionV3. When the test is performed 

at – 5 oC, both methods suffer significantly. Therefore, when operating at lower temperatures, better 

classifiers should be designed. 
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5 Conclusion and Future Work 

 
In this study, we investigated the effect of the ambient temperature on the performance of radio device 

classification based on RF fingerprinting. The radio devices used in the study belong to the same brand, 

model, and production date, making the problem more difficult than classifying radio devices of 

different brands or models. In our study, we performed the classification of devices by processing the 

images of radio frequency fingerprints. In terms of this approach, we used a different method from other 

studies. Our results show that high levels of accuracy can be attained using convolutional neural network 

models such as ResNet50 and InceptionV3 when the test data and the training data are collected at the 

same temperature, whereas performance suffers when the test data and the training data belong to 

different temperature values. Hence, we conclude that the ambient temperature cannot be ignored in 

future studies in the field of RF fingerprinting. We have also shown that device classification via RF 

fingerprinting can be done using SDRs with lower cost, easier to use and open source applications, 

instead of using dedicated devices such as high-cost complex circuit receivers and oscilloscopes. On the 

other hand, no big difference in performance was observed in the classification made with ResNet50 

and InceptionV3. It has also been observed that ResNet50 can classify more successfully at temperatures 

of –5, 10, 25 oC in blended training model. In the same model, at 40 oC, InceptionV3 had slightly better 

accuracy. For this reason, a mixed CNN model can be used for different temperatures as well as a 

blended training model. 

 

Future studies will focus on improving the classification performance under different temperature 

values. Possible approaches to be investigated include training multiple models for different 

temperatures and making a classification decision based on the majority of these models. 

 

During the collection of RF fingerprint data in this study, the transmitting and receiving devices were 

kept stationary. Collecting RF fingerprint data in scenarios where the receiver and transmitter are mobile 

will be an important study to see the effects of channel distortions. The aging of RF fingerprinted devices 

will change fingerprints. Therefore, the effect of device aging requires further research. The effects of 

the output power of the transmitter devices on the RF fingerprint should also be investigated as an open 

issue. 

 
Figure 4 Normalized confusion matrices for: (a) −5 oC training and test data for ResNet50, (b) −5 oC training and 

test data for InceptionV3 
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Figure 7 Normalized confusion matrices for: (a) 10 oC training and test data for ResNet50, (b) 10 oC training and 

test data for InceptionV3. 

 
Figure 8 Normalized confusion matrices for: (a) 25 oC training and test data for ResNet50, (b) 25 oC training and 

test data for InceptionV3. 

 

 
Figure 9 Normalized confusion matrices for: (a) 40 oC training and test data for ResNet50, (b) 40 oC training and 

test data for InceptionV3. 
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Figure 10 Normalized confusion matrices for −5, 10, 25, and 40 oC blended training data and (a) −5 oC test data 

for ResNet50, (b) −5 oC test data for InceptionV3. 

 
Figure 11 Normalized confusion matrices for −5, 10, 25, and 40 oC blended training data and (a) 10 oC test data 

for ResNet50, (b) 10 oC test data for InceptionV3. 

 

 
Figure 12 Normalized confusion matrices for −5, 10, 25, and 40 oC blended training data and (a) 25 oC test data 

for ResNet50, (b) 25 oC test data for InceptionV3. 
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Figure 13 Normalized confusion matrices for −5, 10, 25, and 40 oC blended training data and (a) 40 oC test data 

for ResNet50, (b) 40 oC test data for InceptionV3. 
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