
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,     Vol. 11, No. 3, July 2023                                              

  

 

Copyright © BAJECE                                                                ISSN: 2147-284X                                                     http://dergipark.gov.tr/bajece        

 

Abstract—Brain decoding is an emerging approach for 

understanding the face perception mechanism in the human brain. 

Face visual stimuli and perception mechanism are considered as a 

challenging ongoing research of the neuroscience field. In this 

study, face/scrambled face visual stimulations were implemented 

over the sixteen participants to be decoded the face or scrambled 

face classification using machine learning (ML) algorithms via 

magnetoencephalography (MEG) signals. This noninvasive and 

high spatial/temporal resolution signal is a neurophysiological 

technique which measures the magnetic fields generated by the 

neuronal activity of the brain. The Riemannian approach was used 

as a highly promising feature extraction technique. Then Long 

Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), 

Convolutional Neural Network (CNN) were employed as deep 

learning algorithms, Linear Discriminant Analysis (LDA) and 

Quadratic Discriminant Analysis (QDA) were implemented as 

shallow algorithms. The improved classification performances are 

very encouraging, especially for deep learning algorithms. The 

LSTM and GRU have achieved 92.99% and 91.66% accuracy and 

0.977 and 0.973 of the area under the curve (AUC) scores, 

respectively. Moreover, CNN has yielded 90.62% accuracy. As our 

best knowledge, the improved outcomes and the usage of the deep 

learning on the MEG dataset signals from 16 participants are 

critical to expand the literature of brain decoding after visual 

stimuli. And this study is the first attempt with these methods in 

systematic comparison. Moreover, MEG-based Brain-Computer 

Interface (BCI) approaches may also be implemented for Internet 

of Things (IoT) applications, including biometric authentication, 

thanks to the specific stimuli of individual’s brainwaves. 

 
Index Terms—Magnetoencephalography, Brain Decoding, 

Riemannian Approach, Deep Learning.  
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I. INTRODUCTION 

HE brain decoding has obtained great attention from 

scientific communities in medical applications and is 

observed as one of the primary goals of the brain analysis 

literature [1]. Face perception mechanism in individuals is 

generated by a sequence of cortical activities [2,3]. 

Neuropsychology and cognitive neuroscience research fields 

require magnetoencephalography (MEG) and 

electroencephalography (EEG) signals to decode these brain 

maps [4]. Different experiments can be implemented to arouse 

these brain patterns, such as visual stimuli. The brain reacts to 

different responses for different visual stimuli [4]. If the subject 

is stimulated by a visual cue, then the related brain activity is 

recorded from multiple noninvasive sensors. Then each 

recorded data is named as a trial [5]. In this study, 

face/scrambled face are used as a visual stimulus; during the 

same time, MEG signals are collected over the brain activities. 

MEG signal is a neurophysiological way of measuring 

magnetic fields generated by neural electrical activities [6]. 

These signals have some advantages compared to the EEG 

signals, functional magnetic resonance imaging (fMRI), and 

positron emission tomography (PET) methods because of the 

alleviated effects by cerebrospinal fluid, skull, and skin [3]. 

Moreover, MEG signals present great spatial and temporal 

resolution [7]. 

The low prediction performance in multivariate brain 

decoding is generally caused by the low signal-to-noise ratios 

(SNRs), high dimensionality recordings of the scalp, and cross-

subject variations [8]. Recently machine learning (ML) 

algorithms offer these problems a very promising approach in 

signal processing techniques to recognize the activated brain 

patterns using noninvasive MEG signals [5,9-11]. In this 

research study, Convolutional Neural Network (CNN), Long 

Short-Term Memory (LSTM), and Gated Recurrent Unit 

(GRU) were implemented as deep learning algorithms when 

Linear Discriminant Analysis (LDA) and Quadratic 

Discriminant Analysis (QDA) were used as traditional 

(shallow) machine learning algorithms. CNN is considered as a 

state of the art machine learning algorithm especially used for 

computer vision, natural language processing, and pattern 

recognition. CNN has convolution layers to extract features of 

the signal-based images. These features consist of edges, lines, 

or corners [12]. LSTM is carried out in the prediction of 

sequential data. The key point of LSTM is that it can remember 

input for a long time while estimating outputs [13]. The GRU 

is another applied popular ML algorithm based on the Recurrent 
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Neural Network (RNN). The reason for the popularity is 

considered as computation cost and a simple model of topology. 

This technique is assembled into a single "update gate" with 

forget and input gates and mounted in the cell state and hidden 

state [14]. Furthermore, LDA is to project the dataset for 

classification in a supervised manner. This projected-based 

method aims to find the best projection direction during the 

classification task [15]. On the other hand, QDA assumes not 

equality of the covariance matrices that gain a quadratic 

decision boundary for two-class problems [16]. 

The Riemannian approach was implemented in the feature 

extraction step that enables direct manipulation of multichannel 

MEG signals to covariance matrices. Then these matrices were 

employed as features. The Riemannian approach is known as 

extremely competitive and superior to the other feature 

extraction techniques, including the Common Spatial Pattern 

[5,17]. The simultaneous MEG signal recordings were obtained 

from 16 participants who perform trials during the face and 

scrambled face visual stimuli to reveal the patterns over the 

brain dynamics [5]. After that, the Riemannian approach was 

employed for the feature extraction process [5]. In this study, 

deep learning algorithms, LSTM and GRU has achieved 

92.99% accuracy and 0.977 of AUC (area under the curve) 

score, 91.66% accuracy, and 0.973 AUC score, respectively. 

Moreover, CNN has yielded 90.62% accuracy with 0.959 AUC 

score among the deep learning approaches.  Then LDA has 

determined 78.23% accuracy and 0.861 AUC when QDA has 

obtained a classification accuracy of 72.24% and 0.796 of AUC 

score. These results show that LSTM, GRU, and CNN have 

noticable performances on the MEG signals compared to the 

previous research study (80.85% accuracy and 0.81 AUC with 

Deep Neural Network) [5]. Moreover, LDA has also offered 

improved performance than Support Vector Machine (78.01% 

accuracy) and the other traditional classifiers in the same study 

[5]. However, the satisfactory accuracy (79%) of the 

Generalized Regression Neural Network (GRNN) was not 

achieved by LDA and QDA results [11]. MEG-based BCI 

systems have high time resolution and high uniqueness for 

individuals [4,8-10]. These features can provide effectiveness 

for IoT applications, such as biometric authentication. 

The rest of the article was organized as follows; the method 

chapter defines dataset description of the dataset details, 

preprocessing, feature extraction step, evaluation metrics, and 

machine learning algorithms. Furthermore, the results and 

discussion chapter explains the performance outcomes of the 

MLs and statements of the findings. Then the conclusion 

chapter is to point out the discriminations of the study among 

the literature of brain decoding in terms of the ML estimations. 

II. MATERIAL AND METHOD 

A. Definition of the dataset 

Magnetoencephalography signals were recorded with an 

Elekta Neuromag VectorView system from 18 participants; 

thereby, the dataset was created by Henson et al. [18]. The triple 

sensor group, consisting of a magnetometer and two 

gradiometers, is located at 102 positions. In total, 306 sensors 

record the magnetic field caused by brain currents. The z 

(radial) component of the magnetic field is measured by the 

magnetometer, while the x and y spatial derivative is measured 

by the gradiometer. Details of the measuring system are 

provided by Henson et al. [18]. 

The dataset, used in this study, was modified within the scope 

of the [19-20]. The modified dataset encompasses 

approximately 588 trials for each 16 subjects. Visual stimuli of 

faces and scrambled faces were randomly presented to the 

subjects for 1 second, and for each stimulation, subjects were 

rested for 0.5 seconds. Each trial consists of 1.5 seconds of 

MEG recording was sampled at 250 Hz from 306 channels. 

Thus, a total of 9414 trials were presented in a random order 

[5]. 

The flowchart showing the overall workflow from MEG 

recordings to the brain decoding process is given in Fig. 1. A 

series of operations carried out for this study can be listed as 

follows: Pre-processing of signals using a bandpass filter, 

source extraction by spatial filtering, extracting feature vector, 

classification of the feature vector. 

The brain computer interfaces (BCIs) are used to perform 

various tasks (control, communication,  biometric 

authentication) via processing of brain signals [21]. In the 

preprocessing phase, the signal was first high-pass filtered at 

1Hz. The first 0.5 seconds of the signals were discarded when 

contemplating the rest time of the subjects. With the start of the 

feature extraction process, a bandpass filter having 1Hz-20Hz 

cut-off frequency points is used. Then, by applying a spatial 

filter to the signal, the dimensionality is reduced, and the signal-

to-noise ratio is increased [5]. 

The Riemannian approach allows the direct manipulation of 

multichannel MEG signals to covariance matrices and 

subspaces with proper and special geometry, as defined by Yger 

et al. [22]. Through the Riemannian geometry, the 2176 

features of the dataset were obtained using tangent space 

representation from the MEG covariance matrices at the end of 

the feature extraction process [23]. Tangent space is a vector 

field that allows all Euclidean statistical methods, and 

Riemannian metrics are more suitable for flat vector spaces 

rather than conventional Euclidean metrics. Thus, this approach 

can be applied to the MEG-based brain-computer interface, 

especially for the implementation of the classifier, and feature 

representation. Detailed computational issues about the 

Riemannian geometry can be found in [22]. 

B. Evaluation metrics for performances 

Evaluation metrics are important factors to show the machine 

learning algorithm performances in the dataset. The suitable 

evaluation metrics are important keys to discriminate the 

optimal MLs [24]. In this study, accuracy (ACC), sensitivity 

(SENS), specificity (SPEC), and the area under the curve 

(AUC) score were employed as evaluation metrics with k-fold 

cross-validation technique. In this technique, the dataset is 

divided into k-subsets. Then the ML is trained with k-1 subsets, 

and the other one subset is tested. The process is repeated k 

times so that each subset sample will be trained and tested. After 

that, the average classification metrics are obtained for each ML 

algorithm [12]. The formulas for accuracy were presented in 

Eqs. (1-3) [25]: 
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Fig.1. The experiment of MEG recordings and brain decoding process 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑁) =
∑ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛𝑖)

|𝑁|
𝑖=1

|𝑁|
,   𝑛𝑖 ∈ 𝑁    (1) 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛) = {
1,     𝑖𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑛) = 𝑐𝑛
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

                (2) 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑀𝐿) =
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑁𝑖)

|𝑘|
𝑖=1

|𝑘|
  (3) 

 

where N refers the classified (test) dataset, cn defines the class 

of the value of n, Estimate(n) describes the classification result 

of n, and then the k value is named for the k-fold cross-

validation [12]. 

Different metrics reveal the different characteristics of the 

ML algorithms induced by the processing [26]. Therefore, it 

may help easier to make the comparison and analysis of ML 

algorithms in the robustness observation. In general, the 

sensitivity and specificity are well-known evaluation metrics 

for performance analysis of ML algorithms. Thus, they are 

described as the following equations [27]: 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
      (4) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
      (5) 

 

where: True Positive (TP): The number of face pattern 

decisions which are targeted as face pattern, True Negative 

(TN): The number of scrambled face pattern decisions which 

are targeted as scrambled face pattern, False Positive (FP): The 

number of scrambled face pattern decisions which are targeted 

as face pattern, False Negative (FN): The number of face 

pattern decisions which are targeted as scrambled face pattern. 

Thanks to the AUC evaluation metrics, the classification 

results are presented across the interval of 0-1 scores under the 

curve of false positive rates and true positive rates. The higher 

AUC value means better classifier performance. This popular 

ranking type metric is to prove that the prediction and 

diagnostic ability of MLs are noteworthy (AUC>0.9) and good 

discrimination (0.8≥AUC>0.7) if the AUC scores are found in 

the range of the stated values [28]. 

C. Linear discriminant analysis and quadratic discriminant 

analysis Most  

Linear Discriminant Analysis (LDA) and Quadratic 

Discriminant Analysis (QDA) machine learning methods are 

both based on the fundamentals of statistical and probabilistic 

learning. Basically, when LDA is used for linear classification, 

QDA is employed for quadratic decision problems of the 

classification process [16]. Kernel Fisher’s Discriminant 

analysis has derived the LDA method that is a type of projection 

technique. LDA is implemented to classify the dataset in the 

manner of reducing the dimension. The aim of LDA is to 

maximize the between-class distance and to minimize within-

class distance. If the class samples are defined as C1 and C2, 

LDA finds the projection direction (w) for maximum 

separability of the spatial pattern [15-29]. The related Equations 

are presented below: 
 

𝑧 = 𝑤𝑇𝑥   (6) 
 

where x (data samples) are employed to be projected onto w. 

The graphical presentation of LDA is shown in Fig. 2 [15]. 

    where m1 to m1 describes the means of samples in class C1 

before and after the projection process, respectively. Therefore, 

𝒎𝟏 ∈ ℜ𝑑   defines the multi-dimension, and 𝑚1 ∈ ℜ means the 

projected dimension. Then 𝑚2 and 𝒎𝟐 have a similar manner 

for class C2. The samples of scattered dataset around the means 

are presented as 𝑠1
2 and 𝑠2

2. Then the samples of training dataset 

are defined as 𝑋{𝑥𝑡 , 𝑟𝑡}: 

𝑋{𝑡} = {
𝑟𝑡 = 1, 𝑥𝑡 ∈ 𝐶1    

𝑟𝑡 = 0, 𝑥𝑡 ∈ 𝐶2
           (7) 
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Fig.2. Classification process in LDA via the projection of data samples 

 

𝐽(𝑤) =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
=

|𝑤𝑇(𝑚1 − 𝑚2)|2

𝑤𝑇𝑆𝑊𝑤
    (8) 

 

where 𝑆𝐵  and 𝑆𝑊 are named as the between-class scatter 

matrix and within-class scatter matrix in 𝐽(𝑤), respectively 

[15]. 

QDA assumes that the equality of the covariance matrices is 

not necessary (as shown in Eq. 9) as LDA. This feature yields 

the advantage to the QDA to be used in the decision boundary 

of quadratic classification [16]. 
 

Σ1 ≠  Σ2   (9) 

D. Recurrent neural network 

The use of artificial neural networks (ANN) in machine 

learning applications is very common. Over time, many 

different ANN models have been developed in line with needs. 

Accordingly, ANNs are specialized to process different types 

of data. Such as Convolutional Neural Networks are specialized 

for matrix type data like image. On the other hand, Recurrent 

Neural Networks (RNN) have been developed to process array 

data. Traditional feed-forward ANNs take into account existing 

samples to which they are exposed as input. RNNs, apart from 

this, apply the samples they perceive over time, as well as the 

existing ones. 

An input sequence is given as [𝑥1, 𝑥2, . . . , 𝑥𝑘] with  𝑥𝑖 ∈ ℝ𝑑. 

Different examples can have different sequence lengths. 

Therefore, the k value may vary.  In each step of the RNN 

model, a hidden state is generated as an array [ℎ1, ℎ2, . . . , ℎ𝑘]. 
Activation of hidden state at time t is calculated as a function of 

the current input  𝑥𝑡 and previously hidden state ht -1. This 

process can be expressed as follows: 
 

ℎ𝑡 = 𝑓(𝑥𝑡 , ℎ𝑡−1) (10) 

Unlike traditional feed-forward ANN, RNNs have a repeat 

layer. By means of this layer, the state information generated 

by the feed-forward network is stored and re-applied to the 

network with the input information. That is, RNNs have a 

memory that holds what has been calculated so far [30]. Fig. 3 

shows an exemplary RNN network unit and closed notation of 

this architecture. 

 

 
Fig.3. Closed notation of Recurrent Neural Network 

 

1) Long short-term memory network 

Long Short-Term Memory networks, often called LSTM, are 

a special type of RNN capable of learning long-term 

dependencies [21]. This model, which was first proposed in the 

mid-90s [31], is widely used today. While processing the 

sequences in RNNs, it is aimed to store and transfer ANN status 

information. However, it is unlikely to be transferred without 

disturbing long-term dependencies as a result of transferring the 

state information by continuously processing it. In other words, 

while short-term dependencies are transferred very 

successfully, there are problems in transferring long-term 

dependencies. LSTMs are designed to address long-term 

dependency problems.  

All RNN networks consist of modules that are repeating like 

a chain. In standard RNNs, each of these modules usually 

consists of a tanh function or a similar function. The feature that 

distinguishes LSTMs from standard RNNs is that the internal 

structure of this module consists of 4 separate structures that 

interact with each other. 

 

 
Fig.4. LSTM structure 

 

LSTM module consists of 3 separate gates, as shown in Fig.4. 

These are the forget gate, the input gate, and the output gate, 

respectively. Forget gates decides how much of the information 

will be forgotten and how much of it should be transferred to 

the next stage. For this process, it uses the sigmoid function, 

which produces a value between 0 and 1. 0 means that the 

information will never be transmitted, while 1 means that all 

must be transmitted.            
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The next step is to decide what information should be stored. 

For this, the input layer firstly decides which values should be 

updated. Then the 𝑡𝑎𝑛ℎ function forms a vector of the new 

candidate values of the memory cell defined as 𝐶̃𝑡. Then these 

two processes are combined. This process is expressed 

mathematically as follows: 
 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (11) 
  

𝐶̃ = 𝑡𝑎𝑛ℎ( 𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (12) 
 

In general, 𝑊 is named as the weight vector, 𝑏 is called the 

bias term, σ describes the sigmoid activation function for non-

linearity, 𝑥𝑡 is used for the input sequence, ℎ𝑡−1 is implemented 

as the output of the neuron at time 𝑡 − 1 for feedback into the 

neuron. Furthermore, 𝑖𝑡 , 𝑓𝑡 𝑎𝑛𝑑 𝑜𝑡 are defined as the input, 

forget and output gate, respectively. After this process, the new 

status information of the memory cell is calculated. The new 

status information is calculated as follows: 
 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (13) 
 

Finally, the output of the system is calculated. This is done at 

the output gate. The output of the system ht can be calculated as 

follows: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (14) 
 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ( 𝐶𝑡)   (15) 
 

The LSTM architecture used in this study consists of two 

learnable layers. In this study, MEG data is adjusted to 128x17 

dimensions and applied to the input layer. The LSTM layer 

contains 100 units. Dropout value is set to 0.1. At the last stage, 

there is a fully connected layer containing one neuron. The 

training process is carried out in 200 epochs. Also, Adam 

optimizer was used in the training phase. 

2) Gated recurrent unit 

The main difference of the Gated Recurrent Unit (GRU) 

network from the LSTM network is that each module consists 

of 2 gates instead of 3, as shown in Fig. 5. A GRU module 

consists of an update gate and a reset gate. The update gate 

decides how much of the past information should be 

transmitted, while the reset gate, on the contrary, decides how 

much of the past information should be discarded. 

 

Fig.5. GRU structure 
 

The sigmoid process representing the zt update gate and the ℎ̃𝑡 

reset operation, GRU can be expressed mathematically as 

follows: 
 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (16) 
 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (17) 
 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ( 𝑊 ⋅ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡]) (18) 
  

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 (19) 

 

GRU architecture also consists of two learnable layers, like 

LSTM. In the input layer, the dimensions are set to 128x17. The 

GRU layer contains 32 units. The dropout value is set to 0.1. 

Finally, there is a fully bonded layer connected to a neuron. The 

training process is carried out in 105 epochs. Also, Adam 

optimizer was used in the training phase. 

E. Convolutional neural networks 

CNN is a typical multi-layered neural network [32] that 

simulates the organization of the animal visual cortex [33]. It is 

widely used in image-related applications [31,34]. The 

operation of CNN models takes place in two stages as feature 

extraction and classification of these features in fully connected 

layers. CNN architectures are often created by combining 

convolution, pooling, and fully connected layers. 

The convolution layer is the most important structure that 

makes up CNN. This layer is in principle based on the idea that 

an image of an object can be in any region above the image. 

Accordingly, neurons are attached to only a small part of the 

input and extend across the entire depth of the input. The filter 

size and number of maps produced are used to define this layer. 

Filters aim to extract different features related to lines, corners, 

and edges on the input images [12]. These filters containing 

pixel values are shifted on the image. During the sliding 

process, the filter values are multiplied by the values of the 

image. Then the obtained values are summed and a net result is 

produced. This process is applied to the whole image and 

feature maps are obtained. Calculation of feature map values 

can be expressed as follows: 
 

𝑦𝑙 = ∑ 𝑥𝑛ℎ𝑙−𝑛

𝑁−1

𝑛=0

       (20) 

where y is the feature map, x is signal, h is the filter, N is the 

number of elements in x, and the nth vector variable subscripts 

indicate the subscripts. 

Another important structure that forms CNN is the pooling 

layer. There are different types of this layer commonly used in 

the literature, such as average pooling and max pooling. In this 

study, max-pooling was used. In the max-pooling process, the 

image is divided into blocks that do not overlap, and the biggest 

value of each block is taken. Therefore, calculation costs and 

overfitting possibilities are greatly reduced. 

Another structure commonly used in CNN architectures is a 

fully connected layer. This layer is a typical artificial neural 

network layer. They have connections with all neurons before 

and after it. 
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Most of the problems that CNN is trying to solve are not 

linear. On the other hand, operations such as matrix 

multiplication and addition are linear. So, the non-saturating 

activation function is commonly used in CNN to provide non-

linearity. This process can be expressed mathematically as 

follows: 
 

𝑓(𝑥) = {
𝑥,                𝑥 ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (21) 

 

The CNN architecture used in this study consists of four 

learnable layers, as seen in Fig. 6. In this study, 2D CNN 

architecture was used. MEG data is adjusted to 128x17 

dimensions and applied to the input layer. The first 

convolutional layer takes place after the input layer. The filter 

number of this layer is 512, and the kernel size is 4. This layer 

is followed by the max-pooling layer, which is a size of 2. Then 

there is the second convolution layer. The values of this layer 

are the same as the first convolutional layer. After the second 

convolutional layer, there is a max-pooling layer with a size of 

2. Then there is the fully connected layer of 50 neurons. 

Dropout is applied in this layer. The dropout value is 0.2. 

Finally, there is a fully connected layer with a single neuron.

 

 

Fig.6. CNN architecture 
 

III. RESULTS AND DISCUSSION 

In this study, a binary classification process was carried out 

using MEG signals. Signals are grouped as a face or scrambled 

face. The dataset consists of 9414 stimuli belonging to 16 

individuals. Approximately 588 stimuli were shown to each 

individual, and recording was performed through 306 channels. 

The noise-containing MEG signals are filtered as described in 

the sections above to extract 2176 features for each stimulus. 

For the classification process, 5 different supervised classifiers, 

LDA, QDA, LSTM, GRU, and CNN were used. The 

performance of each machine learning algorithm was compared 

by taking into account classification performance (ACC), Area 

under the curve (AUC) score, sensitivity (SENS), and 

specificity (SPEC) metrics. Results were given with 10k cross-

validation for each algorithm. In addition, the results were 

compared with other studies carried out with the same dataset. 

Values obtained as a result of 10k cross-verification are 

shown in Table 1. With an accuracy value of 92.99%, the best 

classification performance belongs to LSTM. Similarly, the 

best scores in specificity and AUC, respectively, with 92.33% 

and 0.977% belong to LSTM. LSTM and GRU showed quite 

similar performances in sensitivity value. Sensitivity was 

93.64% for LSTM, while 93.73% was obtained in GRU. GRU's 

performance and specificity values were 91.66% and 89.59%, 

respectively. CNN showed slightly lower performance in 

accuracy, sensitivity, and AUC values compared to RNN-based 

approaches. For all three metrics, 90.62%, 91.16%, and 0.959% 

values were obtained, respectively. On the other hand, 

specificity performed quite close to GRU. The specificity for 

CNN was 90.08%. On the other hand, QDA displayed the worst 

classification performance with a performance value of 

72.24%. At the same time, the worst performance values in 

sensitivity, specificity and AUC were obtained with QDA. 

LDA achieved about 6% better classification performance 

compared to QDA. Fig. 7 shows graphs of the evaluation 

metrics for each machine learning algorithm. 

 
TABLE I 

AVERAGE 10K CROSS-VALIDATION RESULTS 

  LSTM GRU CNN LDA QDA 

ACC 92.99 91.66 90.62 78.23 72.24 

SENS 93.64 93.73 91.16 79.56 78.56 

SPEC 92.33 89.59 90.08 76.91 65.92 

AUC 0.977 0.973 0.959 0.861 0.796 
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MEG signals may have adequate (sometimes poor) absolute 

locality. This means that a noticeable event can be seen at 

different times and slightly different frequency ranges. CNN 

emerged from the idea that the image of an object is 

independent of its location in the picture [32]. Each neuron 

binds only a small part of the entrance and extends across the 

entire depth of the entrance. In this case, it provides a distinct 

advantage compared to traditional machine learning algorithms 

such as LDA and QDA to detect patterns on poorly localized 

MEG signals. On the other hand, considering all comparison 

metrics, RNN-based machine learning algorithms perform 

significantly better than other methods. Over time, different 

neural network models have become specialized to process 

different data types. For example, Convolutional Neural 

Networks are specialized for processing matrix type 

information, such as image data, while Recurrent Neural 

Networks (RNN) have also been developed to process sequence 

data. The only input that traditional feed-forward neural 

networks take into account is existing examples to which it is 

exposed.  

 

 

 
Fig.7. Performances of machine learning algorithms and AUC scores 

 

On the other hand, RNNs also use the information for 

calculating the overtime, as well as the existing samples. 

Moreover this memory-based method (RNN) has a repetition 

layer, unlike traditional feed-forward neural networks. By 

means of this layer, the state information generated by the feed-

forward network is stored and re-applied to the network with 

the input information. In other words, RNNs have a memory 

that holds what has been calculated so far. It is evaluated that 

these capabilities of RNNs cause them to perform better on 

MEG data compared to other machine learning algorithms. 

Table 2 shows detailed results for LSTM 10k cross-

validation results. Accordingly, the best classification 

performance for a fold was 94.37%. The lowest classification 

success was 91.61%. The highest and lowest scores for 

sensitivity were 95.12% and 91.30%, respectively. In 

specificity values, the lowest score was 90.66%, while the 

highest score was 94.04%. In general, the sensitivity value of 

the model is higher than the specificity value. In the results in 

Table 1, it is seen that the sensitivity values are higher than the 

specificity values. It can be said that all of the 5 different 

machine learning algorithms used generally differentiate true 

positive classes (meaningful face) more successfully. 
 

TABLE 2  

10K CROSS-VALIDATION RESULTS OF LSTM 

 ACC SENS SPEC AUC 

1. Fold 91.61 91.30 91.93 0.972 

2. Fold 92.46 94.27 90.66 0.978 

3. Fold 91.40 90.87 91.93 0.966 

4. Fold 94.16 95.12 93.21 0.983 

5. Fold 93.62 94.06 93.19 0.982 

6. Fold 92.88 94.69 91.06 0.975 

7. Fold 93.41 92.78 94.04 0.978 

8. Fold 94.37 95.11 93.63 0.985 

9. Fold 92.56 94.04 91.08 0.977 

10. Fold 93.41 94.26 92.57 0.975 

 

In addition, based on Table 2, it is observed that the data 

distribution between folds occurs randomly in a mutually 

exclusive structure so that the accuracy between folds is close 

to each other. 

 
TABLE 3 

10K CROSS-VALIDATION RESULTS OF GRU 

 

Table 3 also gives details about the 10k cross-validation 

results of the GRU algorithm. The highest performance value 

for GRU was 94.58%. On the other hand, the lowest 

performance value is 88.64%. The highest score for sensitivity 

was 95.96%. The lowest sensitivity score is 90.02%. The 

specificity score is generally lower than the sensitivity values, 

similar to other machine learning algorithms. The lowest and 

  ACC SENS SPEC AUC 

1. Fold 88.64 94.69 82.59 0.959 

2. Fold 91.83 91.51 92.14 0.979 

3. Fold 91.30 92.57 90.02 0.973 

4. Fold 88.43 90.02 86.83 0.946 

5. Fold 91.92 93.63 90.21 0.978 

6. Fold 93.09 94.27 91.91 0.978 

7. Fold 89.90 94.06 85.74 0.965 

8. Fold 94.58 95.96 93.21 0.985 

9. Fold 93.52 95.96 91.08 0.984 

10. Fold 93.41 94.68 92.14 0.984 
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highest scores in the AUC score were 0.946 and 0.985, 

respectively. 

The results for 10k cross-validation tests of the CNN 

algorithm are shown in Table 4. The highest accuracy value for 

CNN was 92.56%. The highest value obtained for a fold is 

lower compared to LSTM and GRU. The lowest accuracy value 

was obtained at 87.37%. Here, the lowest score was observed 

compared to LSTM and GRU. The lowest and highest score for 

sensitivity is 87.69% and 92.99%, respectively. The lowest 

score for specificity is 87.04%, and the highest score is 92.36%. 

The highest value for AUC was 0.973. The lowest score for 

AUC is 0.932. 

Fig. 8 shows the boxplot representation of 10k cross-

validation results obtained with LSTM, GRU, and CNN 

algorithms. Accordingly, the median value of the LSTM 

algorithm in accuracy is higher compared to GRU and CNN. 

On the other hand, the lowest median value for accuracy 

belongs to CNN. Similarly, the lowest median value in 

sensitivity is the CNN algorithm. Although the median value 

for Specificity is lower than LSTM, it is quite similar to GRU. 

The peak values of the CNN algorithm appear to be lower in all 

comparison metrics compared to RNN-based algorithms. 

 
TABLE 4  

10K CROSS-VALIDATION RESULTS OF CNN 

 

In addition, if RNN based algorithms are analyzed, when Table 

2, Table 3, and Fig. 13 are evaluated together, it is seen that 

there are much larger differences in the GRU algorithm 

between the highest and lowest values for each fold compared 

to LSTM. Results for GRU performance have been realized in 

a much wider range. The change interval of the sensitivity value 

occurred close to each other in both models. However, the peak 

value of GRU is higher. In addition, one outlier value was 

realized at the lower point in the GRU. Specificity value stands 

out as the main factor that reveals the difference between both 

models. The median of the specificity value of GRU is much 

lower than the LSTM, and the difference between the highest 

and lowest values is quite high. It was observed that the false-

positive value was significantly higher in the GRU algorithm. 

Considering both the distribution of the sensitivity value and 

the specificity values, it can be considered that the positive class 

trend for the GRU algorithm is higher on the MEG dataset. 

GRU modules control the flow of information as in LSTM 

modules. But unlike LSTM, they don't have a memory unit. For 

this reason, LSTMs can remember longer sequences compared 

to GRU [35]. Therefore, LSTMs are more successful in this 

task, as the evaluation of MEG signals also requires modeling 

long-term relationships.  

In Fig. 9, the signal analysis of Subject-1 over the MEG 

signal recordings for face and scrambled face were shown to 

explore the cortical decoding at the first trial and the third trial, 

respectively. Notably, the face visual stimulation related power 

increment has been investigated between 8-18 Hz after the 

visual stimulation, as reported in the previous research study 

[18,36]. Moreover, this initial power increment of the evoked 

component has arisen around 170ms and/or 220ms. Then again, 

as expected, the negative deflection of N170 (the Event Related 

Potential-ERP) has occurred greater for face visual stimuli than 

scrambled visual stimuli around 170ms [37].  

 

 
Fig.8. Boxplot graphics of LSTM, GRU and CNN algorithms 

 

All these results are coherent with the previous outcomes 

connected to the N/M170 cortical activation [18,36-37].  

Furthermore, the latency for scrambled face visual stimulation 

was observed that this might be due to the brain perception 

mechanism. The functioning of face perception has been 

observed as an automatic, rapid, and subconscious process 

which already has been seen in human newborns. Preferably, 

the simple schematic (such as scrambled face) may be seen for 

face-like patterns.  Therefore, the face-like stimuli pattern can 

be perceived as faces for participants in the experiment. The 

tendency of the brain to see the face is called the phenomenon 

of pareidolia. Hence, the face-specificity of the N170 is a 

challenge for neurological studies [36]. Nonetheless, the 

development of more generative, complex and realistic 

comments from the neuroimaging data requires more multi-

subject and multi-modal analysis.  

Furthermore, according to the reported study, the stages of 

the stimulation performances in terms of the machine learning 

algorithms show that the perception stage can provide much 

higher accuracy than the pre-stimuli stage. In our study, deep 

learning algorithms may have yielded distinguished 

performances due to the better perception stage representation 

of the spatial and temporal features of the MEG signals [38]. t-

SNE visualization was shown in Fig.10.  

The confusion matrices were also determined for GRU and 

LSTM deep methods, as shown in Fig.11. Finally, some other 

studies performed with MEG dataset in Table 5 and the results 

of RNN-based models and CNN model that provide the best 

results in this study are presented together. Considering the 

 ACC SENS SPEC AUC 

1. Fold 91.08 90.45 91.72 0.963 

2. Fold 90.76 92.99 88.54 0.962 

3. Fold 88.43 87.89 88.95 0.939 

4. Fold 87.37 87.69 87.04 0.932 

5. Fold 91.07 91.72 90.42 0.962 

6. Fold 90.75 90.44 91.06 0.970 

7. Fold 91.39 92.14 90.64 0.968 

8. Fold 92.56 94.47 90.66 0.970 

9. Fold 90.44 91.49 89.38 0.957 

10. Fold 92.35 92.34 92.36 0.973 
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results in the table, it can be seen that RNN-based approaches 

perform significantly better. With the LSTM model, an 

improvement of 12.14% was achieved, which corresponds to 

the 63.39% relative error reduction rate compared to the DAE 

model, which provided the best results before. Besides, the 

CNN model appears to give significantly better results 

compared to other studies in the literature. 

IV. CONCLUSION 

The main purpose of this study is to investigate the 

classification performances of MLs over the MEG signals 

which were recorded during the human brain's response to 

visual stimuli to be decoded the brain functioning of face 

perception mechanism. There are two classes: face and 

scramble face in the classification process. MEG signals are 

very difficult to classify as they contain high amounts of noise. 

In this study, the classification performances were compared by 

using LSTM, GRU, CNN, LDA, and QDA algorithms. The 

CNN algorithm appears to provide a distinct advantage in 

capturing weakly localized MEG signals compared to LDA, 

QDA, and other studies with the same dataset. With the CNN 

algorithm, 90.62% and 0.959% values were obtained for 

accuracy and AUC, respectively. 

On the other hand, the best results were obtained with RNN 

based algorithms. RNN algorithms cannot use only the existing 

information they are exposed to as input. In addition to this 

information, they use the information they calculate overtime. 

Therefore, they differ from traditional neural networks. In this 

study, the best results in all comparison metrics except 

sensitivity were obtained with the LSTM algorithm. Quite 

similar values were obtained with the GRU for the sensitivity 

metric. The LSTM model, 92.99%, 93.64%, 92.33%, and 0.977 

values were obtained for accuracy, sensitivity, specificity, and 

AUC, respectively. 

 

 

 
Fig.9. Signal, Scalogram and Single-Sided amplitude spectrum presentation for face visual stimuli (left) Signal, Scalogram and Single-Sided amplitude spectrum 
presentation for scrambled face visual stimuli (right) (Channel-1 signals are represented for all figures) 
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Fig.10. t-SNE visualization for feature extracted dataset via Riemannian 

approach 

 

 
(a) 

 

  
(b) 

Fig. 11. The confusion matrices for GRU (a) and LSTM (b) related to the 

average results of 10-fold cross validation 

 
 

 
 

 

 
 

TABLE 5  

EXISTING METHODS USING THE MEG DATA AND CLASSIFICATION 

ACCURACIES FOR FACE/SCRAMBLED FACE RECOGNITION IN THE 
LITERATURE 

 
 

The ability of LSTMs to learn long and short-term 

dependencies has provided a distinct advantage over other 

algorithms used in the MEG dataset. In future studies, the 

LSTM algorithm can be used to study and compare cortical 

activities of various regions of the brain. Moreover, 

applications of intelligent Internet of Things (IoT) need 

universal and trustworthy biometric authentication system [42-

43]. To address these issues, paradigm of a visual presentation 

(face/scrambled face) can be proposed to use the MEG signals 

of subjects due to the great spatial and temporal resolution with 

specific stimulation of individual’s brainwave pattern. 
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STUDY METHOD 
NEURAL 

DECODING 
ACC (%) 

[5] 

DNN 

 
Face/Scramble Face 

Decoding 

80.85 

SVM 78.01 

KNN 72.84 

NB 71.92 

DT 68.36 

[10] LVQ 
Face/Scramble Face 

Decoding 
69.39 

[39] SVM 
Face/Scramble Face 

Decoding 
74.85 

[11] GRNN 
Face/Scramble Face 

Decoding 
79 

[40]  Hybrid 

GRU 

Face/Scramble Face 

Decoding 
71.20 

[41] SVM 
Face, Tool, Animal, 

Scene 

Decoding 
84 

[9] MLNN 

PNN 

Face/Scramble Face 

Decoding 

77.78 

82.36 

This Study 

LSTM 

 
Face/Scramble Face 

Decoding 

92.99 

GRU 91.66 

CNN 90.62 

LDA 78.23 

QDA 72.24 
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