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Abstract 

White blood cells (WBCs), which are a crucial component of the immune system, help our body defend against 

infections and other diseases. Some diseases may cause our body to produce fewer WBCs than it requires. 

Therefore, WBCs are of great importance in medical imaging. Artificial intelligence-based computer systems can 

assist experts in analyzing WBCs. In this study, we proposed an approach for the automatic classification of WBCs 

into five different classes using a pre-trained model. We trained ResNet-50, VGG-19, and MobileNet-V3-Small 

pre-trained models with ImageNet weights. For the training, validation, and testing processes of the models, we 

used a public dataset containing 16,633 images with an uneven class distribution. While the ResNet-50 model 

achieved an accuracy of 98.79%, the VGG-19 model achieved an accuracy of 98.19%, and the MobileNet-V3-

Small model achieved the highest accuracy rate at 98.86%. When examining the predictions of the MobileNet-

V3-Small model, we observed that it was not affected by class dominance and was able to correctly classify even 

the least sampled class images in the dataset. In addition to the high accuracy achieved in the classification of 

WBCs using the proposed pre-trained deep learning models, we also applied the Grad-CAM method to further 

understand and interpret the model's predictions. 
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1. Introduction 

Blood is a vital fluid that helps to nourish the body, maintain acid-base balance, transport hormones, 

and maintain salt and water balance. Blood consists of three types of cells: erythrocytes, platelets, and 

leukocytes [1]. 

Erythrocytes, the most abundant type of blood cell, contain a substance called hemoglobin, which is 

responsible for transporting oxygen in the body [2]. Oxygen, inhaled into the lungs through respiration 

and then entering the blood, can be transported to all body tissues with the help of hemoglobin in 

erythrocytes. Adequate oxygen access to each cell in the body depends on the sufficient number and 

function of erythrocytes in the blood. Erythrocytes, which are reddish in color and therefore also referred 

to as red blood cells, obtain their color from the iron mineral in the structure of hemoglobin [3]. 

Platelets are cell fragments that are formed by the disintegration of cells called megakaryocytes in the 

bone marrow tissue located in the center of our bones after they mature and enter the blood [4]. Platelets 

play a vital role in regulating certain chemical reactions that occur in the blood due to the biochemical 

substances they contain [5]. However, their primary function is in the case of bleeding due to injury to 

blood vessels; they help to quickly close and repair the wounded area. 

Leukocytes, also known as white blood cells (WBCs), are an important part of the immune system and 

a group of cells that protect the body against infections [6]. When the body encounters foreign 

organisms, they reproduce rapidly. The primary function of leukocytes is to identify and eliminate 

antigens such as bacteria, viruses, fungi, and poisonous toxins that have entered the body in various 

ways. Leukocytes consist of five different types of WBCs, each with its own specific functions: 

● Basophils, which are the least common type of leukocyte in the body, fight infections and 

parasitic infections. By releasing histamine during allergic reactions, basophils enable the body 
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to produce an antibody called immunoglobulin E. Additionally, by secreting heparin, they 

increase the fluidity of the blood [7]. 

● Eosinophils produce enzymes that destroy parasites that cause inflammatory and allergic 

reactions in the body [8]. 

● Monocytes are produced in the bone marrow and then enter the bloodstream. These cells are 

called monocytes when in the bloodstream, but within a few hours, they leave the circulatory 

system and enter the tissues. The monocyte cells that reach the tissue are called macrophages. 

They eliminate microorganisms that cause infections and clean up dead cells [9]. 

● Lymphocyte cells, which are produced in the bone marrow and lymph tissue, secrete chemicals 

called lymphokines against foreign organisms in the body, stimulating other immune system 

cells and allowing them to attack the foreign organism [10]. 

● Neutrophils are the first precursor cells to reach foreign organisms that cause infections in the 

body. They release and digest chemical enzymes to combat foreign organisms [11]. 

Leukemia, anemia, cancer, and various other diseases can be diagnosed through the analysis of WBCs 

[12]. This analysis is often conducted using a peripheral blood smear, which is a common laboratory 

method. To obtain a sample, a healthcare provider draws blood from a patient's finger or toe using a 

sterile needle, and the sample is then examined in a laboratory to create a peripheral blood film [13]. 

This film is manually analyzed by a specialist to identify signs of disease. However, manual analysis 

can be time-consuming and laborious for experts. As a result, computer-aided systems have been 

developed to assist with the classification of WBCs. With the advancement of hardware technology, the 

use of artificial intelligence (AI) in this field has increased. AI-based systems, also known as decision 

support systems, are designed to minimize errors caused by human factors and are used in various 

sectors, including healthcare. For example, decision support systems have been successfully used to 

detect COVID-19 through chest computed tomography images and to detect brain tumors through brain 

magnetic resonance imaging without human intervention [14]. 

Many studies have been carried out for the automatic classification of WBCs by AI-based systems.  In 

the study [15], researchers proposed a system that uses the DenseNet-121 model to classify different 

types of WBCs. A publicly available dataset including eosinophil, lymphocyte, monocyte, and 

neutrophil classes was used for model training. The dataset contains 12,444 different samples with a 

resolution of 320×240px. The normalization process was applied to the dataset samples to speed up 

model training. The number of dataset samples has been increased with data augmentation techniques 

such as flipping, rotation, brightness, and zooming. The dataset samples were resized to a resolution of 

224×224px. After the pre-processing steps, 20,050 WBCs images were obtained, including synthetic 

images. The model is trained for 10 epochs with the help of the Adam optimizer. Four different training 

processes were performed and the batch size value was changed to 8, 16, 32, and 64 in each training. 

The model, which was trained with 8 batch sizes, achieved 98.84% accuracy, 99.33% precision, 98.85% 

sensitivity, and 99.61% specificity values during the test phase, and achieved more successful results 

compared to other models.  

In the study [16], researchers proposed an approach that can classify WBCs from microscopic blood 

images. The researchers used a publicly available dataset of images with different values in resolutions 

ranging from 350×236px to 2592×1944px. AlexNet, ResNet-101, and GoogleNet models were trained 

to detect five different classes: basophil, eosinophil, lymphocyte, monocyte, and neutrophil. While the 

dataset samples are resized to 227×227px resolution for training the AlexNet model, this value is 

224×224px for the training of the GoogleNet and ResNet-101 models. To compare the success of the 

pre-trained models in classifying WBCs, 178 test images were given to the relevant models as input. 

The AlexNet model achieved better results compared to other models with 96.63% accuracy, 97.85% 

specificity, and 89.18% sensitivity rates. 

In one study [17], researchers designed a deep convolutional neural network (CNN) model to classify 

microscopic images of WBCs. They proposed a new data augmentation method based on feature 

concentration to enhance the dataset and address the small number of samples. The training, validation, 
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and testing processes for the CNN model, which was designed to automatically classify the neutrophil, 

lymphocyte, monocyte, eosinophil, and basophil classes, were carried out using a special dataset 

provided by Sichuan Meisheng Biotech Company. This dataset consists of 8600 leukocyte images with 

a resolution of 1024×768px collected from various individuals. These images were divided into 

217×217px pieces, resulting in a total of 11,658 sub-images. 80% of the dataset samples were reserved 

for training, while the remaining 20% were used for validation. The proposed model achieved an average 

test accuracy of 97.6% in classifying the five different WBCs. 

In another study [18], researchers proposed an approach for classifying WBCs in microscopic images. 

Samples from a publicly available dataset containing a total of 352 images were augmented using 

various image augmentation techniques, resulting in 12,444 images. The dataset included samples 

belonging to the eosinophil, lymphocyte, monocyte, and neutrophil classes. A seven-layer convolutional 

neural network with an input size of 120×160px was created to automatically classify these samples. To 

this end, all of the dataset samples were resized to 120×160px. The proposed model was subjected to 

two different training processes to examine its binary and multiclass classification performance. In 

binary classification, a mononuclear class was created using eosinophil and neutrophil samples, and a 

polynuclear class was created using lymphocyte and monocyte samples. The model achieved an 

accuracy of 96.30% in binary classification and 87.93% accuracy in multiclass classification. 

In another study [19], the researchers proposed a system that can simultaneously detect and classify 

WBCs in an image. This system is based on the F-RCNN and YOLOv4 architectures. The models were 

trained on samples from the Blood Cell Count Dataset (BCCD), which includes samples of four different 

WBCs: neutrophils, eosinophils, monocytes, and lymphocytes. The F-RCNN model achieved an 

accuracy of 96.25% and the YOLOv4 model achieved 95.75% accuracy during the testing phase. 

In yet another study [20], the researchers proposed a U-Net-based approach for WBCs segmentation. In 

the U-Net encoder network, ResNet-50 blocks were integrated instead of the default layers, and squeeze-

and-excitation blocks were added to the decoder network. The training and testing stages of the model 

were conducted using samples from the BCISC and LISC datasets. Using various data augmentation 

techniques, the number of samples for each dataset was increased to 10,000. The dataset samples were 

divided into 80% for training, 10% for validation, and 10% for testing. The ResNet-50-based U-Net 

model was trained for 200 epochs with a batch size of 8 and Adam optimization. It was reported that 

the model achieved a Dice score of 98.13% and a mean Intersection over Union (mIoU) rate of 96.36% 

during the testing phase using the BISC dataset samples. 

The primary objective of this study is to use deep learning to automatically detect WBCs from 

microscopic blood images, thereby assisting specialists in the early diagnosis of diseases related to 

WBCs counts. The main contributions of this study are as follows: 

● Demonstrating the effectiveness of existing deep learning models on a new dataset. 

● Achieving high performance on a non-uniformly distributed dataset without using data 

augmentation for WBCs classification. 

● Visualizing, using Gradient-weighted Class Activation Mapping (Grad-CAM), which pixel 

areas the deep learning models focus on during the decision-making phase, thereby providing 

an explainable structure for pre-trained models. 

● Reducing human errors and subjectivity by using deep learning structures to perform these 

tasks, which are currently carried out by experts visually. 

The remainder of this paper is organized as follows: Section 2 presents the proposed method for this 

study, including the dataset used, pre-trained deep learning models, classification performance 

measures, and the Grad-CAM algorithm. Section 3 presents the parameters and environments used in 

the training phase, the numerical values of the model during the training phase, the test phase 

predictions, and performance values. The discussion and conclusion sections of the study are presented 

in Section 4 and Section 5, respectively. 

2. Material and Methods 
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An approach has been proposed for the deep learning-based automated classification of WBCs from 

microscopic blood images. The block representation of the proposed method is given in Figure 1. 
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Figure 1 A Block Representation of The Proposed Method 

In the proposed method, the image given as input to the deep learning model is classified as a basophil, 

eosinophil, lymphocyte, monocyte, or neutrophil at the model's output. The choice of dataset and model 

is critical for achieving high success rates in this classification process. The quality of the dataset directly 

affects the performance of the deep learning model, and therefore it is important that it is created or 

verified by experts. This can be a resource and time-intensive process. However, several researchers 

have created and publicly shared WBCs datasets, as listed in Table 1. 

Table 1 Publicly Available WBCs Datasets 

Dataset Basophil Eosinophil Lymphocyte Monocyte Neutrophil Total 

LISC [21] 54 42 59 55 56 266 

BCCD [22] 3 86 33 19 208 349 

MISP [23] 0 42 36 33 38 149 

ALL-IDB [24] 1 2 60 3 18 84 

Zheng et al. [25] 1 22 53 48 176 300 

Raabin-WBC [26] 301 1066 3609 795 10,862 16,633 

2.1 Dataset 

In this study, the Raabin-WBC dataset [26] was used for the training, validation, and testing of the 

models. The Raabin-WBC dataset was created using 72 peripheral blood films collected from Shariati 

Hospital, which were examined using Olympus Cx18 and Zeiss microscopes. A total of 16,633 WBCs 

images with a resolution of 575×575px were obtained, and these images were labeled by two experts: 

301 were labeled as basophils (Bas), 1066 as eosinophils (Eos), 3609 as lymphocytes (Lym), 795 as 

monocytes (Mon), and 10,862 as neutrophils (Neu). Samples of each class in the dataset are shown in 

Figure 2. 

(a) Basophil (b) Eosinophil (c) Lymphocyte (d) Monocyte (e) Neutrophil  

Figure 2 Dataset Samples [26] 

Upon examination of the class-based distribution of samples in the Raabin-WBC dataset, it was 

observed that the Neu class is dominant. Data augmentation methods, which involve creating synthetic 

images, can be used to balance the distribution of classes. However, in this study, no data augmentation 

was performed in order to test the performance of pre-trained models under challenging conditions. 



Sakarya University Journal of Computer and Information Sciences 

 

Oguzhan Katar et al. 

466 

 

2.2 Pre-trained Models 

Transfer learning is a machine learning technique that involves using the weights of a previously trained 

model as initial weights in the training phase of CNN. This allows the model, which was previously 

trained on a task, to be reused for different tasks. Transfer learning is highly effective for achieving good 

performance with a small amount of data. It is now a widely used method, especially for tasks related 

to image or natural language processing, as it allows researchers to use pre-trained models that have 

already learned how to classify images and have learned general features such as edges and shapes. 

Examples of pre-trained models that are often used as the basis for transfer learning include ResNet 

[27], VGG [28], and MobileNet [29], which were trained using the ImageNet [30] database. Pre-trained 

models can be grouped into three categories based on the number of parameters they contain: low (less 

than 15 M), medium (between 15 M - 70 M), and high (more than 70 M). Information on the pre-trained 

models is provided in Table 2 [31]. 

Table 2 Pre-trained Models Used in This Study [31] 

Model Default Input Size Parameters (Million) Category 

ConvNeXtXLarge 224×224 350.1 High 

ConvNeXtLarge 224×224 197.7 High 

VGG-19 224×224 143.7 High 

VGG-16 224×224 138.4 High 

EfficientNetV2L 480×480 119 High 

NASNetLarge 331×331 88.9 High 

ConvNeXtBase 224×224 88.5 High 

EfficientNetB7 600×600 66.7 Medium 

ResNet152 224×224 60.4 Medium 

ResNet152V2 224×224 60.4 Medium 

InceptionResNetV2 299×299 55.9 Medium 

EfficientNetV2M 480×480 54.4 Medium 

ConvNeXtSmall 224×224 50.2 Medium 

ResNet101 224×224 44.7 Medium 

ResNet101V2 224×224 44.7 Medium 

EfficientNetB6 528×528 43.3 Medium 

EfficientNetB5 456×456 30.6 Medium 

ConvNeXtTiny 224×224 28.6 Medium 

ResNet50 224×224 25.6 Medium 

ResNet50V2 224×224 25.6 Medium 

InceptionV3 299×299 23.9 Medium 

Xception 299×299 22.9 Medium 

EfficientNetV2S 384×384 21.6 Medium 

DenseNet201 224×224 20.2 Medium 

EfficientNetB4 380×380 19.5 Medium 

EfficientNetV2B3 300×300 14.5 Low 

DenseNet169 224×224 14.3 Low 

EfficientNetB3 300×300 12.3 Low 

EfficientNetV2B2 260×260 10.2 Low 

EfficientNetB2 260×260 9.2 Low 

EfficientNetV2B1 240×240 8.2 Low 

DenseNet121 224×224 8.1 Low 

EfficientNetB1 240×240 7.9 Low 

EfficientNetV2B0 224×224 7.2 Low 

Mobilenet_v3_large 224×224 5.4 Low 

NASNetMobile 224×224 5.3 Low 

EfficientNetB0 224×224 5.3 Low 

MobileNet 224×224 4.3 Low 

MobileNetV2 224×224 3.5 Low 

Mobilenet_v3_small 224×224 2.9 Low 
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To directly assess the effect of the number of parameters on model performance, three pre-trained 

models were randomly selected from the categories specifically created for this study: ResNet-50, VGG-

19, and MobileNet-V3-Small. 

2.3 Performance Metrics 

Various metrics can be calculated using True Positive (TP), False Positive (FP), True Negative (TN), 

and False Negative (FN) to evaluate the performance of models. In this study, four metrics were used 

to evaluate the models for each class. These metrics and their corresponding equations are as follows: 

● Accuracy is a performance metric that measures the percentage of correct predictions made by 

a classification model. It is the most widely used performance metric, but it may not fully reflect 

the performance of a model and can sometimes be misleading. For example, in a dataset where 

some classes are more represented than others, accuracy may not be a sufficient metric. 

● Precision measures the percentage of predictions made by a model that are correct. The main 

difference between precision and accuracy is that precision only considers correct predictions, 

while accuracy considers all predictions. Therefore, precision is often a more precise metric and 

is given greater consideration when evaluating the performance of classification models. 

● Sensitivity is a performance metric that measures the success of a classification model. It shows 

the percentage of data that the model predicted correctly. The main difference with other metrics 

is that sensitivity only evaluates correct predictions. For example, a model may have low 

sensitivity even though it has high accuracy. In this case, most of the data that the model predicts 

correctly are misclassified data, indicating that the model is not performing well. 

● The F-1 score is a combination of sensitivity and precision ratios, used to evaluate the 

performance of a classification model, especially for multi-label data. The advantage of the F-

1 score is that it does not rely solely on accuracy values, allowing it to show whether the model 

has balanced performance for all classes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 (𝐹1) = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (4) 

2.4 Grad-CAM Algorithm 

Grad-CAM is a technique that visualizes the regions of an image that are most important for a CNN 

to make a prediction. It allows us to understand which parts of an image a CNN is using to make a 

decision, and can be used to generate heatmaps that highlight these regions [32]. Grad-CAM works 

by using the gradients of the output of the CNN with respect to the input image to produce a weighted 

sum of the feature maps in the final convolutional of the network. The resulting heatmap is then 

overlaid on the input image to show which regions had the greatest influence on CNN's prediction. 

The architecture of the Grad-CAM algorithm is depicted in Figure 3. 
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Figure 3 The architecture of the Grad-CAM [32] 

The process for creating a Grad-CAM visualization for a pre-trained CNN is as follows: 

1. Feed the input image through the CNN to generate a prediction. 

2. Compute the gradients of the output of the CNN with respect to the feature maps in the final 

convolutional layer. 

3. Take the weighted sum of the feature maps, using the gradients as weights. 

4. Resize the resulting heatmap to the size of the input image. 

5. Overlay the heatmap on the input image to highlight the regions that were most important 

for CNN's prediction. 

Grad-CAM is relatively simple to implement and can be used with any CNN, regardless of its 

architecture. It is also an efficient method, as it only requires a single forward and backward pass 

through the network to generate the visualization. However, there are some limitations to Grad-

CAM. For example, it can only provide visualizations for a single class at a time, and it is sensitive 

to the specific layer chosen for visualization. Additionally, the visualizations produced by Grad-

CAM may not always align perfectly with human intuition, as they are based on the internal 

representation of the CNN rather than the visual features that a human might use to classify the 

image. 

3. Experimental Results 

The results of models trained to classify WBCs from microscopic blood images are presented in this 

section. In addition, an analysis of the experimental findings with performance metrics is shown in the 

following sections. 

3.1 Experimental Setups 

The default input size of the ResNet-50, VGG-19, and MobileNet-V3-Small models used in this study 

is 224×224px, so all of the dataset samples were resized to this value. Before training the model, 70% 

of the resized dataset samples were randomly divided for use in the training, 20% for validation, and 

10% for testing. The visual representation of these processes is shown in Figure 4. 
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Figure 4 Image Resizing and Splitting Method 

The pre-trained ResNet-50, VGG-19, and MobileNet-V3-Small models were included in the training 

using the Keras library. Since the models will only make predictions for five different classes, the Dense 

layers were revised and the softmax activation function was used. The models were compiled with an 

Adam optimizer and a learning rate of 0.0001. ImageNet weights were used instead of random initial 

weights for the training of the models. The models were trained with a constant batch size of 64, and 

training was carried out for a maximum of 50 epochs using the early stopping function. If the monitored 

validation accuracy value does not improve for five consecutive epochs, the early stopping function 

terminates the training phase and the weights of the epoch with the highest validation accuracy value 

are recorded in the '.h5' format. All of these processes were performed in the Google Colab environment. 

3.2 Results 

Three different deep-learning models were trained with the same parameters. The time required to 

complete the model training processes is directly proportional to the number of parameters and layers 

they have. The training stages of the models were carried out using the early stopping function, and the 

weights of the epoch that achieved the highest validation accuracy were recorded. ResNet-50 reached 

the highest validation accuracy after 16 epochs, VGG-19 reached the highest validation accuracy after 

23 epochs, and MobileNet-V3-Small reached the highest validation accuracy after 24 epochs. The loss 

and accuracy graphs for the models during the training and validation phases are shown in Figure 5. 
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Figure 5 Loss and Accuracy Graphs 

When the validation accuracy values were examined for the three models that completed training, it was 

observed that a rate of more than 95% could be achieved in less than 25 epochs. This is due in part to 

the fact that the models were trained using ImageNet weights instead of starting with random weights. 

Even though the models were trained with a dataset that is not evenly balanced, the lack of overfitting 

indicates the success of the pre-trained models. Performance metrics were used to compare the 

classification performance of the three different models trained to classify five different WBCs from 

microscopic blood images. For this, images that were not included in the training and validation phases 

but were reserved solely for use in the testing phase were given as input to each model. The confusion 

matrices generated by the predictions of the models for these inputs are shown in Figure 6. 
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Figure 6 Confusion Matrices for Each Model 

To evaluate the Grad-CAM outputs of the deep learning model, it is necessary to first assess the 

performance of the model during the training phase. This helps to understand the accuracy of the model's 

predictions and assess the reliability of the model. When the predictions are analyzed, it is apparent that 

the models have learned to classify WBCs. In Table 3, the performance metric values achieved by the 

relevant models during the testing phase are provided. 

Table 3 The Results of The Pre-trained Models  

Model 

Basophil Eosinophil Lymphocyte Monocyte Neutrophil 

P 

(%) 

S 

(%) 

F1 

(%) 

P 

(%) 

S  

(%) 

F1 

(%) 

P 

(%) 

S 

(%) 

F1 

(%) 

P 

(%) 

S 

(%) 

F1 

(%) 

P 

(%) 

S 

(%) 

F1 

(%) 

ResNet-50 100 100 100 100 96.26 98.09 97.78 97.78 97.78 91.46 93.75 92.59 99.54 99.72 99.62 

VGG-19 96.55 93.33 94.91 97.19 97.19 97.19 96.95 96.95 96.95 86.51 96.25 91.12 99.72 98.98 99.34 

MobileNet-

V3-Small 
100 100 100 100 93.45 96.61 98.61 98.33 98.46 92.85 97.50 95.11 99.26 99.63 99.44 

Following the training phase, the model should be evaluated using the test data. The resulting outputs 

should be carefully analyzed to interpret how the Grad-CAM outputs describe the images and identify 

the features that the model considers important. Figure 7 presents the Grad-CAM outputs for a selection 

of randomly chosen images from the test set. 
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Figure 7 The Grad-CAM outputs 

Upon examination of the Grad-CAM outputs, it was observed that all three models effectively identified 

the relevant features in the images with a high degree of accuracy. As the model performance is 

consistent with expectations, it is not necessary to further adjust the hyperparameters or layer 

configurations of the models. 

4. Discussion 

The detection of WBCs using microscopic blood images is a topic of active research. Table 4 presents 

a selection of studies on this subject that have been curated by hand. Yildirim and Cinar [33] employed 

AlexNet, ResNet-50, DenseNet-201, and GoogleNet architectures on a dataset comprising 9,663 

images. For each model, three different training stages were conducted using original data, data filtered 

with a Gaussian filter, and data filtered with a median filter. The highest accuracy rate of 83.44% was 

achieved by the DenseNet-201 model trained with Gaussian-filtered data. Ekiz et al. [34] classified 

12,442 WBCs images using both a CNN model and a Con-SVM model, with the Con-SVM model found 

to be more accurate, achieving an accuracy rate of 85.96%, compared to the CNN model's accuracy rate 

of 83.91%. Sharma et al. [15] implemented a deep learning model based on the DenseNet121 

architecture for the classification of various types of WBCs. The model was optimized with 

normalization and data augmentation and achieved an accuracy of 98.84%. Girdhar et al. [35] proposed 

a method that demonstrated the ability to accurately classify WBCs types in a shorter number of 

epochs/time compared to other approaches. The performance of the proposed method was evaluated 

using the Kaggle dataset, resulting in an overall accuracy of 98.55%. Nahzat et al. [36] aimed to develop 

a CNN-based model for the classification of WBCs. They used images of WBCs from the Kaggle dataset 

to train and evaluate their proposed model, testing it with various optimizers to determine the best 

performance. They also compared the performance of their model with four pre-trained CNN models 
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(MobileNetV2, DenseNet121, InceptionV3, and ResNet50) and found that the proposed model, despite 

having the lowest number of trainable parameters and training time, outperformed the others with an 

accuracy of 99.5%. Karakuş and Özbay [37] used CNN models and combined them with three different 

machine learning classifiers. They applied contrast-limited adaptive histogram equalization (CLAHE) 

and Gaussian filters to images from the Kaggle dataset, which were then reclassified using the three 

CNN networks. The results showed that the classification performance was higher when the images 

were preprocessed with these filters compared to the original data. Jung et al. [38] proposed W-Net, a 

CNN-based method for the classification of WBCs. To evaluate W-Net, they used a large-scale dataset 

of 6,562 real images of the five WBCs types, obtained from The Catholic University of Korea. The 

results showed that W-Net achieved an average accuracy of 97%. Wang et al. [39] proposed a deep 

CNN called WBC-AMNet for automatically classifying WBCs subtypes based on a focused attention 

mechanism. This method uses feature fusion strategies, combining Squeeze-and-Excitation and Gather-

Excite modules, to obtain more localized attention from the CNN. The WBC-AMNet achieved an 

overall accuracy of 98.39. They also used Grad-CAM to visualize the attention heatmaps of different 

feature maps. Roy and Ameer [40] applied a semantic segmentation technique using a deep learning 

network to accurately segment WBCs from microscopic blood images. The proposed model employed 

the DeepLabv3+ architecture with a ResNet-50 network as the feature extractor. The model was 

evaluated on three different public datasets containing five categories of WBCs, using 10-fold cross-

validation to assess its effectiveness. The average segmentation accuracy achieved by the proposed 

model was 96.1% IoU. Wu et al. [20] proposed a WBC image segmentation network based on U-Net 

that combines residual networks. The encoder structure of the network uses ResNet50 residual blocks 

as the main unit. The proposed model achieved 96.36% mIoU. 

Table 4 Comparison of Our Work With Some State-of-the-art Studies 

Study 
Number of 

Class 

Number of 

Images 
Model Explainability Task Performance 

Yildirim and 

Cinar [33] 

4 (Eos, Lym, 

Mon, Neu) 
9,663 DenseNet-201 Black-box Classification Acc=83.44% 

Ekiz et al. 

[34] 

4 (Eos, Lym, 

Mon, Neu) 
12,442 Con-SVM Black-box Classification Acc=85.96% 

Sharma et al. 

[15] 

4 (Eos, Lym, 

Mon, Neu) 
12,444 DenseNet-121 Black-box Classification Acc=98.84% 

Girdhar et al. 

[35] 

4 (Eos, Lym, 

Mon, Neu) 
12,444 CNN Black-box Classification Acc=98.55% 

Nahzat et al. 

[36] 

4 (Eos, Lym, 

Mon, Neu) 
12,444 Hybrid CNN Black-box Classification Acc=99.50% 

Karakuş and 

Özbay [37]  

4 (Eos, Lym, 

Mon, Neu) 
12,444 CNN Black-box Classification Acc=97.10% 

Jung et al. 

[38] 

5 (Bas, Eos, 

Lym, Mon, 

Neu) 

6,562 W-Net Black-box Classification Acc=97.00% 

Wang et al. 

[39] 

4 (Eos, Lym, 

Mon, Neu) 
16,873 WBC-AMNet Grad-CAM Classification Acc=98.39% 

Roy and 

Ameer [40] 

5 (Bas, Eos, 

Lym, Mon, 

Neu) 

642 DeepLabv3+ Black-box Segmentation mIoU=96.10% 

Wu et al. 

[20] 

5 (Bas, Eos, 

Lym, Mon, 

Neu) 

516 U-Net Black-box Segmentation mIoU=96.36% 

The 

proposed our 

study 

5 (Bas, Eos, 

Lym, Mon, 

Neu) 

16,633 
MobileNet-

V3-Small 
Grad-CAM Classification Acc=98.86% 
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In this study, we employed a pre-trained MobileNet-V3-Small model for automated WBCs 

classification. Our results demonstrated a high accuracy of 98.86%, which is higher than the accuracy 

reported in most other studies. This suggests that the model in our study was able to accurately classify 

the images into the appropriate categories. Our study included a larger number of classes (5) compared 

to many other studies (which often have only 4 classes). This increased complexity made the task more 

challenging and required a more sophisticated model. Our dataset was also relatively large, with 16,663 

images, which may have contributed to the robustness and generalizability of our model. We also 

employed Grad-CAM as an explainability method to provide insights into the model's decision-making 

process and identify any potential biases or weaknesses. 

It is worth noting that some other studies have focused on image segmentation, a task distinct from 

classification. Image segmentation involves predicting a pixel-level mask for each class in the image, 

while classification simply involves predicting a single class label for the entire image. In this study, we 

employed the MobileNet-V3-Small model architecture, which may not be optimal for all tasks and 

datasets. Alternative model architectures may yield better performance in certain cases. Some other 

studies have utilized models with more layers and a greater number of parameters (e.g. DenseNet-201, 

DenseNet-121), which may improve performance but also require more computational resources and 

may be more prone to overfitting. 

The limitations of this study are as follows: 

● The dataset consists of only 16,633 images, which may not be sufficient to fully capture the 

variability and complexity of the WBCs being analyzed. 

● Our study only evaluated the performance of three pre-trained models (ResNet-50, VGG-19, 

and MobileNet-V3-Small) on the WBCs classification task. 

● The durability of models against changes due to variations in lighting, background, or other 

factors that may affect the appearance of WBCs in images has not been validated. 

● As k-fold cross-validation was not employed, the model was only evaluated on a single split of 

the data. 

In future research, it would be beneficial to augment the dataset with a larger number of images that 

have a more balanced distribution of classes. This would likely lead to more robust and accurate 

classifications. It would also be useful to evaluate the model on a range of different datasets to assess 

its generalizability and performance on diverse types of images. While the models in this study 

demonstrated high accuracy rates, there is always a potential for further improvement. Additional 

research could be conducted to optimize the models and enhance their performance. While the models 

in this study demonstrated high accuracy in classifying WBCs, it would be valuable to assess their 

performance in real-world settings. This might involve testing the models on images from actual medical 

cases or incorporating the models into existing medical imaging systems for use by healthcare 

professionals. 

5. Conclusion 

In recent years, advances in hardware technology have enabled the use of machine learning techniques 

in the field of healthcare, specifically in the automatic classification of WBCs using microscopic blood 

images. Accurate identification of WBCs is crucial for medical diagnosis and research. This study 

proposes a deep learning-based approach for the automatic classification of WBCs using microscopic 

blood images and investigates its effectiveness through experiments on a dataset of 16,633 different 

WBCs images. Several popular pre-trained models, including MobileNet-V3-Small, were employed for 

the deep learning models. The MobileNet-V3-Small model achieved the highest accuracy rate of 

98.86%. To understand how the model was making its predictions, we employed a visualization 

technique called Grad-CAM to identify the pixel areas that the model was focusing on. The findings of 

this study suggest that deep learning may be a useful tool for the automated identification of WBCs in 

medical diagnosis and research. However, further research is needed to fully evaluate the robustness 
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and generalizability of these results, as well as to explore the potential for using deep learning in other 

aspects of medical diagnosis and treatment. 
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