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Abstract 

Malaria is a disease caused by a parasite. The parasite is transmitted to humans through the bite of infected 

mosquitoes. Thousands of people die every year due to malaria. When this disease is diagnosed early, it can be 

fully treated with medication. Diagnosis of malaria can be made according to the presence of parasites in the blood 

taken from the patient. In this study, malaria detection and diagnosis study were performed using The Malaria 

dataset containing a total of 27,558 cell images with samples of equally parasitized and uninfected cells from thin 

blood smear slide images of segmented cells. It is possible to detect malaria from microscopic blood smear images 

via modern deep learning techniques. In this study, 5 of the popular convolutional neural network architectures 

for malaria detection from cell images were retrained to find the best combination of architecture and learning 

algorithm. AlexNet, GoogLeNet, ResNet-50, MobileNet-v2, VGG-16 architectures from pre-trained networks 

were used, their hyperparameters were adjusted and their performances were compared. In this study, a maximum 

96.53% accuracy rate was achieved with MobileNet-v2 architecture using the adam learning algorithm. 
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1. Introduction 

Malaria; is a disease that is transmitted to humans by the bite of a mosquito that carries parasites, can 

be fatal if not treated in time, and causes fever and chills in seizures. Anemia and jaundice may develop 

in cases where diagnosis and treatment are delayed. In some types of parasites that cause malaria, if 

treatment is not started within 24 hours, it can progress and lead to death. Malaria is a disease that can 

be treated with drugs. If the disease is diagnosed early and treated appropriately, patients can fully 

recover [1]. 

According to The World Health Organization's report, globally 229 million malaria cases were 

estimated. It is more common, especially in the Africa region. In 2019, 409 thousand people died from 

malaria disease. In the 2000s, this number was 736 thousand. Between 2000 and 2019, there were 1.5 

billion cases of malaria globally, and 7.6 million people died from this cause [2]. Because malaria causes 

so much illness and death, the disease is a huge burden for many national economies. Most of the 

countries with malaria are already among the poor countries, and the economy of these countries is 

badly affected by the disease. The malaria parasite resides in the red blood cells of an infected person. 

Malaria can also be transmitted through blood transfusions, organ transplants, or the shared use of 

needles or syringes. Malaria can also be transmitted to an unborn baby [3]. 

Artificial intelligence techniques are effective methods that can produce solutions to optimization, 

prediction, fault diagnosis, image processing problems [4]–[6]. Artificial intelligence has entered a new 

phase with the start of running multi-layer neural networks on graphics cards. Thus, it became easier to 

solve problems such as image processing where too much data is processed. Multilayer deep 

convolutional neural networks produce very successful results for image processing problems [7]–[10]. 

In classical image processing, feature extraction is required to determine representation from the image. 

In contrast to this situation, raw pixel values are used in the CNN (Convolutional Neural Network) 

model. Deep learning techniques are also successfully used in the diagnosis of diseases in the field of 

health [11]. 
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In the last decades, great advances have been made in the diagnosis of disease from medical images. 

Researchers have developed techniques that produce highly accurate results with various image 

processing operations. Examples of these techniques are artificial neural networks, machine learning, 

and deep learning techniques. According to the type of disease, images can be obtained and analyzed 

from sources such as microscopic, x-ray, MR, and ECG, and computer-assisted disease diagnosis can 

be made [12]–[17]. 

Training a deep network from scratch takes a lot of time. Retraining a previously trained model saves 

time. Re-training of a previously trained class network with a new data set is called DTL (Deep Transfer 

Learning). Using DTL provides a great advantage. There are many deep network models currently 

developed. These networks have been obtained as a result of days-long training on very powerful 

computers using millions of data [18]. Fig. 1. shows how DTL works [19].  
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Figure 1 Concept of DTL 

In this study, five of the deep network models available in the Matlab environment were retrained for 

the malaria data set. These are AlexNet, GoogLeNet, ResNet-50, MobileNet-v2, VGG-16 models. When 

previous studies were examined, no study was found to compare these five architectures. In this study, 

it has been seen that high performance can be achieved with DTL when hyperparameters are adjusted 

appropriately. 

Information about the data set and deep learning architectures used in the rest of the study was given. 

After the hyperparameter settings are made, the training and comparison results are given. 

2. Relevant Work 

Scientists have done many studies around the world on the detection of the deadly malaria disease. With 

the technological improvements in computer hardware, software styles based on running parallel 

programs on graphics cards, great progress has been made in image processing studies. Image 

processing techniques have become frequently used in the field of health sciences, especially in disease 

detection. Deep artificial neural network techniques with a high number of neurons and layers are the 

technique with the highest performance today. Unlike machine learning, deep learning architectures 

with millions of parameters do not have feature extraction. The fact that high-performance results 

without a laborious process such as feature extraction increases the preference rate of convolutional 

neural networks by people. 

Existing deep learning approaches applied to Malaria detection are given in Table 1. Vijayalakshmi et 

al. Retrained the Visual Geometry Group (VGG) by replacing some of its layers with the Support Vector 

Machine (SVM) and achieved 93.1% accuracy in malaria detection [20]. Dong et al. In their study on 

Identification of Malaria Infected Cells, they used transfer-based deep learning techniques and achieved 

a success rate of over 95% [21]. Yang et al. created a dataset with 1819 thick smear images collected 

from 150 patients. They reached a maximum of 94.33% accuracy in their malaria detection study using 

deep learning techniques on this data set [22]. According to Pan et al., It demonstrated that the deep 

convolutional network based on LeNet-5 can achieve very high classification accuracies for automatic 

malaria diagnosis. They analyzed the performance effect of the dataset by running their method on 
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datasets containing different numbers of images [23]. Reddy et al. reached a 95.91% accuracy rate with 

ResNet50 architecture for malaria detection.  They used a dataset containing 27558 images [24]. Fuhad 

et al. used a variety of techniques including knowledge distillation, data augmentation, autoencoder, 

feature extraction by a CNN model, and classified by Support Vector Machine (SVM) or K‐Nearest 

Neighbors (KNN). They reached a 99.23% accuracy rate for malaria detection problems with training 

the network using 32 × 32 images. 

Table 1 Existing deep learning approaches applied to Malaria detection 

Authors Methods Year Images 
Best Accuracy rate 

(%) 

Reddy et al. [24] ResNet50 2019 27558 95,91 

Fuhad et al. [25] CNN-SVM, CNN-KNN 2020 26161 99,23 

Vijayalakshmi et 

al. [20] 

Visual Geometry Group (VGG) 

network and Support Vector Machine 

(SVM) 

2019 2550 93,1 

Dong et al. [21] LeNet, AlexNet and GoogLeNet 2017 2565 98,13 

Yang et al. [22] ResNet50, VGG19, AlexNet, CNN 2020 1443 93,46 

Pan et al. [23] LeNet-5 2018 800 99 

 

In this study, different from the others, 5 types of methods were compared according to the learning 

algorithm. High performance has been achieved without applying pre-image processing techniques in 

the dataset. The data set was applied directly to the input of the networks. Each architecture has been 

tested for 3 types of learning algorithms for two different initial learning rates (lr). The effect of learning 

algorithm selection on success was investigated. After 2x15 re-network training, it was observed that 

the success rates were between 50% and 96.53%.  

3. Materials and Methods 

The technical features of the computer used in this study are as follows: 

• GPU: NVIDIA GeForce GTX 1070 8GB 

• CPU: Intel I7 3.4 GHz 

• Ram: 12 GB  

• Operating System: Windows 10, 64 bit  

The entire study has been done in the Matlab development environment using Deep Network Designer 

application. The last layer of the models is updated according to the number of categories, parameter 

settings are made and training of the network is carried out. 

One of the most popular types of deep neural networks is the Convolutional Neural Network (CNN). 

CNN has a very good performance especially when a lot of images need to be processed. CNN has more 

than one layer. These are the convolutional layer, non-linearity layer, pooling layer, fully connected 

layer [26]. 

The first layer is the convolutional layer. In this layer, the image is passed through more than one parallel 

convolutional filter. These filters act as feature extractors. The output of the filters is a feature map [27]. 

The nonlinear transform layer normalizes between nearby feature maps [28]. With the pooling layer, the 

number of parameters and dimensions of the network is reduced. In the fully connected layer, data from 

previous layers are combined by weighting, and thanks to a loss function, the optimal weight to be given 

to neurons during training is found. Usually, the softmax activation function is used in this layer, and 

classification is made as probabilistic [29]. 

Three different optimizers are available in Matlab deep network designer tool as Stochastic Gradient 

Descent with Momentum(sgdm), Adaptive Moment Estimation (adam), and Root Mean Square 

Propagation (rmsprop). In this study their performance according to network models are compared. 

Sgdm is the preferred optimization method for many large-scale learning problems. Adam is a form of 

optimization that can be used instead of stochastic gradient descent. Quickly achieving good results on 

net weights makes this method popular. Rmsprop divides the learning rate by an exponentially 
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decreasing square gradient average. Rmsprop produces effective results for online and unstable 

problems [30]. 

Deep Neural 
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Input Image
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Uninfected

 

Figure 2 Block Diagram of the System 

In this study, pre-trained networks are used to detect malaria disease. In deep learning, retraining a 

previously trained model for another problem is called transfer-based deep learning. Transfer learning 

is an approach in deep learning where knowledge is transferred from one model to another. The 

information obtained from the pre-trained model that was previously trained with a large-scale data can 

be used in a new model. Using a pre-trained network, especially for applications where the number of 

data is low, produces satisfactory results in the field of deep learning. When transfer-based learning is 

used, it is necessary to make changes in the last layers according to the number of classes to be classified, 

and to retrain the model after making the hyperparameter settings [31]. 

The block diagram of the system is given in Fig. 2. Deep network classifies input image as infected from 

parasite or not. The used networks and their properties are given in Table 2.  In this study there are two 

classes, so the last classification layers of network models are modified to classify new images. For 

comparison when setting training parameters, batch size and epoch number set the same. 

Table 2 Properties of network models 

Network 
Year of 

development 

Input Image 

Size 
Depth 

Number of 

parameters 

Number of 

categories 

AlexNet 2012 224x224x3 8 61 million 1000 

GoogLeNet 2014 224x224x3 22 7 million 1000 

VGG-16 2014 224x224x3 16 138 million 1000 

ResNet-50 2015 224x224x3 50 25,6 million 1000 

MobileNet-v2 2018 224x224x3 53 3,5 million 1000 

 

3.1. AlexNet 

AlexNet is a convolutional neural network with 8-layer deep CNN. It has been trained with 1.2 million 

images in the ImageNet dataset and can classify 1000 objects [32]. AlexNet is designed by Alex 

Krizhevsky in collaboration with Ilya Sutskever and Geoffrey Hinton [33]. The detailed configuration 

of AlexNet model for this study is given in Table 3. 
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Table 3 The architecture of AlexNet model 

No Layer Properties No Layer Properties 

1 Image Input 227×227×3 14 

2-D Grouped 

Conv. 

2 groups of 128 

3×3×192 

2 2-D Conv. 96 11×11×3 15 ReLU ReLU 

3 ReLU ReLU 16 2-D Max Pooling 3×3 

4 

Cross Channel 

Norm. 5 channels per element 17 Fully Connected 4096 

5 2-D Max Pooling 3×3 18 ReLU ReLU 

6 

2-D Grouped 

Conv. 

2 groups of 128 

5×5×48 19 Dropout 50% dropout 

7 ReLU ReLU 20 Fully Connected 4096 

8 

Cross Channel 

Norm. 5 channels per element 21 ReLU ReLU 

9 2-D Max Pooling 3×3 22 Dropout 50% dropout 

10 2-D Conv. 384 3×3×256 23 Fully Connected 2 

11 ReLU ReLU 24 Softmax softmax 

12 

2-D Grouped 

Conv. 

2 groups of 192 

3×3×192 25 

Classification 

Output 2 classes 

13 ReLU ReLU    
 

3.2. GoogLeNet 

GoogLeNet is developed by researchers working at Google. GoogLeNet was the winner of ILSVRC 

2014 competition [34]. GoogLeNet’s other name is Inception block.  It has a 22-layer deep CNN and 7 

million parameters. Pre-trained network can classify 1000 objects. The detailed configuration of 

GoogLeNet model for this study is given in Table 4. 

Table 4 The architecture of GoogLeNet model 

No Layer Properties No Layer Properties No Layer Properties 

1 Image Input 224×224×3 49 
2-D 

Convolution 
48 5×5×16 97 

2-D 

Convolution 

256 

1×1×528 

2 
2-D 

Convolution 
64 7×7×3 50 ReLU ReLU 98 ReLU ReLU 

3 ReLU ReLU 51 
2-D Max 

Pooling 
3×3 99 

2-D 

Convolution 

160 

1×1×528 

4 
2-D Max 

Pooling 
3×3 52 

2-D 

Convolution 

64 

1×1×480 

10

0 
ReLU ReLU 

5 

Cross 

Channel 

Norm. 

channels 

per 

element 

53 ReLU ReLU 
10

1 

2-D 

Convolution 

320 

3×3×160 

6 
2-D 

Convolution 
64 1×1×64 54 

Depth 

concatenatio

n 

4 inputs 
10

2 
ReLU ReLU 

7 ReLU ReLU 55 
2-D 

Convolution 

160 

1×1×512 

10

3 

2-D 

Convolution 

32 

1×1×528 

8 
2-D 

Convolution 

192 

3×3×64 
56 ReLU ReLU 

10

4 
ReLU ReLU 

9 ReLU ReLU 57 
2-D 

Convolution 

112 

1×1×512 

10

5 

2-D 

Convolution 

128 

5×5×32 

10 

Cross 

Channel 

Norm. 

5 channels 

per 

element 

58 ReLU ReLU 
10

6 
ReLU ReLU 

11 
2-D Max 

Pooling 
3×3 59 

2-D 

Convolution 

224 

3×3×112 

10

7 

2-D Max 

Pooling 
3×3 
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12 
2-D 

Convolution 

64 

1×1×192 
60 ReLU ReLU 

10

8 

2-D 

Convolution 

128 

1×1×528 

13 ReLU ReLU 61 
2-D 

Convolution 

24 

1×1×512 

10

9 
ReLU ReLU 

14 
2-D 

Convolution 

96 

1×1×192 
62 ReLU ReLU 

11

0 

Depth 

concatenation 
4 inputs 

15 ReLU ReLU 63 
2-D 

Convolution 
64 5×5×24 

11

1 

2-D Max 

Pooling 
3×3 

16 
2-D 

Convolution 

128 

3×3×96 
64 ReLU ReLU 

11

2 

2-D 

Convolution 

256 

1×1×832 

17 ReLU ReLU 65 
2-D Max 

Pooling 
3×3 

11

3 
ReLU ReLU 

18 
2-D 

Convolution 

16 

1×1×192 
66 

2-D 

Convolution 

64 

1×1×512 

11

4 

2-D 

Convolution 

160 

1×1×832 

19 ReLU ReLU 67 ReLU ReLU 
11

5 
ReLU ReLU 

20 
2-D 

Convolution 
32 5×5×16 68 

Depth 

concatenatio

n 

4 inputs 
11

6 

2-D 

Convolution 

320 

3×3×160 

21 ReLU ReLU 69 
2-D 

Convolution 

128 

1×1×512 

11

7 
ReLU ReLU 

22 
2-D Max 

Pooling 
3×3 70 ReLU ReLU 

11

8 

2-D 

Convolution 

32 

1×1×832 

23 
2-D 

Convolution 

32 

1×1×192 
71 

2-D 

Convolution 

128 

1×1×512 

11

9 
ReLU ReLU 

24 ReLU ReLU 72 ReLU ReLU 
12

0 

2-D 

Convolution 

128 

5×5×32 

25 

Depth 

concatenatio

n 

4 inputs 73 
2-D 

Convolution 

256 

3×3×128 

12

1 
ReLU ReLU 

26 
2-D 

Convolution 

128 

1×1×256 
74 ReLU ReLU 

12

2 

2-D Max 

Pooling 
3×3 

27 ReLU ReLU 75 
2-D 

Convolution 

24 

1×1×512 

12

3 

2-D 

Convolution 

128 

1×1×832 

28 
2-D 

Convolution 

128 

1×1×256 
76 ReLU ReLU 

12

4 
ReLU ReLU 

29 ReLU ReLU 77 
2-D 

Convolution 
64 5×5×24 

12

5 

Depth 

concatenation 
4 inputs 

30 
2-D 

Convolution 

192 

3×3×128 
78 ReLU ReLU 

12

6 

2-D 

Convolution 

384 

1×1×832 

31 ReLU ReLU 79 
2-D Max 

Pooling 
3×3 

12

7 
ReLU ReLU 

32 
2-D 

Convolution 

32 

1×1×256 
80 

2-D 

Convolution 

64 

1×1×512 

12

8 

2-D 

Convolution 

192 

1×1×832 

33 ReLU ReLU 81 ReLU ReLU 
12

9 
ReLU ReLU 

34 
2-D 

Convolution 
96 5×5×32 82 

Depth 

concatenatio

n 

4 inputs 
13

0 

2-D 

Convolution 

384 

3×3×192 

35 ReLU ReLU 83 
2-D 

Convolution 

112 

1×1×512 

13

1 
ReLU ReLU 

36 
2-D Max 

Pooling 
3×3 84 ReLU ReLU 

13

2 

2-D 

Convolution 

48 

1×1×832 

37 
2-D 

Convolution 

64 

1×1×256 
85 

2-D 

Convolution 

144 

1×1×512 

13

3 
ReLU ReLU 

38 ReLU ReLU 86 ReLU ReLU 
13

4 

2-D 

Convolution 

128 

5×5×48 
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39 

Depth 

concatenatio

n 

4 inputs 87 
2-D 

Convolution 

288 

3×3×144 

13

5 
ReLU ReLU 

40 
2-D Max 

Pooling 
3×3 88 ReLU ReLU 

13

6 

2-D Max 

Pooling 
3×3 

41 
2-D 

Convolution 

192 

1×1×480 
89 

2-D 

Convolution 

32 

1×1×512 

13

7 

2-D 

Convolution 

128 

1×1×832 

42 ReLU ReLU 90 ReLU ReLU 
13

8 
ReLU ReLU 

43 
2-D 

Convolution 

96 

1×1×480 
91 

2-D 

Convolution 
64 5×5×32 

13

9 

Depth 

concatenation 
4 inputs 

44 ReLU ReLU 92 ReLU ReLU 
14

0 

2-D Global 

Avg. Pooling 
2-D 

45 
2-D 

Convolution 

208 

3×3×96 
93 

2-D Max 

Pooling 
3×3 

14

1 
Dropout 

40% 

dropout 

46 ReLU ReLU 94 
2-D 

Convolution 

64 

1×1×512 

14

2 

Fully 

Connected 
2 

47 
2-D 

Convolution 

16 

1×1×480 
95 ReLU ReLU 

14

3 
Softmax softmax 

48 ReLU ReLU 96 

Depth 

concatenatio

n 

4 inputs 
14

4 

Classification 

Output 
2 classes 

 

3.3. ResNet-50 

ResNet stands for Residual Network introduced in the 2015 p by He Kaiming et. al.[35] ResNet50 is a 

CNN architecture with 50-layer deep CNN. Pre-trained network can classify into 1000 categories. The 

architecture has 25.6 million parameters. The detailed configuration of ResNet-50 model for this study 

is given in Table 5. 

Table 5 The architecture of ResNet-50 model 

No Layer Properties No Layer Properties No Layer Properties 

1 

Image 

Input 224×224×3 60 

2-D 

Conv. 

128 

1×1×512 119 Batch Norm. 

1024 

channels 

2 

2-D 

Conv. 64 7×7×3 61 

Batch 

Norm. 

128 

channels 120 Addition 2 inputs 

3 

Batch 

Norm. 

64 

channels 62 ReLU ReLU 121 ReLU ReLU 

4 ReLU ReLU 63 

2-D 

Conv. 

128 

3×3×128 122 2-D Conv. 

256 

1×1×1024 

5 

2-D Max 

Pooling 3×3 64 

Batch 

Norm. 

128 

channels 123 Batch Norm. 

256 

channels 

6 

2-D 

Conv. 64 1×1×64 65 ReLU ReLU 124 ReLU ReLU 

7 

Batch 

Norm. 

64 

channels 66 

2-D 

Conv. 

512 

1×1×128 125 2-D Conv. 

256 

3×3×256 

8 ReLU ReLU 67 

Batch 

Norm. 

512 

channels 126 Batch Norm. 

256 

channels 

9 

2-D 

Conv. 64 3×3×64 68 Addition 2 inputs 127 ReLU ReLU 

10 

Batch 

Norm. 

64 

channels 69 ReLU ReLU 128 2-D Conv. 

1024 

1×1×256 

11 ReLU ReLU 70 

2-D 

Conv. 

128 

1×1×512 129 Batch Norm. 

1024 

channels 

12 

2-D 

Conv. 

256 

1×1×64 71 

Batch 

Norm. 

128 

channels 130 Addition 2 inputs 

13 

2-D 

Conv. 

256 

1×1×64 72 ReLU ReLU 131 ReLU ReLU 
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14 

Batch 

Norm. 

256 

channels 73 

2-D 

Conv. 

128 

3×3×128 132 2-D Conv. 

256 

1×1×1024 

15 

Batch 

Norm. 

256 

channels 74 

Batch 

Norm. 

128 

channels 133 Batch Norm. 

256 

channels 

16 Addition 2 inputs 75 ReLU ReLU 134 ReLU ReLU 

17 ReLU ReLU 76 

2-D 

Conv. 

512 

1×1×128 135 2-D Conv. 

256 

3×3×256 

18 

2-D 

Conv. 

64 

1×1×256 77 

Batch 

Norm. 

512 

channels 136 Batch Norm. 

256 

channels 

19 

Batch 

Norm. 

64 

channels 78 Addition 2 inputs 137 ReLU ReLU 

20 ReLU ReLU 79 ReLU ReLU 138 2-D Conv. 

1024 

1×1×256 

21 

2-D 

Conv. 64 3×3×64 80 

2-D 

Conv. 

256 

1×1×512 139 Batch Norm. 

1024 

channels 

22 

Batch 

Norm. 

64 

channels 81 

Batch 

Norm. 

256 

channels 140 Addition 2 inputs 

23 ReLU ReLU 82 ReLU ReLU 141 ReLU ReLU 

24 

2-D 

Conv. 

256 

1×1×64 83 

2-D 

Conv. 

256 

3×3×256 142 2-D Conv. 

512 

1×1×1024 

25 

Batch 

Norm. 

256 

channels 84 

Batch 

Norm. 

256 

channels 143 Batch Norm. 

512 

channels 

26 Addition 2 inputs 85 ReLU ReLU 144 ReLU ReLU 

27 ReLU ReLU 86 

2-D 

Conv. 

1024 

1×1×256 145 2-D Conv. 

512 

3×3×512 

28 

2-D 

Conv. 

64 

1×1×256 87 

2-D 

Conv. 

1024 

1×1×512 146 Batch Norm. 

512 

channels 

29 

Batch 

Norm. 

64 

channels 88 

Batch 

Norm. 

1024 

channels 147 ReLU ReLU 

30 ReLU ReLU 89 

Batch 

Norm. 

1024 

channels 148 2-D Conv. 

2048 

1×1×512 

31 

2-D 

Conv. 64 3×3×64 90 Addition 2 inputs 149 2-D Conv. 

2048 

1×1×1024 

32 

Batch 

Norm. 

64 

channels 91 ReLU ReLU 150 Batch Norm. 

2048 

channels 

33 ReLU ReLU 92 

2-D 

Conv. 

256 

1×1×1024 151 Batch Norm. 

2048 

channels 

34 

2-D 

Conv. 

256 

1×1×64 93 

Batch 

Norm. 

256 

channels 152 Addition 2 inputs 

35 

Batch 

Norm. 

256 

channels 94 ReLU ReLU 153 ReLU ReLU 

36 Addition 2 inputs 95 

2-D 

Conv. 

256 

3×3×256 154 2-D Conv. 

512 

1×1×2048 

37 ReLU ReLU 96 

Batch 

Norm. 

256 

channels 155 Batch Norm. 

512 

channels 

38 

2-D 

Conv. 

128 

1×1×256 97 ReLU ReLU 156 ReLU ReLU 

39 

Batch 

Norm. 

128 

channels 98 

2-D 

Conv. 

1024 

1×1×256 157 2-D Conv. 

512 

3×3×512 

40 ReLU ReLU 99 

Batch 

Norm. 

1024 

channels 158 Batch Norm. 

512 

channels 

41 

2-D 

Conv. 

128 

3×3×128 100 Addition 2 inputs 159 ReLU ReLU 

42 

Batch 

Norm. 

128 

channels 101 ReLU ReLU 160 2-D Conv. 

2048 

1×1×512 

43 ReLU ReLU 102 

2-D 

Conv. 

256 

1×1×1024 161 Batch Norm. 

2048 

channels 
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44 

2-D 

Conv. 

512 

1×1×128 103 

Batch 

Norm. 

256 

channels 162 Addition 2 inputs 

45 

2-D 

Conv. 

512 

1×1×256 104 ReLU ReLU 163 ReLU ReLU 

46 

Batch 

Norm. 

512 

channels 105 

2-D 

Conv. 

256 

3×3×256 164 2-D Conv. 

512 

1×1×2048 

47 

Batch 

Norm. 

512 

channels 106 

Batch 

Norm. 

256 

channels 165 Batch Norm. 

512 

channels 

48 Addition 2 inputs 107 ReLU ReLU 166 ReLU ReLU 

49 ReLU ReLU 108 

2-D 

Conv. 

1024 

1×1×256 167 2-D Conv. 

512 

3×3×512 

50 

2-D 

Conv. 

128 

1×1×512 109 

Batch 

Norm. 

1024 

channels 168 Batch Norm. 

512 

channels 

51 

Batch 

Norm. 

128 

channels 110 Addition 2 inputs 169 ReLU ReLU 

52 ReLU ReLU 111 ReLU ReLU 170 2-D Conv. 

2048 

1×1×512 

53 

2-D 

Conv. 

128 

3×3×128 112 

2-D 

Conv. 

256 

1×1×1024 171 Batch Norm. 

2048 

channels 

54 

Batch 

Norm. 

128 

channels 113 

Batch 

Norm. 

256 

channels 172 Addition 2 inputs 

55 ReLU ReLU 114 ReLU ReLU 173 ReLU ReLU 

56 

2-D 

Conv. 

512 

1×1×128 115 

2-D 

Conv. 

256 

3×3×256 174 

2-D Global Average 

Pooling 2-D 

57 

Batch 

Norm. 

512 

channels 116 

Batch 

Norm. 

256 

channels 175 Fully Connected 

Fully 

Connected 

58 Addition 2 inputs 117 ReLU ReLU 176 Softmax softmax 

59 ReLU ReLU 118 

2-D 

Conv. 

1024 

1×1×256 177 

Classification 

Output 2 classes 

 

3.4. MobileNet-v2 

MobileNet-v2 has an architecture designed to be used mostly on mobile devices. With 3.5 million 

parameters, it has fewer parameters than other architectures. It has 53-layer deep CNN. It is trained with 

over a million data from the ImageNet dataset. The pre-trained network can classify into 1000 

categories. The low number of parameters also reduces the training time. The detailed configuration of 

MobileNet-v2 model for this study is given in Table 6. 

Table 6 The architecture of MobileNet-v2 model 

Layer Properties No Layer Properties No Layer Properties 

Image 

Input 
224×224×3 53 

2-D 

Conv. 
192 1×1×32 105 2-D Conv. 576 1×1×96 

2-D 

Conv. 
32 3×3×3 54 

Batch 

Norm. 

192 

channels 
106 Batch Norm. 576 channels 

Batch 

Norm. 
32 channels 55 

Clipped 

ReLU 
ceiling 6 107 Clipped ReLU ceiling 6 

Clipped 

ReLU 
ceiling 6 56 

2-D 

Grouped 

Conv. 

192 groups 

of 1 3×3×1 
108 

2-D Grouped 

Conv. 
576 groups 

2-D 

Grouped 

Conv. 

32 groups 57 
Batch 

Norm. 

192 

channels 
109 Batch Norm. 576 channels 

Batch 

Norm. 
32 channels 58 

Clipped 

ReLU 
ceiling 6 110 Clipped ReLU ceiling 6 

Clipped 

ReLU 
ceiling 6 59 

2-D 

Conv. 
64 1×1×192 111 2-D Conv. 96 1×1×576 

2-D 

Conv. 
16 1×1×32 60 

Batch 

Norm. 
64 channels 112 Batch Norm. 96 channels 
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Batch 

Norm. 
16 channels 61 

2-D 

Conv. 
384 1×1×64 113 Addition 2 inputs 

2-D 

Conv. 
96 1×1×16 62 

Batch 

Norm. 

384 

channels 
114 2-D Conv. 576 1×1×96 

Batch 

Norm. 
96 channels 63 

Clipped 

ReLU 
ceiling 6 115 Batch Norm. 576 channels 

Clipped 

ReLU 
ceiling 6 64 

2-D 

Grouped 

Conv. 

384 groups 116 Clipped ReLU ceiling 6 

2-D 

Grouped 

Conv. 

96 groups of 1 

3×3×1 
65 

Batch 

Norm. 

384 

channels 
117 

2-D Grouped 

Conv. 

576 groups of 

1 3×3×1 

Batch 

Norm. 
96 channels 66 

Clipped 

ReLU 
ceiling 6 118 Batch Norm. 576 channels 

Clipped 

ReLU 
ceiling 6 67 

2-D 

Conv. 
64 1×1×384 119 Clipped ReLU ceiling 6 

2-D 

Conv. 
24 1×1×96 68 

Batch 

Norm. 
64 channels 120 2-D Conv. 160 1×1×576 

Batch 

Norm. 
24 channels 69 Addition 2 inputs 121 Batch Norm. 160 channels 

2-D 

Conv. 
144 1×1×24 70 

2-D 

Conv. 
384 1×1×64 122 2-D Conv. 960 1×1×160 

Batch 

Norm. 
144 channels 71 

Batch 

Norm. 

384 

channels 
123 Batch Norm. 960 channels 

Clipped 

ReLU 
ceiling 6 72 

Clipped 

ReLU 
ceiling 6 124 Clipped ReLU ceiling 6 

2-D 

Grouped 

Conv. 

144 groups 73 

2-D 

Grouped 

Conv. 

384 groups 125 
2-D Grouped 

Conv. 
960 groups 

Batch 

Norm. 
144 channels 74 

Batch 

Norm. 

384 

channels 
126 Batch Norm. 960 channels 

Clipped 

ReLU 
ceiling 6 75 

Clipped 

ReLU 
ceiling 6 127 Clipped ReLU ceiling 6 

2-D 

Conv. 
24 1×1×144 76 

2-D 

Conv. 
64 1×1×384 128 2-D Conv. 160 1×1×960 

Batch 

Norm. 
24 channels 77 

Batch 

Norm. 
64 channels 129 Batch Norm. 160 channels 

Addition 2 inputs 78 Addition 2 inputs 130 Addition 2 inputs 

2-D 

Conv. 
144 1×1×24 79 

2-D 

Conv. 
384 1×1×64 131 2-D Conv. 960 1×1×160 

Batch 

Norm. 
144 channels 80 

Batch 

Norm. 

384 

channels 
132 Batch Norm. 960 channels 

Clipped 

ReLU 
ceiling 6 81 

Clipped 

ReLU 
ceiling 6 133 Clipped ReLU ceiling 6 

2-D 

Grouped 

Conv. 

144 groups of 

1 3×3×1 
82 

2-D 

Grouped 

Conv. 

384 groups 134 
2-D Grouped 

Conv. 
960 groups 

Batch 

Norm. 
144 channels 83 

Batch 

Norm. 

384 

channels 
135 Batch Norm. 960 channels 

Clipped 

ReLU 
ceiling 6 84 

Clipped 

ReLU 
ceiling 6 136 Clipped ReLU ceiling 6 

2-D 

Conv. 
32 1×1×144 85 

2-D 

Conv. 
64 1×1×384 137 2-D Conv. 160 1×1×960 

Batch 

Norm. 
32 channels 86 

Batch 

Norm. 
64 channels 138 Batch Norm. 160 channels 

2-D 

Conv. 
192 1×1×32 87 Addition 2 inputs 139 Addition 2 inputs 

Batch 

Norm. 
192 channels 88 

2-D 

Conv. 
384 1×1×64 140 2-D Conv. 960 1×1×160 
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Clipped 

ReLU 
ceiling 6 89 

Batch 

Norm. 

384 

channels 
141 Batch Norm. 960 channels 

2-D 

Grouped 

Conv. 

192 groups 90 
Clipped 

ReLU 
ceiling 6 142 Clipped ReLU ceiling 6 

Batch 

Norm. 
192 channels 91 

2-D 

Grouped 

Conv. 

384 groups 143 
2-D Grouped 

Conv. 
960 groups 

Clipped 

ReLU 
ceiling 6 92 

Batch 

Norm. 

384 

channels 
144 Batch Norm. 960 channels 

2-D 

Conv. 
32 1×1×192 93 

Clipped 

ReLU 
ceiling 6 145 Clipped ReLU ceiling 6 

Batch 

Norm. 
32 channels 94 

2-D 

Conv. 
96 1×1×384 146 2-D Conv. 320 1×1×960 

Addition 2 inputs 95 
Batch 

Norm. 
96 channels 147 Batch Norm. 320 channels 

2-D 

Conv. 
192 1×1×32 96 

2-D 

Conv. 
576 1×1×96 148 2-D Conv. 1280 1×1×320 

Batch 

Norm. 
192 channels 97 

Batch 

Norm. 

576 

channels 
149 Batch Norm. 1280 channels 

Clipped 

ReLU 
ceiling 6 98 

Clipped 

ReLU 
ceiling 6 150 Clipped ReLU ceiling 6 

2-D 

Grouped 

Conv. 

192 groups 99 

2-D 

Grouped 

Conv. 

576 groups 151 

2-D Global 

Average 

Pooling 

2-D global 

average 

pooling 

Batch 

Norm. 
192 channels 100 

Batch 

Norm. 

576 

channels 
152 

Fully 

Connected 

Fully 

connected 

Clipped 

ReLU 
ceiling 6 101 

Clipped 

ReLU 
ceiling 6 153 Softmax softmax 

2-D 

Conv. 
32 1×1×192 102 

2-D 

Conv. 
96 1×1×576 154 

Classification 

Output 
2 classes 

Batch 

Norm. 
32 channels 103 

Batch 

Norm. 
96 channels 

   
Addition 2 inputs 104 Addition 2 inputs    

 

3.5. VGG-16 

It is trained with more than 14 million data in the VGG-16 ImageNet dataset. It’s training took weeks. 

It has 41 layers. With 138 million parameters, it is the architecture with the most parameters among 

those used in this study. The pre-trained network can classify into 1000 categories. The detailed 

configuration of VGG-16 model for this study is given in Table 7. 

Table 7 The architecture of VGG-16 model 

No Layer Properties No Layer Properties No Layer Properties 

1 Image Input 224x224x3  15 ReLU ReLU 29 ReLU ReLU 

2 Convolution 64 3x3x3  16 Convolution 
256 

3x3x256  
30 Convolution 

512 

3x3x512  

3 ReLU ReLU 17 ReLU ReLU 31 ReLU ReLU 

4 Convolution 64 3x3x64  18 
Max 

Pooling 
2x2 32 Max Pooling 2x2 

5 ReLU ReLU 19 Convolution 
512 

3x3x256  
33 Fully Connected 4096 

6 
Max 

Pooling 
2x2 20 ReLU ReLU 34 ReLU ReLU 

7 Convolution 
128 

3x3x64  
21 Convolution 

512 

3x3x512  
35 Dropout 

50% 

dropout 

8 ReLU ReLU 22 ReLU ReLU 36 Fully Connected 4096 
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9 Convolution 
128 

3x3x128  
23 Convolution 

512 

3x3x512  
37 ReLU ReLU 

10 ReLU ReLU 24 ReLU ReLU 38 Dropout 
50% 

dropout 

11 
Max 

Pooling 
2x2 25 

Max 

Pooling 
2x2 39 Fully Connected 2 

12 Convolution 
256 

3x3x128  
26 Convolution 

512 

3x3x512  
40 Softmax softmax 

13 ReLU ReLU 27 ReLU ReLU 41 
Classification 

Output 
2 classes 

14 Convolution 
256 

3x3x256  
28 Convolution 

512 

3x3x512        

 

3.6. Dataset 

The data set used in this study was created with a mobile application developed to take microscopic 

images and samples taken from patients and non-sick individuals in Mahidol-Oxford Tropical Medicine 

Research Unit in Bangkok [36]. The data set was shared on the internet available to researchers. It is 

possible to reach the data set from many different links. In this study, the data obtained from the Kaggle 

platform was used [37]. The Malaria dataset contains a total of 27,558 cell images with samples of 

equally parasitized and uninfected cells from thin blood smear slide images of segmented cells. Sample 

images from dataset is given in Figure 3. Parasitized cells contain Plasmodium in different sizes and 

shapes. 

 

(a) 

 
(b) 

Figure 3 Sample dataset images (a) uninfected (b) parasitized 

The image sizes in the data set are resized according to the input sizes of the network to be used. In this 

study data augmentation was not applied. 70% of the data were used as training data and 30% as test 

data. Number of images for training is 19290 and number of images for validation is 8268. Number of 

parasitized and uninfected images are equal. 

4. Training of models 

Learning curves that showing the progress over the experience during the training of a machine learning 

models are just a mathematical representation of the learning process. We observe accuracy and loss 

performances from plots according to validation data. In this section training progress of models are 

given. 

Screenshots of the training window for AlexNet are given in Fig. 4, Fig. 5, and Fig.6 respectively. 

Accuracy and loss rates according to iteration are shown in these graphs. The validation accuracy is 

obtained 95,9% with sgdm optimizer, 50% with adam optimizer, 95,22% with rmsprop optimizer at 
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learning rate of 0.001 and 96.08% with sgdm optimizer, 94.19% with adam optimizer, 95.85% with 

rmsprop optimizer learning rate of 0.0001. 

 

   
                                           (a)                                                                           (b) 

Figure 4 Re-training of AlexNet Network Model with sgdm Optimizer (a)lr=0.001 (b) lr=0.0001 

 

  
                                           (a)                                                                           (b) 

Figure 5 Re-training of AlexNet Network Model with adam Optimizer (a)lr=0.001 (b) lr=0.0001 

 

  
                                           (a)                                                                           (b) 

Figure 6 Re-training of AlexNet Network Model with rmsprop Optimizer (a)lr=0.001 (b) lr=0.0001 

 

Screenshots of the training window for GoogLeNet are given in Fig. 7, Fig. 8, and Fig.9 respectively. 

Accuracy and loss rates according to iteration are shown in these graphs. Accuracy and loss rates 

according to iteration are shown in these graphs. The validation accuracy is obtained 95,22% with sgdm 

optimizer, 95,46% with adam optimizer, 95,54% with rmsprop optimizer and 96.07% with sgdm 

optimizer, 96.26% with adam optimizer, 96.73% with rmsprop optimizer learning rate of 0.0001. 
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                                           (a)                                                                           (b) 

Figure 7 Re-training of GoogLeNet Network Model with sgdm Optimizer (a)lr=0.001 (b) lr=0.0001 

 

  
                                           (a)                                                                           (b) 

Figure 8 Re-training of GoogLeNet Network Model with adam Optimizer (a)lr=0.001 (b) lr=0.0001 

 

  
                                           (a)                                                                           (b) 

Figure 9 Re-training of GoogLeNet Network Model with rmsprop Optimizer (a)lr=0.001 (b) lr=0.0001 

 

Screenshots of the training window for ResNet-50 are given in Fig. 10, Fig. 11, and Fig.12 respectively. 

Accuracy and loss rates according to iteration are shown in these graphs. The validation accuracy is 

obtained 95,57% with sgdm optimizer, 95,66% with adam optimizer, 95,05% with rmsprop optimizer 

at learning rate of 0.001 and 95.65% with sgdm optimizer, 96.76% with adam optimizer, 96.07% with 

rmsprop optimizer learning rate of 0.0001. 
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                                           (a)                                                                           (b) 

Figure 10 Re-training of ResNet-50 Network Model with sgdm Optimizer (a)lr=0.001 (b) lr=0.0001 

 

  
                                           (a)                                                                           (b) 

Figure 3 Re-training of ResNet-50 Network Model with adam Optimizer (a)lr=0.001 (b) lr=0.0001 

 

  
                                           (a)                                                                           (b) 

Figure 4 Re-training of ResNet-50 Network Model with rmsprop Optimizer (a)lr=0.001 (b) lr=0.0001 

 

Screenshots of the training window for MobileNet-v2 are given in Fig. 13, Fig. 14, and Fig.15 

respectively. Accuracy and loss rates according to iteration are shown in these graphs. The validation 

accuracy is obtained 95,09% with sgdm optimizer, 96,53% with adam optimizer, 96,31% with rmsprop 

optimizer at learning rate of 0.001 and 95.72% with sgdm optimizer, 95.63% with adam optimizer, 

96.13% with rmsprop optimizer learning rate of 0.0001. 
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                                           (a)                                                                           (b) 

Figure 5 Re-training of MobileNet-v2 Network Model with sgdm Optimizer (a)lr=0.001 (b) lr=0.0001 

 

  
                                           (a)                                                                           (b) 

Figure 6 Re-training of MobileNet-v2 Network Model with adam Optimizer (a)lr=0.001 (b) lr=0.0001 

 

  
                                           (a)                                                                           (b) 

Figure 7 Re-training of MobileNet-v2 Network Model with rmsprop Optimizer (a)lr=0.001 (b) lr=0.0001 

 

A large number of parameters also affects the retraining speed. Among the architectures used in this 

study, the longest training period belongs to this architecture. Screenshots of training window for VGG-

16 are given in Fig. 16, Fig. 17, and Fig.18 respectively. The validation accuracy is obtained 93,89% 

with sgdm optimizer, 50% with adam optimizer, 50% with rmsprop optimizer at learning rate of 0.001 

and 95.42% with sgdm optimizer, 96.46% with adam optimizer, 95.52% with rmsprop optimizer 

learning rate of 0.0001. 
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                                           (a)                                                                           (b) 

Figure 8 Re-training of the VGG-16 Network Model with sgdm Optimizer (a)lr=0.001 (b) lr=0.0001 

 

  
                                           (a)                                                                           (b) 

Figure 9 Re-training of the VGG-16 Network Model with adam Optimizer (a)lr=0.001 (b) lr=0.0001 

 

  
                                           (a)                                                                           (b) 

Figure 10 Re-Training of The VGG-16 Network Model with Rmsprop Optimizer (a)lr=0.001 (b) lr=0.0001 

 

5. Results 

Table 8. represents the entire training results for 0.001 initial learning rate, 30 batch size, and 10 epoch. 

The most successful results were obtained when the MobileNet-v2 network was trained using the adam 

optimizer. The network reached a 96,53% validation accuracy rate.  
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Table 8 Re-training results of network models at 0.001 learning rate 

No Architecture 
Learning 

Algorithm 

Learning 

Rate 

Batch 

Size 

Validation 

Accuracy 

1 AlexNet sgdm 0.001 30 95.9 

2 AlexNet adam 0.001 30 50 

3 AlexNet rmsprop 0.001 30 95.22 

4 GoogLeNet sgdm 0.001 30 95.46 

5 GoogLeNet adam 0.001 30 95.75 

6 GoogLeNet rmsprop 0.001 30 95.54 

7 ResNet-50 sgdm 0.001 30 95.57 

8 ResNet-50 adam 0.001 30 95.66 

9 ResNet-50 rmsprop 0.001 30 95.05 

10 MobileNet-v2 sgdm 0.001 30 95.09 

11 MobileNet-v2 adam 0.001 30 96.53 

12 MobileNet-v2 rmsprop 0.001 30 96.31 

13 VGG-16 sgdm 0.001 30 93.89 

14 VGG-16 adam 0.001 30 50 

15 VGG-16 rmsprop 0.001 30 50 

 

Performance rates from highest to lowest at 0.001 learning rate are given in Figure 19. According to the 

experimental results, the best results were obtained from the combination of MobileNet-v2 architecture, 

adam learning algorithm. Goodfits are obtained except three experiments. Combinations VGA16 -sgdm, 

VGA16-adam, AlexNet-adam failed with this problem. 

 

 
Figure 11 Success Rates of Models at 0.001 learning rate 

 

Table 9. represents the entire training results for 0.0001 initial learning rate, 30 batch size, and 10 epoch. 

The most successful results were obtained when the ResNet-50 network was trained using the adam 

optimizer. The network reached a 96,76 % validation accuracy rate. The optimizer type setting is 

important when using a low learning rate. 
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Table 9 Re-training results of network models at 0.0001 learning rate 

No Architecture 
Learning 

Algorithm 

Learning 

Rate 

Batch 

Size 

Validation 

Accuracy 

1 AlexNet sgdm 0.0001 30 96.08 

2 AlexNet adam 0.0001 30 94.19 

3 AlexNet rmsprop 0.0001 30 95.85 

4 GoogleNet sgdm 0.0001 30 96.07 

5 GoogleNet adam 0.0001 30 96.26 

6 GoogleNet rmsprop 0.0001 30 96.73 

7 ResNet-50 sgdm 0.0001 30 95.65 

8 ResNet-50 adam 0.0001 30 96.76 

9 ResNet-50 rmsprop 0.0001 30 96.07 

10 MobileNet-v2 sgdm 0.0001 30 95.72 

11 MobileNet-v2 adam 0.0001 30 95.63 

12 MobileNet-v2 rmsprop 0.0001 30 96.13 

13 VGG-16 sgdm 0.0001 30 95.42 

14 VGG-16 adam 0.0001 30 96.46 

15 VGG-16 rmsprop 0.0001 30 95.52 

 

Performance rates from highest to lowest at 0.0001 learning rate are given in Figure 20. According to 

the experimental results, the best results were obtained from the combination of ResNet architecture, 

adam learning algorithm.  

 

 
Figure 20 Success Rates of Models at 0.0001 learning rate 

In general, the training results were good when the learning rate value was set to 0.0001. Goodfits have 

been obtained. There is not much difference between the performance rates of the models. For situations 

where the performance ratios are close to each other, it would be logical to choose the architecture with 

less number of parameters. In this way, the processing load is less and the result is calculated faster. 

6. Conclusions 

Malaria is a type of disease that kills when left untreated. Thousands of people die each year due to this 

disease. When treated, there is full recovery. Malaria can be diagnosed by looking for the malaria 
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parasite in the red blood cell. Deep learning techniques are frequently used in disease detection. Deep 

learning techniques are very successful in classification problems. Using transfer-based deep learning 

techniques provides fast and high-performance solutions in image classification. Pre-trained networks 

are trained using millions of data sets and have proven architectures. In this study, the effect of 3 types 

of learning algorithms on the performance of 5 types of pre-trained networks at two different learning 

rate values was investigated. The disease was diagnosed by classifying the red blood cells as having or 

not having malaria parasites. The duration of the re-trainings, the success rates, and the effects of the 

learning algorithm on the success was interpreted. When the learning value is set to 0.0001 with the 

ResNet-50 model and adam optimizer, the maximum success rate of 96.76% has been reached. 
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