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ABSTRACT 
Machine learning and deep learning algorithms produce very different results with different examples of their 

hyperparameters. Algorithm parameters require optimization because they are not specific to all problems. This 

paper used Long Short-Term Memory (LSTM) and eight different hyperparameters (go-backward, epoch, batch 

size, dropout, activation function, optimizer, learning rate, and the number of layers) to examine daily and hourly 

Bitcoin datasets. The effects of each parameter on the daily dataset on the results were evaluated and explained. 

These parameters were examined with the hparam properties of Tensorboard. As a result, it was seen that 

examining all combinations of parameters with hparam produced the best test Mean Square Error (MSE) values 

with hourly dataset 0.000043633 and daily dataset 0.00061806. Both datasets produced better results with the 

tanh activation function. Finally, when the results are interpreted, the daily dataset produces better results with 

a small learning rate and dropout values. In contrast, the hourly dataset produces better results with a large 

learning rate and dropout values.  
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1. Introduction 

For a prediction problem optimization method, dataset’s properties, and learning algorithm’s parameters affect the prediction 

accuracy and learning process. However, there is no theoretical approach to how they should be selected. Instead, parameters 

are determined by experimental approaches using optimization methods [1]. This paper seeks the most appropriate dataset 

and hyperparameters to get the best results for Bitcoin price prediction with LSTM. For this reason, this study consists of 

Bitcoin prices at different time intervals and examines datasets with LSTM. Also, this study detects dominant 

hyperparameters values and interactions by using important hyperparameters and speeding up the optimization process. An 

LSTM is a particular type of recurrent neural network (RNN) with long-term memory. There are different types of LSTMs 

that are not required to be present in the three doors mentioned. But in general, some gates hold or forget that allow data to 

be transferred. The number of doors can vary in different LSTM examples. For LSTM, there are layers in Keras, the number 

of hidden neurons, and parameters for each gate. Besides, extra dropout layer parameters can be optimized to avoid exploding 

gradient problems. The training of LSTM networks in solving several problems, as in neural networks, depends on several 

hyperparameters that determine several appearances of algorithm reactions [2]. Basically, hyperparameter optimization 

techniques are manual and automatic. 

Manual approaches: Different combinations of values need to be tried repeatedly to obtain optimal values for each of these 

hyperparameters. For this, a specialist is required. 

Automatic approaches: There are several hyperparameter optimization algorithms. Grid Search, Random Search, Particle 

swarm optimization, simulated annealing, and automated hyperparameter optimization methods. Automatic approaches are 

http://saucis.sakarya.edu.tr/
https://orcid.org/0000-0003-0355-8790
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challenging to apply because of their high computational cost [2]. But now, computer clusters or graphics processor unit 

(GPU) processors enable more experimentation to use to cheaper than last.  

Based on the reference [3], it is stated that the result of the manual search can be reliably matched with Random Search for 

some datasets. As proposed in the same reference Gaussian Process (GP) and Tree Structured Parzen Estimator (TPE) 

hyperparameter optimization algorithms are close to or surpass the performance of manual and Brute-Force Random Search 

algorithms. In this paper, the parameters go-backward, epoch, batch size, dropout, activation function, optimizer, learning 

rate and the number of layers were manually evaluated to understand the effect of hyperparameters on learning. The results 

of all combinations of parameters and their values are obtained and visualized by using the hparam parameter feature of the 

Tensorboard. The manual approach of the hyperparameters shows the success that cannot be ignored. The relatively small 

time series Bitcoin price was used as the manual approach and the automated approach will be used in our future study. 

2. Literature review 

This paper is divided into two parts: the effect of the dataset and hyperparameters on the learning. 

2.1 The effect of the datasets 

According to reference [4], bitcoin is primarily based on historical datasets, and seasonality can be weekly, daily or hourly. 

They used two model time-length 30, 60, 120 minutes and 180, 360, 720 minutes. As a result, there were raising the threshold 

and the mean holding time, the number of trades reduced while the average profit per trade rose. At the end of 50 days, it 

almost doubled the investment. Based on the reference [5] , predictions were made using the 1-minute and 30-minute datasets. 

In the 1-minute datasets, the price fluctuation between two different markets (CNY and USD) is quite high. But in the 30-

minute dataset, the fluctuation has improved. Based on the reference [6], review article, different articles were evaluated 

according to the frequency of the time intervals, which are daily, hourly and different minute intervals. The minute and second 

datasets are used for instant trading, while the daily dataset is used for further dates. Based on the reference [7], used bitcoin 

price and S&P500 datasets with daily, 1 hourly, and 15-minute time intervals. Performance was compared with LSTM and 

selected hyperparameters for datasets in different time intervals. Since dataset from different periods yielded similar results, 

they combined them into a single ensemble model. As a result, both hourly and daily prices in this paper were used in 

univariate LSTM. 

2.2. The effect of hyperparameters 

Based on the reference [7], they used a number of layers, neurons in each layer, dropout rate, learning rate, l2 kernel 

regularization, optimizer, and momentum. In place of testing each hyperparameter singly, they used Hyperband, which 

provided an understanding of the effect of changes made in several parameters simultaneously on network performance. They 

found the best optimizer is 'Adam', and the best activation is 'tanh', which aligns with our results. In contrast, others are 

different because of parameter intervals. Based on the reference [8], most performance variations depend only on a few 

hyperparameters, even in very high-dimensional situations related to the relationship between hyperparameter settings and 

performance. Based on the reference [9], they investigated a subset of possible hyperparameters with Grid Search. Improperly 

selected learning rate or dropout can make it difficult for the model to learn effectively. When using hparam or Grid Search 

to overcome this, parameters will be scanned in all possible ranges, resulting in more efficient learning. 

3. Methods 

This section will describe the methods; Python (version 3.9.7) in Spyder (version 5.1.5), keras library (version 2.7.0), 

Tensorflow (version 2.7.0) backend and Tensorboard (version 2.7.0). Keras has two main models; one is sequential (), and 

the other is the model class used with the functional API. This paper was used as a model, sequential (). Keras has two main 

models; one of them is sequential (), and the other is the model class used with the functional API. This paper was used as a 

model, sequential (). Downloaded the daily dataset from https://www.investing.com/ and the hourly dataset from 

https://www.cryptodatadownload.com.Two datasets were used for the daily datasets, consisting of 2700 lines from 01 January 

2015 to 22 May 2022, 1469 lines from 15 May 2018 to 22 May 2022. The hourly dataset consists of 36957 records from 

06:00 15 May 2018 to 23:00 22 May 2022. While comparing the daily and hourly datasets in section 4.9, it aims to ensure 

fairness by using the date range of 15 May 2018 to 22 May 2022. 

MSE was used to evaluate the results and its formulation is as follows. 

MSE= 
∑ (yj – xj)2𝑚

𝑗=1

𝑚
   (1) 
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The dropout technique prevents overfitting and leaves unrelated information from the network to improve performance [10]. 

Education of deep neural networks is complicated as the parameters of the previous layer and the distribution of the inputs 

of each layer change during training[11]. For this reason, the effect of the parameters (go-backward, activation function, 

optimizer, batch size, learning rate, and epochs) with a single layer LSTM has been observed in this paper. For all 

experiments, if the dropout is not specified, dropout=0.2 was taken to prevent overfitting. At the end of each experiment, the 

kernel reset so that no results affect each other. In experiments using the hparam feature of Tensorboard, the parameters and 

interactions that yield better results are more clearly seen as the measurements are logged and visualized. Tested the hparam 

parameters of the tensorboard by giving the values in Figure 1. 

 

 

Figure 1 Hparam parameters 

 

While discrete in Figure 1 shows that the interval is discrete, Realinterval represents the number interval. Each result of go-

backward, activation function, optimizer, batch size, learning rate, and epochs are evaluated separately below. 

4. Results 

The results for each parameter are evaluated separately below. 

4.1. “go-backward” parameter 

In our tests with go-backwards parameter, it was observed that the go-backwards='False' value gave better results with the 

increase of the epoch. Recommended go-backwards should be 'False' for time series prediction. If the go-backwards 

parameter is suitable for your dataset for instance if natural language processing (NLP) is being studied, go-backward=True 

should be used, which allows both forward and backward contexts to be used. As shown in Table 1, when 'True' value is 

compared to 'False', train MSE gives better results, while test MSE gives worse results. Based on Table 1, we conclude that 

there may be excessive learning in the 'True' value train process. 

Table 1 The effects of the go-backward on the RMSE and MSE. 

Epoch Go-backward 
Activation 

function 
Optimizer Train MSE Test MSE 

10 False tanh Adam 0.000346 0.013109 

10 True tanh Adam 0.000354 0.013603 

100 False tanh Adam 0.000020 0.000672 

100 True tanh Adam 0.000019 0.000694 

 

 

  
 

go-backward=True go-backward=False 



 

Kervancı IS and Akay MF                                                                                Sakarya University Journal of Computer and Information Sciences 6 (1) 2023 

4 

Figure 2 True and predicted value of Bitcoin price 

 

As shown in Figure 1, the difference between the actual and estimated values from the test dataset is more reasonable with 

go-backward=False. 

4.2. Activation function 

Based on the reference [12], 23 different activation functions evaluated. But in this paper tanh, relu, sigmoid, and softmax 

were examined.  

 

Table 2 The effects of the optimizer and the activation function on MSE (epoch=100). 

Batch size 
Activation 

function 
Optimizer Train MSE Test MSE 

64 tanh Adam 0.000019 0.000667 

64 relu Adam 0.000033 0.002130 

64 sigmoid Adam 0.000573 0.080025 

64 softmax Adam 0.000460 0.101000 

64 tanh RMSprop 0.000024 0.000858 

64 relu RMSprop 0.000023 0.000969 

64 sigmoid RMSprop 0.000279 0.053592 

64 softmax RMSprop 0.000481 0.095665 

64 tanh Adamax 0.000021 0.001542 

64 relu Adamax 0.000027 0.003094 

64 sigmoid Adamax 0.002187 0.191153 

64 softmax Adamax 0.003035 0.270137 

64 tanh SGD 0.003852 0.328543 

64 relu SGD 0.003741 0.342115 

64 sigmoid SGD 0.004248 0.363644 

64 softmax SGD 0.004231 0.360037 

64 tanh Adagrad 0.004515 0.384147 

64 relu Adagrad 0.003808 0.331651 

64 sigmoid Adagrad 0.004130 0.352627 

64 softmax Adagrad 0.004264 0.367113 

64 tanh Adadelta 0.006401 0.420758 

64 relu Adadelta 0.006896 0.417276 

64 sigmoid Adadelta 0.004808 0.346178 

64 softmax Adadelta 0.009292 0.446577 

 

As shown in Table 2; root mean square propagation (RMSprop), Adaptive moment estimation (Adam), Stochastic gradient 

descent (SGD), adaptive moment estimation with maximum (Adamax), adaptative gradient (Adagrad) and adaptive learning 

rate method (Adadelta) are selected as optimizers. Optimizers (Adam, SGD, RMSprop, and Adamax) achieved the best results 

with tanh activation function. Adadelta with sigmoid and Adagrad with relu pairs obtained better MSE values than other 

activation functions. The results with Adagrad and Adadelta optimizers are quite poor. Sigmoid and softmax activation 

functions generally produce worse results in trials. Sigmoid and softmax activation functions were tried with 1000 epochs as 

they may require more epochs. Sigmoid with Adam, and epoch=1000 result Train MSE: 0.000026, Test MSE: 0.040009. 

Softmax with Adam, and epoch=1000 results Train MSE: 0.000023, Test MSE: 0.061527. Even with sigmoid and softmax 

epoch=1000, it could not approach the Test MSE of the tanh activation function. 

4.3. Learning rate 

Based on the reference [13], SGDs require manual adjustment of optimization parameters such as learning rates. If a person 

does not understand the task at hand, it is very difficult to find a good learning rate. In this case, running the learning algorithm 

with many optimization parameters and choosing the best performing model in a validation set should be selected. 

The learning rate was applied to the same LSTM structure in Table 1, 2. 

 

 

 

https://keras.io/api/optimizers/rmsprop
https://keras.io/api/optimizers/rmsprop
https://keras.io/api/optimizers/rmsprop
https://keras.io/api/optimizers/rmsprop
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In order to see the results better, the relative property of the horizontal axis epoch value has been applied. 

Optimizer=Adam; activation functions tanh=orange , relu=darkblue, softmax= blue, sigmoid=brown. 

 

Figure 3 Graph of loss values of activation functions for Adam optimization. 

 

Table 3 The effect of the learning rate on test MSE. 

Optimizer Activation function Learning rate(Lr) Test MSE 

rmsprop tanh 0.001 0.00070297 

adam tanh 0.2 0.00070604 

adam tanh 0.001 0.00070997 

rmsprop relu 0.001 0.00078362 

Adamax tanh 0.2 0.00094503 

Adagrad tanh 0.2 0.00101260 

Adamax tanh 0.001 0.00105760 

Adamax tanh 0.1 0.00144720 

rmsprop tanh 0.001 0.00070297 

 

When we examine the results in Table 3, the lowest MSE values are obtained with a 0.001 learning rate. When Table 2 and 

Table 3 are compared, it is observed that the test MSE value improves with the use of the learning rate parameter except for 

adam-tanh.  

As seen in the Table 2; Adam method enables the adam-tanh pair to obtain the best test MSE 0.000667 without using the Lr. 

Due to the square root effect, Lr effect gradually diminishes and changes slowly around the globally minimum. In this way, 

the globally minimum is found faster and it is not requiring more Lr optimization with Adam. 

4.4. Optimizer 

The selection of the optimizer is important to training. SGD, Ftrl, Adam, Adadelta, RMSprop, Adagrad, Nadam, and Adamax 

are optimizers. SGD and its variants such as Adam [14], Adagrad [15] and RMSprop [16], are amongst the most popular 

training methods. Adam was found to be widely applicable despite of requiring less regulation of its hyperparameters [17]. 

Based on the reference [9], they concluded that Adadelta, Adagrad, and SGD required more epochs, our result supports this 

conclusion. SGD epoch=1000 Train MSE: 0.000020, test MSE: 0.000859 as a result, concluded that SGD want higher epochs 

to produce approximate results for other optimizers like Adam, RMSprop. Adam was found to be widely applicable despite 

requiring less regulation of its hyperparameters. The results in Table 3 were created by taking the best 11 results of that make 

up the tensorboard hparam parallel coordinate view in Figure 4. 

Based on the reference [18], SGD and SGD variants such as momentum have proved to be an effective way of training deep 

networks. Our results are supported by references [18] , [9]; tanh, relu activation functions produced the best results. In 

general, Rmsprop and Adam showed the best performances.  

4.5. Batch size 

Batch is a set of dataset samples. The dataset group in each batch size independently of each other processed in parallel. If 

we increase the batch size, our approach will be the better, but the process takes a long time and will still result in only one 
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backward weight update. The number of times the backward parameters are updated is determined by the number of an epoch. 

It is advised to pick a batch size that is as large as you can afford without going out of memory [19]. Based on the reference 

[20], they said that the training dataset size should be divisible by batch size to ensure safe termination because they use 

cyclical learning rates. However, cyclical learning did not apply in this study, and batch size fixed 64 in Tables 1, 2, and 3. 

 

Figure 4 Optimizer and activation function parallel coordinates 

  

Based on reference [21] the impact of batch size on performance, the higher the batch size, the better train and test MSE 

value like our result in Table 4 (daily dataset). However, it is not a valid generalization for all hyperparameter combinations 

and datasets, as seen in Tables 7 and 8. 

Table 4 The effect of the batch size with daily dataset on test MSE values. 

Batch size Test MSE 

32 0.00075906 

64 0.00074598 

128 0.00066059 

4.6. Number of layers 

If multi-layer LSTMs are used, usually the first LSTM layer is allowed to output all output (not just one output). This output 

is fed as input to the next LSTM layer. Since the output of the first layer will be used as input for the next layer, the 

“return_sequences” parameter of the LSTM layer must be "true".  

Table 5 The effect of the number of layers on the train and test MSE values. 

Dropout 

after 

each 

layer 

Activation 

function optimizer 

Number 

of layers 

LSTM 

unit in 

each layer Epoch 

 

 

 

Train 

MSE 

Test 

MSE 

0.2 tanh Adam 1 64 100 0.000040 0.005751 

0.2 tanh Adam 2 64 100 0.000021 0.001992 

0.2 tanh Adam 3 64 100 0.000022 0.007281 

0.2 tanh Adam 4 64 100 0.000038 0.015507 

 

Although better train and test MSE values are obtained with increasing layers, the values get worse after a certain number of 

layers as it continues to increase. As shown in Table 5, while the 2-layer structure produced the best MSE result, the values 

deteriorated with more than 2 layers. 

4.7. Epoch 

Epoch shows how many times a dataset is given to the network to train the network. In deep learning algorithms, we need to 

update the weights and thus pass the whole dataset multiple times to obtain a better and more accurate prediction model to 

optimize gradient descent. However, it is not clear how many epochs are needed to train a model with the same dataset to 

achieve optimum weights. For the best train to the network, different datasets proceed differently therefore epoch numbers 

are different [22]. Based on the reference [9], they measured the number of epochs for an optimizer, convergence observed 

huge variations in terms of the number of epochs until Nadam converged the fastest, and only requires few training epochs 
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to achieve good performance. SGD, Adadelta, and Adagrad require more epoch. As seen from Table 1 and Figure 2 the 

increase in the number of an epoch improved the MSE values. However, after a certain increase, the number of epochs does 

not contribute to improving the performance, which varies according to the training you have a dataset. As seen in Figure 3, 

as the epoch increases, the loss decreases, and after a certain epoch value, it doesn’t effect on the loss. 

4.8. Dropout 

Dropout is implemented on any or all hidden layers in the network except the output layer. The dropout technique removes 

irrelevant information from the network to prevent overfitting and improve performance [10]. Based on the reference [23], 

they offered dropout and defined how specific hyperparameters should be. 

Based on the reference [24], the accuracy of CNN dropout was clearly better than without dropout CNN. It is increased by 

58.15% accuracy on a small images’ dataset, but our dataset is time series. 

According to our experiments, if the dropout value is used, the difference between the train and test MSE values will decrease. 

Table 6 The effect of the dropout on the train and test MSE values. 

Batch 

size Optimizer 

Activation 

function Dropout  Dataset Train MSE Test MSE 

64 Adamax tanh - hourly 0.000079 0.000042 

64 Adamax tanh 0.1 hourly 0.000080 0.000045 

64 Adamax tanh - daily 0.000020 0.001268 

64 Adamax tanh 0.1 daily 0.000026 0.000969 

4.9. The effect of the daily and hourly datasets 

The same code with the daily and hourly datasets was executed for the same date range of 15 May 2018 to May 2022. These 

tests were carried out to see the contribution of daily and hourly datasets to Bitcoin price prediction. Based on the reference 

[25], g is a noise scale and has an effect on a training and test accuracy. 

 

𝑔 = 𝐿𝑟(
𝑡𝑟𝑎𝑖𝑛𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒
 - 1) 

(2) 
 

Table 7 The results of the hourly dataset with hparam parameters (epoch=100).  

Batch size Optimizer 

Activation 

function Dropout  

Learning 

rate(Lr) Test MSE 

64 Adamax tanh 0.2 0.001 0.000043633 

64 Adadelta tanh 0.1 0.05 0.000045415 

64 Adadelta tanh 0.1 0.1 0.000047583 

64 Adadelta tanh 0.2 0.05 0.000047906 

32 Adagrad tanh 0.1 0.1 0.000048397 

64 Adamax tanh 0.1 0.001 0.000048572 

32 Adamax tanh 0.1 0.001 0.000050041 

64 Adagrad tanh 0.2 0.1 0.000051697 

64 Adadelta tanh 0.1 0.2 0.000052008 

32 Adagrad tanh 0.2 0.2 0.000052436 

 

Table 7 shows the best 10 values and parameters out of 576 combinations (Figure 1) for the hourly dataset. 

 

Table 8 The results of the daily dataset with hparam parameters (epoch=100).  

Batch size Optimizer 

Activation 

function Dropout  

Learning 

rate(Lr) Test MSE 

64.000 tanh 0.1 Adamax 0.001 0.00061806 

128.00 relu 0.1 adam 0.001 0.00061871 

128.00 tanh 0.1 Adagrad 0.100 0.00062113 

128.00 tanh 0.2 adam 0.001 0.00062767 

128.00 tanh 0.2 Adagrad 0.100 0.00062931 

64.000 tanh 0.1 Adadelta 0.200 0.00063148 

64.000 tanh 0.2 Adadelta 0.200 0.00063465 

128.00 relu 0.2 Adagrad 0.100 0.00063694 

32.000 relu 0.1 Adamax 0.001 0.00063716 
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32.000 softmax 0.1 adam 0.001 0.00063835 

Table 8 shows the best 10 values and parameters out of 576 combinations (Figure 1) for the daily dataset. 

The daily dataset produces better results with a small learning rate and small dropout values, whereas the hourly dataset 

produces better results with a large learning rate and large dropout values. 

5. Conclusions and Recommendations 

The contribution of this paper, the Bitcoin price prediction problem is to infer which of the hyperparameters work better with 

each other. 

We observed that the test MSE values of the hourly dataset gave better results than the daily dataset. 

For numerical time series, it is recommended to set the go-backward parameter to False. 

Tanh and relu activation functions are suitable for these datasets. 

It is quite clear that the SGD optimizer gives better results with the learning rate parameter, and we recommend they to be 

used together. 

In general, the impact of batch size on performance, the higher the batch size, the better the test MSE value. 

When all other parameters were fixed, it was seen that tanh and relu activation functions with SGD, Adam, RMSprop and 

Adamax optimizers, and sigmoid activation function with Adadelta optimizer gave better results. 

Achieved the two-layer LSTM with the parameters we optimized, better than the 3 and 4-layer LSTM, which shows us the 

importance of hyperparameter optimization. 

As seen in Tables 7 and 8 the result of “g”, better MSE values were obtained when Lr decreased, and batch size was constant, 

or Lr was constant and batch size increased, or dropout increases, and the other parameters fixed. 

When the test MSE values of the daily and hourly datasets are examined, the hourly dataset is recommended since the hourly 

dataset produces better test MSE values. 
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