

Sakarya University Journal of Computer and Information Sciences 6 (1) 2023

 This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License

1

Sakarya University Journal of Computer and Information

Sciences
http://saucis.sakarya.edu.tr/

LSTM Hyperparameters optimization with Hparam

parameters for Bitcoin Price Prediction

I. Sibel Kervancı 1 , M. Fatih Akay 2

1Gaziantep University; IT Department Gaziantep/Türkiye
2 Çukurova University, Faculty of Engineering, Department of Computer Engineering Adana/Türkiye

ABSTRACT
Machine learning and deep learning algorithms produce very different results with different examples of their

hyperparameters. Algorithm parameters require optimization because they are not specific to all problems. This

paper used Long Short-Term Memory (LSTM) and eight different hyperparameters (go-backward, epoch, batch

size, dropout, activation function, optimizer, learning rate, and the number of layers) to examine daily and hourly

Bitcoin datasets. The effects of each parameter on the daily dataset on the results were evaluated and explained.

These parameters were examined with the hparam properties of Tensorboard. As a result, it was seen that

examining all combinations of parameters with hparam produced the best test Mean Square Error (MSE) values

with hourly dataset 0.000043633 and daily dataset 0.00061806. Both datasets produced better results with the

tanh activation function. Finally, when the results are interpreted, the daily dataset produces better results with

a small learning rate and dropout values. In contrast, the hourly dataset produces better results with a large

learning rate and dropout values.

Keywords: LSTM, optimization, Bitcoin, prediction, hparam

 DOI: 10.35377/saucis...1172027 RESEARCH ARTICLE

Corresponding author:

I.Sibel Kervancı , Gaziantep University;

IT Department Gaziantep/Türkiye

E-mail address:

skervanci@gantep.edu.tr

Received: 7 September 2022

Revised: 27 November 2022

Accepted: 02 January 2023

Published Online: 22 March 2023

Citation: Kervancı S. and Akay MF. (2023).

LSTM Hyperparameters optimization with

Hparam parameters for Bitcoin Price

Prediction. Sakarya University Journal of

Computer and Information Sciences. 6 (1).

https://doi.org/10.35377/saucis...1172027

1. Introduction

For a prediction problem optimization method, dataset’s properties, and learning algorithm’s parameters affect the prediction

accuracy and learning process. However, there is no theoretical approach to how they should be selected. Instead, parameters

are determined by experimental approaches using optimization methods [1]. This paper seeks the most appropriate dataset

and hyperparameters to get the best results for Bitcoin price prediction with LSTM. For this reason, this study consists of

Bitcoin prices at different time intervals and examines datasets with LSTM. Also, this study detects dominant

hyperparameters values and interactions by using important hyperparameters and speeding up the optimization process. An

LSTM is a particular type of recurrent neural network (RNN) with long-term memory. There are different types of LSTMs

that are not required to be present in the three doors mentioned. But in general, some gates hold or forget that allow data to

be transferred. The number of doors can vary in different LSTM examples. For LSTM, there are layers in Keras, the number

of hidden neurons, and parameters for each gate. Besides, extra dropout layer parameters can be optimized to avoid exploding

gradient problems. The training of LSTM networks in solving several problems, as in neural networks, depends on several

hyperparameters that determine several appearances of algorithm reactions [2]. Basically, hyperparameter optimization

techniques are manual and automatic.

Manual approaches: Different combinations of values need to be tried repeatedly to obtain optimal values for each of these

hyperparameters. For this, a specialist is required.

Automatic approaches: There are several hyperparameter optimization algorithms. Grid Search, Random Search, Particle

swarm optimization, simulated annealing, and automated hyperparameter optimization methods. Automatic approaches are

http://saucis.sakarya.edu.tr/
https://orcid.org/0000-0003-0355-8790
https://orcid.org/0000-0003-0780-0679
mailto:skervanci@gantep.edu.tr
https://doi.org/10.35377/saucis...1172027

Kervancı IS and Akay MF Sakarya University Journal of Computer and Information Sciences 6 (1) 2023

2

challenging to apply because of their high computational cost [2]. But now, computer clusters or graphics processor unit

(GPU) processors enable more experimentation to use to cheaper than last.

Based on the reference [3], it is stated that the result of the manual search can be reliably matched with Random Search for

some datasets. As proposed in the same reference Gaussian Process (GP) and Tree Structured Parzen Estimator (TPE)

hyperparameter optimization algorithms are close to or surpass the performance of manual and Brute-Force Random Search

algorithms. In this paper, the parameters go-backward, epoch, batch size, dropout, activation function, optimizer, learning

rate and the number of layers were manually evaluated to understand the effect of hyperparameters on learning. The results

of all combinations of parameters and their values are obtained and visualized by using the hparam parameter feature of the

Tensorboard. The manual approach of the hyperparameters shows the success that cannot be ignored. The relatively small

time series Bitcoin price was used as the manual approach and the automated approach will be used in our future study.

2. Literature review

This paper is divided into two parts: the effect of the dataset and hyperparameters on the learning.

2.1 The effect of the datasets

According to reference [4], bitcoin is primarily based on historical datasets, and seasonality can be weekly, daily or hourly.

They used two model time-length 30, 60, 120 minutes and 180, 360, 720 minutes. As a result, there were raising the threshold

and the mean holding time, the number of trades reduced while the average profit per trade rose. At the end of 50 days, it

almost doubled the investment. Based on the reference [5] , predictions were made using the 1-minute and 30-minute datasets.

In the 1-minute datasets, the price fluctuation between two different markets (CNY and USD) is quite high. But in the 30-

minute dataset, the fluctuation has improved. Based on the reference [6], review article, different articles were evaluated

according to the frequency of the time intervals, which are daily, hourly and different minute intervals. The minute and second

datasets are used for instant trading, while the daily dataset is used for further dates. Based on the reference [7], used bitcoin

price and S&P500 datasets with daily, 1 hourly, and 15-minute time intervals. Performance was compared with LSTM and

selected hyperparameters for datasets in different time intervals. Since dataset from different periods yielded similar results,

they combined them into a single ensemble model. As a result, both hourly and daily prices in this paper were used in

univariate LSTM.

2.2. The effect of hyperparameters

Based on the reference [7], they used a number of layers, neurons in each layer, dropout rate, learning rate, l2 kernel

regularization, optimizer, and momentum. In place of testing each hyperparameter singly, they used Hyperband, which

provided an understanding of the effect of changes made in several parameters simultaneously on network performance. They

found the best optimizer is 'Adam', and the best activation is 'tanh', which aligns with our results. In contrast, others are

different because of parameter intervals. Based on the reference [8], most performance variations depend only on a few

hyperparameters, even in very high-dimensional situations related to the relationship between hyperparameter settings and

performance. Based on the reference [9], they investigated a subset of possible hyperparameters with Grid Search. Improperly

selected learning rate or dropout can make it difficult for the model to learn effectively. When using hparam or Grid Search

to overcome this, parameters will be scanned in all possible ranges, resulting in more efficient learning.

3. Methods

This section will describe the methods; Python (version 3.9.7) in Spyder (version 5.1.5), keras library (version 2.7.0),

Tensorflow (version 2.7.0) backend and Tensorboard (version 2.7.0). Keras has two main models; one is sequential (), and

the other is the model class used with the functional API. This paper was used as a model, sequential (). Keras has two main

models; one of them is sequential (), and the other is the model class used with the functional API. This paper was used as a

model, sequential (). Downloaded the daily dataset from https://www.investing.com/ and the hourly dataset from

https://www.cryptodatadownload.com.Two datasets were used for the daily datasets, consisting of 2700 lines from 01 January

2015 to 22 May 2022, 1469 lines from 15 May 2018 to 22 May 2022. The hourly dataset consists of 36957 records from

06:00 15 May 2018 to 23:00 22 May 2022. While comparing the daily and hourly datasets in section 4.9, it aims to ensure

fairness by using the date range of 15 May 2018 to 22 May 2022.

MSE was used to evaluate the results and its formulation is as follows.

MSE=
∑ (yj – xj)2𝑚

𝑗=1

𝑚
 (1)

Kervancı IS and Akay MF Sakarya University Journal of Computer and Information Sciences 6 (1) 2023

3

The dropout technique prevents overfitting and leaves unrelated information from the network to improve performance [10].

Education of deep neural networks is complicated as the parameters of the previous layer and the distribution of the inputs

of each layer change during training[11]. For this reason, the effect of the parameters (go-backward, activation function,

optimizer, batch size, learning rate, and epochs) with a single layer LSTM has been observed in this paper. For all

experiments, if the dropout is not specified, dropout=0.2 was taken to prevent overfitting. At the end of each experiment, the

kernel reset so that no results affect each other. In experiments using the hparam feature of Tensorboard, the parameters and

interactions that yield better results are more clearly seen as the measurements are logged and visualized. Tested the hparam

parameters of the tensorboard by giving the values in Figure 1.

Figure 1 Hparam parameters

While discrete in Figure 1 shows that the interval is discrete, Realinterval represents the number interval. Each result of go-

backward, activation function, optimizer, batch size, learning rate, and epochs are evaluated separately below.

4. Results

The results for each parameter are evaluated separately below.

4.1. “go-backward” parameter

In our tests with go-backwards parameter, it was observed that the go-backwards='False' value gave better results with the

increase of the epoch. Recommended go-backwards should be 'False' for time series prediction. If the go-backwards

parameter is suitable for your dataset for instance if natural language processing (NLP) is being studied, go-backward=True

should be used, which allows both forward and backward contexts to be used. As shown in Table 1, when 'True' value is

compared to 'False', train MSE gives better results, while test MSE gives worse results. Based on Table 1, we conclude that

there may be excessive learning in the 'True' value train process.

Table 1 The effects of the go-backward on the RMSE and MSE.

Epoch Go-backward
Activation

function
Optimizer Train MSE Test MSE

10 False tanh Adam 0.000346 0.013109

10 True tanh Adam 0.000354 0.013603

100 False tanh Adam 0.000020 0.000672

100 True tanh Adam 0.000019 0.000694

go-backward=True go-backward=False

Kervancı IS and Akay MF Sakarya University Journal of Computer and Information Sciences 6 (1) 2023

4

Figure 2 True and predicted value of Bitcoin price

As shown in Figure 1, the difference between the actual and estimated values from the test dataset is more reasonable with

go-backward=False.

4.2. Activation function

Based on the reference [12], 23 different activation functions evaluated. But in this paper tanh, relu, sigmoid, and softmax

were examined.

Table 2 The effects of the optimizer and the activation function on MSE (epoch=100).

Batch size
Activation

function
Optimizer Train MSE Test MSE

64 tanh Adam 0.000019 0.000667

64 relu Adam 0.000033 0.002130

64 sigmoid Adam 0.000573 0.080025

64 softmax Adam 0.000460 0.101000

64 tanh RMSprop 0.000024 0.000858

64 relu RMSprop 0.000023 0.000969

64 sigmoid RMSprop 0.000279 0.053592

64 softmax RMSprop 0.000481 0.095665

64 tanh Adamax 0.000021 0.001542

64 relu Adamax 0.000027 0.003094

64 sigmoid Adamax 0.002187 0.191153

64 softmax Adamax 0.003035 0.270137

64 tanh SGD 0.003852 0.328543

64 relu SGD 0.003741 0.342115

64 sigmoid SGD 0.004248 0.363644

64 softmax SGD 0.004231 0.360037

64 tanh Adagrad 0.004515 0.384147

64 relu Adagrad 0.003808 0.331651

64 sigmoid Adagrad 0.004130 0.352627

64 softmax Adagrad 0.004264 0.367113

64 tanh Adadelta 0.006401 0.420758

64 relu Adadelta 0.006896 0.417276

64 sigmoid Adadelta 0.004808 0.346178

64 softmax Adadelta 0.009292 0.446577

As shown in Table 2; root mean square propagation (RMSprop), Adaptive moment estimation (Adam), Stochastic gradient

descent (SGD), adaptive moment estimation with maximum (Adamax), adaptative gradient (Adagrad) and adaptive learning

rate method (Adadelta) are selected as optimizers. Optimizers (Adam, SGD, RMSprop, and Adamax) achieved the best results

with tanh activation function. Adadelta with sigmoid and Adagrad with relu pairs obtained better MSE values than other

activation functions. The results with Adagrad and Adadelta optimizers are quite poor. Sigmoid and softmax activation

functions generally produce worse results in trials. Sigmoid and softmax activation functions were tried with 1000 epochs as

they may require more epochs. Sigmoid with Adam, and epoch=1000 result Train MSE: 0.000026, Test MSE: 0.040009.

Softmax with Adam, and epoch=1000 results Train MSE: 0.000023, Test MSE: 0.061527. Even with sigmoid and softmax

epoch=1000, it could not approach the Test MSE of the tanh activation function.

4.3. Learning rate

Based on the reference [13], SGDs require manual adjustment of optimization parameters such as learning rates. If a person

does not understand the task at hand, it is very difficult to find a good learning rate. In this case, running the learning algorithm

with many optimization parameters and choosing the best performing model in a validation set should be selected.

The learning rate was applied to the same LSTM structure in Table 1, 2.

https://keras.io/api/optimizers/rmsprop
https://keras.io/api/optimizers/rmsprop
https://keras.io/api/optimizers/rmsprop
https://keras.io/api/optimizers/rmsprop

Kervancı IS and Akay MF Sakarya University Journal of Computer and Information Sciences 6 (1) 2023

5

In order to see the results better, the relative property of the horizontal axis epoch value has been applied.

Optimizer=Adam; activation functions tanh=orange , relu=darkblue, softmax= blue, sigmoid=brown.

Figure 3 Graph of loss values of activation functions for Adam optimization.

Table 3 The effect of the learning rate on test MSE.

Optimizer Activation function Learning rate(Lr) Test MSE

rmsprop tanh 0.001 0.00070297

adam tanh 0.2 0.00070604

adam tanh 0.001 0.00070997

rmsprop relu 0.001 0.00078362

Adamax tanh 0.2 0.00094503

Adagrad tanh 0.2 0.00101260

Adamax tanh 0.001 0.00105760

Adamax tanh 0.1 0.00144720

rmsprop tanh 0.001 0.00070297

When we examine the results in Table 3, the lowest MSE values are obtained with a 0.001 learning rate. When Table 2 and

Table 3 are compared, it is observed that the test MSE value improves with the use of the learning rate parameter except for

adam-tanh.

As seen in the Table 2; Adam method enables the adam-tanh pair to obtain the best test MSE 0.000667 without using the Lr.

Due to the square root effect, Lr effect gradually diminishes and changes slowly around the globally minimum. In this way,

the globally minimum is found faster and it is not requiring more Lr optimization with Adam.

4.4. Optimizer

The selection of the optimizer is important to training. SGD, Ftrl, Adam, Adadelta, RMSprop, Adagrad, Nadam, and Adamax

are optimizers. SGD and its variants such as Adam [14], Adagrad [15] and RMSprop [16], are amongst the most popular

training methods. Adam was found to be widely applicable despite of requiring less regulation of its hyperparameters [17].

Based on the reference [9], they concluded that Adadelta, Adagrad, and SGD required more epochs, our result supports this

conclusion. SGD epoch=1000 Train MSE: 0.000020, test MSE: 0.000859 as a result, concluded that SGD want higher epochs

to produce approximate results for other optimizers like Adam, RMSprop. Adam was found to be widely applicable despite

requiring less regulation of its hyperparameters. The results in Table 3 were created by taking the best 11 results of that make

up the tensorboard hparam parallel coordinate view in Figure 4.

Based on the reference [18], SGD and SGD variants such as momentum have proved to be an effective way of training deep

networks. Our results are supported by references [18] , [9]; tanh, relu activation functions produced the best results. In

general, Rmsprop and Adam showed the best performances.

4.5. Batch size

Batch is a set of dataset samples. The dataset group in each batch size independently of each other processed in parallel. If

we increase the batch size, our approach will be the better, but the process takes a long time and will still result in only one

Kervancı IS and Akay MF Sakarya University Journal of Computer and Information Sciences 6 (1) 2023

6

backward weight update. The number of times the backward parameters are updated is determined by the number of an epoch.

It is advised to pick a batch size that is as large as you can afford without going out of memory [19]. Based on the reference

[20], they said that the training dataset size should be divisible by batch size to ensure safe termination because they use

cyclical learning rates. However, cyclical learning did not apply in this study, and batch size fixed 64 in Tables 1, 2, and 3.

Figure 4 Optimizer and activation function parallel coordinates

Based on reference [21] the impact of batch size on performance, the higher the batch size, the better train and test MSE

value like our result in Table 4 (daily dataset). However, it is not a valid generalization for all hyperparameter combinations

and datasets, as seen in Tables 7 and 8.

Table 4 The effect of the batch size with daily dataset on test MSE values.

Batch size Test MSE

32 0.00075906

64 0.00074598

128 0.00066059

4.6. Number of layers

If multi-layer LSTMs are used, usually the first LSTM layer is allowed to output all output (not just one output). This output

is fed as input to the next LSTM layer. Since the output of the first layer will be used as input for the next layer, the

“return_sequences” parameter of the LSTM layer must be "true".

Table 5 The effect of the number of layers on the train and test MSE values.

Dropout

after

each

layer

Activation

function optimizer

Number

of layers

LSTM

unit in

each layer Epoch

Train

MSE

Test

MSE

0.2 tanh Adam 1 64 100 0.000040 0.005751

0.2 tanh Adam 2 64 100 0.000021 0.001992

0.2 tanh Adam 3 64 100 0.000022 0.007281

0.2 tanh Adam 4 64 100 0.000038 0.015507

Although better train and test MSE values are obtained with increasing layers, the values get worse after a certain number of

layers as it continues to increase. As shown in Table 5, while the 2-layer structure produced the best MSE result, the values

deteriorated with more than 2 layers.

4.7. Epoch

Epoch shows how many times a dataset is given to the network to train the network. In deep learning algorithms, we need to

update the weights and thus pass the whole dataset multiple times to obtain a better and more accurate prediction model to

optimize gradient descent. However, it is not clear how many epochs are needed to train a model with the same dataset to

achieve optimum weights. For the best train to the network, different datasets proceed differently therefore epoch numbers

are different [22]. Based on the reference [9], they measured the number of epochs for an optimizer, convergence observed

huge variations in terms of the number of epochs until Nadam converged the fastest, and only requires few training epochs

Kervancı IS and Akay MF Sakarya University Journal of Computer and Information Sciences 6 (1) 2023

7

to achieve good performance. SGD, Adadelta, and Adagrad require more epoch. As seen from Table 1 and Figure 2 the

increase in the number of an epoch improved the MSE values. However, after a certain increase, the number of epochs does

not contribute to improving the performance, which varies according to the training you have a dataset. As seen in Figure 3,

as the epoch increases, the loss decreases, and after a certain epoch value, it doesn’t effect on the loss.

4.8. Dropout

Dropout is implemented on any or all hidden layers in the network except the output layer. The dropout technique removes

irrelevant information from the network to prevent overfitting and improve performance [10]. Based on the reference [23],

they offered dropout and defined how specific hyperparameters should be.

Based on the reference [24], the accuracy of CNN dropout was clearly better than without dropout CNN. It is increased by

58.15% accuracy on a small images’ dataset, but our dataset is time series.

According to our experiments, if the dropout value is used, the difference between the train and test MSE values will decrease.

Table 6 The effect of the dropout on the train and test MSE values.

Batch

size Optimizer

Activation

function Dropout Dataset Train MSE Test MSE

64 Adamax tanh - hourly 0.000079 0.000042

64 Adamax tanh 0.1 hourly 0.000080 0.000045

64 Adamax tanh - daily 0.000020 0.001268

64 Adamax tanh 0.1 daily 0.000026 0.000969

4.9. The effect of the daily and hourly datasets

The same code with the daily and hourly datasets was executed for the same date range of 15 May 2018 to May 2022. These

tests were carried out to see the contribution of daily and hourly datasets to Bitcoin price prediction. Based on the reference

[25], g is a noise scale and has an effect on a training and test accuracy.

𝑔 = 𝐿𝑟(
𝑡𝑟𝑎𝑖𝑛𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒
 - 1)

(2)

Table 7 The results of the hourly dataset with hparam parameters (epoch=100).

Batch size Optimizer

Activation

function Dropout

Learning

rate(Lr) Test MSE

64 Adamax tanh 0.2 0.001 0.000043633

64 Adadelta tanh 0.1 0.05 0.000045415

64 Adadelta tanh 0.1 0.1 0.000047583

64 Adadelta tanh 0.2 0.05 0.000047906

32 Adagrad tanh 0.1 0.1 0.000048397

64 Adamax tanh 0.1 0.001 0.000048572

32 Adamax tanh 0.1 0.001 0.000050041

64 Adagrad tanh 0.2 0.1 0.000051697

64 Adadelta tanh 0.1 0.2 0.000052008

32 Adagrad tanh 0.2 0.2 0.000052436

Table 7 shows the best 10 values and parameters out of 576 combinations (Figure 1) for the hourly dataset.

Table 8 The results of the daily dataset with hparam parameters (epoch=100).

Batch size Optimizer

Activation

function Dropout

Learning

rate(Lr) Test MSE

64.000 tanh 0.1 Adamax 0.001 0.00061806

128.00 relu 0.1 adam 0.001 0.00061871

128.00 tanh 0.1 Adagrad 0.100 0.00062113

128.00 tanh 0.2 adam 0.001 0.00062767

128.00 tanh 0.2 Adagrad 0.100 0.00062931

64.000 tanh 0.1 Adadelta 0.200 0.00063148

64.000 tanh 0.2 Adadelta 0.200 0.00063465

128.00 relu 0.2 Adagrad 0.100 0.00063694

32.000 relu 0.1 Adamax 0.001 0.00063716

Kervancı IS and Akay MF Sakarya University Journal of Computer and Information Sciences 6 (1) 2023

8

32.000 softmax 0.1 adam 0.001 0.00063835

Table 8 shows the best 10 values and parameters out of 576 combinations (Figure 1) for the daily dataset.

The daily dataset produces better results with a small learning rate and small dropout values, whereas the hourly dataset

produces better results with a large learning rate and large dropout values.

5. Conclusions and Recommendations

The contribution of this paper, the Bitcoin price prediction problem is to infer which of the hyperparameters work better with

each other.

We observed that the test MSE values of the hourly dataset gave better results than the daily dataset.

For numerical time series, it is recommended to set the go-backward parameter to False.

Tanh and relu activation functions are suitable for these datasets.

It is quite clear that the SGD optimizer gives better results with the learning rate parameter, and we recommend they to be

used together.

In general, the impact of batch size on performance, the higher the batch size, the better the test MSE value.

When all other parameters were fixed, it was seen that tanh and relu activation functions with SGD, Adam, RMSprop and

Adamax optimizers, and sigmoid activation function with Adadelta optimizer gave better results.

Achieved the two-layer LSTM with the parameters we optimized, better than the 3 and 4-layer LSTM, which shows us the

importance of hyperparameter optimization.

As seen in Tables 7 and 8 the result of “g”, better MSE values were obtained when Lr decreased, and batch size was constant,

or Lr was constant and batch size increased, or dropout increases, and the other parameters fixed.

When the test MSE values of the daily and hourly datasets are examined, the hourly dataset is recommended since the hourly

dataset produces better test MSE values.

References

[1] D. Choi, J. C. Shallue, Z. Nado, J. Lee, J. C. Maddison and E. G. Dahl, ”On Empirical Comparisons of Optimizers

for Deep Learning,” Computing Research Repository (CoRR), vol. abs/1910.05446, Oct 2019.

[2] B. Nakisa, M. N. Rastgoo, A. Rakotonirainy, F. Maire and V. Chandra, ”Long Short Term Memory Hyperparameter

Optimization for a Neural Network Based Emotion Recognition Framework,” IEEE Access, vol. 6, pp. 49325 - 49338,

Sept 2018.

[3] J. Bergstra, R. Bardenet, Y. Bengio and B. Kegl, ”Algorithms for Hyper-Parameter Optimization,” Advances in

Neural Information Processing Systems 24 (NIPS 2011), 2011.

[4] R. K. Rathore, D. Mishra, P. S. Mehra, O. pal, A. S. Hashim, A. Shapi'i, T. Ciano and M. Shutaywi, ”Real-world

model for bitcoin price prediction,”Information Processing and Management, vol. 59, no. 4, 2022.

[5] T. Shintate and L. Pichl, ”Trend Prediction Classification for High Frequency Bitcoin Time Series with Deep

Learning, ” Journal of Risk Financial Management, vol 12, no. 1, 2019.

[6] I. S. Kervancı and M. F. Akay, ”Review on Bitcoin Price Prediction Using Machine Learning and Statistical

Methods,” Sakarya University Journal of Computer and Information Sciences, vol. 3, no. 3, pp. 272-282, 2020.

[7] J. Michańków, P. Sakowski and R. Ślepaczuk, ”LSTM in Algorithmic Investment Strategies on BTC and S&P500

Index,” Sensors , vol. 22, no. 3, 2022.

[8] F. Hutter, H. Hoos and K. Leyton-Brown, ”An Efficient Approach for Assessing Hyperparameter Importance,”

Proceedings of the 31st International Conference on Machine Learning, 2014.

[9] N. Reimers and I. Gurevych, ”Optimal Hyperparameters for Deep LSTM-Networks for Sequence Labeling Tasks,”

EMNLP 2017, 2017.

[10] A. U. Rehman, A. K. Malik, B. Raza and W. Ali , ”A Hybrid CNN-LSTM Model for Improving Accuracy of Movie

Reviews Sentiment Analysis,” Multimedia Tools and Applications, no. 78, pp. 26597–26613, June 2019.

[11] S. Ioffe and C. Szegedy, ”Batch Normalization: Accelerating Deep Network Training Reducing Internal Covariate

Shift,” Proceedings of the 32 nd International Conference on Machine Learning, Lille, France, 2015.

[12] A. Farzad, H. Mashayekhi and H. Hassanpour , ”A comparative performance analysis of different activation functions

in LSTM networks for classification,” Neural Computing and Applications volume, vol. 31, pp. 2507–2521, 2019.

Kervancı IS and Akay MF Sakarya University Journal of Computer and Information Sciences 6 (1) 2023

9

[13] Q. V. Le , J. Ngiam, A. Coates, A. Lahiri, B. Prochnow and A. Y. Ng, ”On Optimization Methods for Deep Learning,”

ICML, 2011.

[14] D. P. Kingma and J. Ba, ”Adam: A Method for Stochastic Optimization,” Published as a conference paper at the 3rd

International Conference for Learning Representations, San Diego, 2015.

[15] J. Duchi , E. Hazan and Y. Singer, ”Adaptive Subgradient Methods for Online Learning and Stochastic Optimization,”

Journal of Machine Learning Research, vol. 12, pp. 2121-2159, 2011.

[16] G. Hinton, N. Srivastava and K. Swersky, ”Lecture 6.5 Rmsprop- Divide the Gradient by a Running Average of its

Recent Magnitude,” Toronto Uni, 2012.

[17] S. Merity, N. S. Keskar and R. Socher, ”Regularizing and Optimizing LSTM Language Models,” ICLR 2018,

Vancouver, BC, Canada, 2018.

[18] I. Sutskever, J. Martens and G. D. Geoffr, ”On the Importance of Initialization and Momentum in Deep Learning,”

Proceedings of the 30th International Conference on Machine Learning, PMLR, 2013.

[19] keras, ”keras,” Feb. 2020. [Online]. Available: https://keras.io/layers/recurrent/.

[20] Smith, Leslie N.;U.S. Naval Research Laboratory, ”Cyclical Learning Rates for Training Neural Networks,” 2017

IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 2017.

[21] N. Golmant, N. Vemuri, Z. Yao, V. Feinberg, A. Gholami, K. Rothauge, M. W. Mahoney and J. Gonzalez, ”On the

Computational Inefficiency of Large Batch Sizes for Stochastic Gradient Descent,” arXiv preprint arXiv:1811.12941,

Nov 2018.

[22] S. SIAMI NAMIN and A. SIAMI NAMIN, ”Forecasting Economic and Financial Time Series: ARIMA vs. LSTM,”

arXiv preprint arXiv: 1803.06386, 2018.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, ”Dropout: A Simple Way to Prevent

Neural Networks from Overfitting,” Journal of Machine Learning Research, vol.15, pp. 1929-1958, 2014.

[24] K. Pasupa ve W. Sunhem, "A Comparison Between Shallow and Deep Architecture Classifiers on Small Dataset,”

8th ICITEE, Yogyakarta, Indonesia, 2016.

[25] S. L. Smith, P. J. Kindermans, C. Ying and Q. V. Le, ”Don't decay the learning rate, increase the batch size,” ICLR

(International Conference on Learning Representations), Vancouver, 2018.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Availability of Data and Material

Not applicable.

Ethical Approval and Informed Consent

It is declared that during the preparation process of this study, scientific and ethical principles were followed, and all the

studies benefited from are stated in the bibliography.

Plagiarism Statement

This article has been scanned by iThenticate ™.

