
SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES

VOL. 5, NO. 3, DECEMBER 2022

DOI: 10.35377/saucis.05.03.1197119

Research Article

A Deep Transfer Learning-Based Comparative Study for Detection of

Malaria Disease

Emel Soylu1

1Corresponding Author; Samsun University, Faculty of Engineering, Department of Software Engineering,

Samsun/TURKEY; emel.soylu@samsun.edu.tr

Received 31 October 2022; Revised 8 November 2022; Accepted 30 November 2022; Published online 31 December 2022

Abstract

Malaria is a disease caused by a parasite. The parasite is transmitted to humans through the bite of infected

mosquitoes. Thousands of people die every year due to malaria. When this disease is diagnosed early, it can be

fully treated with medication. Diagnosis of malaria can be made according to the presence of parasites in the blood

taken from the patient. In this study, malaria detection and diagnosis study were performed using The Malaria

dataset containing a total of 27,558 cell images with samples of equally parasitized and uninfected cells from thin

blood smear slide images of segmented cells. It is possible to detect malaria from microscopic blood smear images

via modern deep learning techniques. In this study, 5 of the popular convolutional neural network architectures

for malaria detection from cell images were retrained to find the best combination of architecture and learning

algorithm. AlexNet, GoogLeNet, ResNet-50, MobileNet-v2, VGG-16 architectures from pre-trained networks

were used, their hyperparameters were adjusted and their performances were compared. In this study, a maximum

96.53% accuracy rate was achieved with MobileNet-v2 architecture using the adam learning algorithm.

Keywords: malaria detection, deep transfer learning, Matlab, Convolutional Neural Network

1. Introduction

Malaria; is a disease that is transmitted to humans by the bite of a mosquito that carries parasites, can

be fatal if not treated in time, and causes fever and chills in seizures. Anemia and jaundice may develop

in cases where diagnosis and treatment are delayed. In some types of parasites that cause malaria, if

treatment is not started within 24 hours, it can progress and lead to death. Malaria is a disease that can

be treated with drugs. If the disease is diagnosed early and treated appropriately, patients can fully

recover [1].

According to The World Health Organization's report, globally 229 million malaria cases were

estimated. It is more common, especially in the Africa region. In 2019, 409 thousand people died from

malaria disease. In the 2000s, this number was 736 thousand. Between 2000 and 2019, there were 1.5

billion cases of malaria globally, and 7.6 million people died from this cause [2]. Because malaria causes

so much illness and death, the disease is a huge burden for many national economies. Most of the

countries with malaria are already among the poor countries, and the economy of these countries is

badly affected by the disease. The malaria parasite resides in the red blood cells of an infected person.

Malaria can also be transmitted through blood transfusions, organ transplants, or the shared use of

needles or syringes. Malaria can also be transmitted to an unborn baby [3].

Artificial intelligence techniques are effective methods that can produce solutions to optimization,

prediction, fault diagnosis, image processing problems [4]–[6]. Artificial intelligence has entered a new

phase with the start of running multi-layer neural networks on graphics cards. Thus, it became easier to

solve problems such as image processing where too much data is processed. Multilayer deep

convolutional neural networks produce very successful results for image processing problems [7]–[10].

In classical image processing, feature extraction is required to determine representation from the image.

In contrast to this situation, raw pixel values are used in the CNN (Convolutional Neural Network)

model. Deep learning techniques are also successfully used in the diagnosis of diseases in the field of

health [11].

https://orcid.org/0000-0003-2774-9778

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

428

In the last decades, great advances have been made in the diagnosis of disease from medical images.

Researchers have developed techniques that produce highly accurate results with various image

processing operations. Examples of these techniques are artificial neural networks, machine learning,

and deep learning techniques. According to the type of disease, images can be obtained and analyzed

from sources such as microscopic, x-ray, MR, and ECG, and computer-assisted disease diagnosis can

be made [12]–[17].

Training a deep network from scratch takes a lot of time. Retraining a previously trained model saves

time. Re-training of a previously trained class network with a new data set is called DTL (Deep Transfer

Learning). Using DTL provides a great advantage. There are many deep network models currently

developed. These networks have been obtained as a result of days-long training on very powerful

computers using millions of data [18]. Fig. 1. shows how DTL works [19].

Source
Labels

Source
Model

Large
Dataset

Target
Labels

Target
Model

Small
Dataset

Transfer
Learned

knowledge

Hyperparameter
tuning

Figure 1 Concept of DTL

In this study, five of the deep network models available in the Matlab environment were retrained for

the malaria data set. These are AlexNet, GoogLeNet, ResNet-50, MobileNet-v2, VGG-16 models. When

previous studies were examined, no study was found to compare these five architectures. In this study,

it has been seen that high performance can be achieved with DTL when hyperparameters are adjusted

appropriately.

Information about the data set and deep learning architectures used in the rest of the study was given.

After the hyperparameter settings are made, the training and comparison results are given.

2. Relevant Work

Scientists have done many studies around the world on the detection of the deadly malaria disease. With

the technological improvements in computer hardware, software styles based on running parallel

programs on graphics cards, great progress has been made in image processing studies. Image

processing techniques have become frequently used in the field of health sciences, especially in disease

detection. Deep artificial neural network techniques with a high number of neurons and layers are the

technique with the highest performance today. Unlike machine learning, deep learning architectures

with millions of parameters do not have feature extraction. The fact that high-performance results

without a laborious process such as feature extraction increases the preference rate of convolutional

neural networks by people.

Existing deep learning approaches applied to Malaria detection are given in Table 1. Vijayalakshmi et

al. Retrained the Visual Geometry Group (VGG) by replacing some of its layers with the Support Vector

Machine (SVM) and achieved 93.1% accuracy in malaria detection [20]. Dong et al. In their study on

Identification of Malaria Infected Cells, they used transfer-based deep learning techniques and achieved

a success rate of over 95% [21]. Yang et al. created a dataset with 1819 thick smear images collected

from 150 patients. They reached a maximum of 94.33% accuracy in their malaria detection study using

deep learning techniques on this data set [22]. According to Pan et al., It demonstrated that the deep

convolutional network based on LeNet-5 can achieve very high classification accuracies for automatic

malaria diagnosis. They analyzed the performance effect of the dataset by running their method on

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

429

datasets containing different numbers of images [23]. Reddy et al. reached a 95.91% accuracy rate with

ResNet50 architecture for malaria detection. They used a dataset containing 27558 images [24]. Fuhad

et al. used a variety of techniques including knowledge distillation, data augmentation, autoencoder,

feature extraction by a CNN model, and classified by Support Vector Machine (SVM) or K‐Nearest

Neighbors (KNN). They reached a 99.23% accuracy rate for malaria detection problems with training

the network using 32 × 32 images.

Table 1 Existing deep learning approaches applied to Malaria detection

Authors Methods Year Images
Best Accuracy rate

(%)

Reddy et al. [24] ResNet50 2019 27558 95,91

Fuhad et al. [25] CNN-SVM, CNN-KNN 2020 26161 99,23

Vijayalakshmi et

al. [20]

Visual Geometry Group (VGG)

network and Support Vector Machine

(SVM)

2019 2550 93,1

Dong et al. [21] LeNet, AlexNet and GoogLeNet 2017 2565 98,13

Yang et al. [22] ResNet50, VGG19, AlexNet, CNN 2020 1443 93,46

Pan et al. [23] LeNet-5 2018 800 99

In this study, different from the others, 5 types of methods were compared according to the learning

algorithm. High performance has been achieved without applying pre-image processing techniques in

the dataset. The data set was applied directly to the input of the networks. Each architecture has been

tested for 3 types of learning algorithms for two different initial learning rates (lr). The effect of learning

algorithm selection on success was investigated. After 2x15 re-network training, it was observed that

the success rates were between 50% and 96.53%.

3. Materials and Methods

The technical features of the computer used in this study are as follows:

• GPU: NVIDIA GeForce GTX 1070 8GB

• CPU: Intel I7 3.4 GHz

• Ram: 12 GB

• Operating System: Windows 10, 64 bit

The entire study has been done in the Matlab development environment using Deep Network Designer

application. The last layer of the models is updated according to the number of categories, parameter

settings are made and training of the network is carried out.

One of the most popular types of deep neural networks is the Convolutional Neural Network (CNN).

CNN has a very good performance especially when a lot of images need to be processed. CNN has more

than one layer. These are the convolutional layer, non-linearity layer, pooling layer, fully connected

layer [26].

The first layer is the convolutional layer. In this layer, the image is passed through more than one parallel

convolutional filter. These filters act as feature extractors. The output of the filters is a feature map [27].

The nonlinear transform layer normalizes between nearby feature maps [28]. With the pooling layer, the

number of parameters and dimensions of the network is reduced. In the fully connected layer, data from

previous layers are combined by weighting, and thanks to a loss function, the optimal weight to be given

to neurons during training is found. Usually, the softmax activation function is used in this layer, and

classification is made as probabilistic [29].

Three different optimizers are available in Matlab deep network designer tool as Stochastic Gradient

Descent with Momentum(sgdm), Adaptive Moment Estimation (adam), and Root Mean Square

Propagation (rmsprop). In this study their performance according to network models are compared.

Sgdm is the preferred optimization method for many large-scale learning problems. Adam is a form of

optimization that can be used instead of stochastic gradient descent. Quickly achieving good results on

net weights makes this method popular. Rmsprop divides the learning rate by an exponentially

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

430

decreasing square gradient average. Rmsprop produces effective results for online and unstable

problems [30].

Deep Neural
Network

Input Image

Parasitized

Uninfected

Figure 2 Block Diagram of the System

In this study, pre-trained networks are used to detect malaria disease. In deep learning, retraining a

previously trained model for another problem is called transfer-based deep learning. Transfer learning

is an approach in deep learning where knowledge is transferred from one model to another. The

information obtained from the pre-trained model that was previously trained with a large-scale data can

be used in a new model. Using a pre-trained network, especially for applications where the number of

data is low, produces satisfactory results in the field of deep learning. When transfer-based learning is

used, it is necessary to make changes in the last layers according to the number of classes to be classified,

and to retrain the model after making the hyperparameter settings [31].

The block diagram of the system is given in Fig. 2. Deep network classifies input image as infected from

parasite or not. The used networks and their properties are given in Table 2. In this study there are two

classes, so the last classification layers of network models are modified to classify new images. For

comparison when setting training parameters, batch size and epoch number set the same.

Table 2 Properties of network models

Network
Year of

development

Input Image

Size
Depth

Number of

parameters

Number of

categories

AlexNet 2012 224x224x3 8 61 million 1000

GoogLeNet 2014 224x224x3 22 7 million 1000

VGG-16 2014 224x224x3 16 138 million 1000

ResNet-50 2015 224x224x3 50 25,6 million 1000

MobileNet-v2 2018 224x224x3 53 3,5 million 1000

3.1. AlexNet

AlexNet is a convolutional neural network with 8-layer deep CNN. It has been trained with 1.2 million

images in the ImageNet dataset and can classify 1000 objects [32]. AlexNet is designed by Alex

Krizhevsky in collaboration with Ilya Sutskever and Geoffrey Hinton [33]. The detailed configuration

of AlexNet model for this study is given in Table 3.

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

431

Table 3 The architecture of AlexNet model

No Layer Properties No Layer Properties

1 Image Input 227×227×3 14

2-D Grouped

Conv.

2 groups of 128

3×3×192

2 2-D Conv. 96 11×11×3 15 ReLU ReLU

3 ReLU ReLU 16 2-D Max Pooling 3×3

4

Cross Channel

Norm. 5 channels per element 17 Fully Connected 4096

5 2-D Max Pooling 3×3 18 ReLU ReLU

6

2-D Grouped

Conv.

2 groups of 128

5×5×48 19 Dropout 50% dropout

7 ReLU ReLU 20 Fully Connected 4096

8

Cross Channel

Norm. 5 channels per element 21 ReLU ReLU

9 2-D Max Pooling 3×3 22 Dropout 50% dropout

10 2-D Conv. 384 3×3×256 23 Fully Connected 2

11 ReLU ReLU 24 Softmax softmax

12

2-D Grouped

Conv.

2 groups of 192

3×3×192 25

Classification

Output 2 classes

13 ReLU ReLU

3.2. GoogLeNet

GoogLeNet is developed by researchers working at Google. GoogLeNet was the winner of ILSVRC

2014 competition [34]. GoogLeNet’s other name is Inception block. It has a 22-layer deep CNN and 7

million parameters. Pre-trained network can classify 1000 objects. The detailed configuration of

GoogLeNet model for this study is given in Table 4.

Table 4 The architecture of GoogLeNet model

No Layer Properties No Layer Properties No Layer Properties

1 Image Input 224×224×3 49
2-D

Convolution
48 5×5×16 97

2-D

Convolution

256

1×1×528

2
2-D

Convolution
64 7×7×3 50 ReLU ReLU 98 ReLU ReLU

3 ReLU ReLU 51
2-D Max

Pooling
3×3 99

2-D

Convolution

160

1×1×528

4
2-D Max

Pooling
3×3 52

2-D

Convolution

64

1×1×480

10

0
ReLU ReLU

5

Cross

Channel

Norm.

channels

per

element

53 ReLU ReLU
10

1

2-D

Convolution

320

3×3×160

6
2-D

Convolution
64 1×1×64 54

Depth

concatenatio

n

4 inputs
10

2
ReLU ReLU

7 ReLU ReLU 55
2-D

Convolution

160

1×1×512

10

3

2-D

Convolution

32

1×1×528

8
2-D

Convolution

192

3×3×64
56 ReLU ReLU

10

4
ReLU ReLU

9 ReLU ReLU 57
2-D

Convolution

112

1×1×512

10

5

2-D

Convolution

128

5×5×32

10

Cross

Channel

Norm.

5 channels

per

element

58 ReLU ReLU
10

6
ReLU ReLU

11
2-D Max

Pooling
3×3 59

2-D

Convolution

224

3×3×112

10

7

2-D Max

Pooling
3×3

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

432

12
2-D

Convolution

64

1×1×192
60 ReLU ReLU

10

8

2-D

Convolution

128

1×1×528

13 ReLU ReLU 61
2-D

Convolution

24

1×1×512

10

9
ReLU ReLU

14
2-D

Convolution

96

1×1×192
62 ReLU ReLU

11

0

Depth

concatenation
4 inputs

15 ReLU ReLU 63
2-D

Convolution
64 5×5×24

11

1

2-D Max

Pooling
3×3

16
2-D

Convolution

128

3×3×96
64 ReLU ReLU

11

2

2-D

Convolution

256

1×1×832

17 ReLU ReLU 65
2-D Max

Pooling
3×3

11

3
ReLU ReLU

18
2-D

Convolution

16

1×1×192
66

2-D

Convolution

64

1×1×512

11

4

2-D

Convolution

160

1×1×832

19 ReLU ReLU 67 ReLU ReLU
11

5
ReLU ReLU

20
2-D

Convolution
32 5×5×16 68

Depth

concatenatio

n

4 inputs
11

6

2-D

Convolution

320

3×3×160

21 ReLU ReLU 69
2-D

Convolution

128

1×1×512

11

7
ReLU ReLU

22
2-D Max

Pooling
3×3 70 ReLU ReLU

11

8

2-D

Convolution

32

1×1×832

23
2-D

Convolution

32

1×1×192
71

2-D

Convolution

128

1×1×512

11

9
ReLU ReLU

24 ReLU ReLU 72 ReLU ReLU
12

0

2-D

Convolution

128

5×5×32

25

Depth

concatenatio

n

4 inputs 73
2-D

Convolution

256

3×3×128

12

1
ReLU ReLU

26
2-D

Convolution

128

1×1×256
74 ReLU ReLU

12

2

2-D Max

Pooling
3×3

27 ReLU ReLU 75
2-D

Convolution

24

1×1×512

12

3

2-D

Convolution

128

1×1×832

28
2-D

Convolution

128

1×1×256
76 ReLU ReLU

12

4
ReLU ReLU

29 ReLU ReLU 77
2-D

Convolution
64 5×5×24

12

5

Depth

concatenation
4 inputs

30
2-D

Convolution

192

3×3×128
78 ReLU ReLU

12

6

2-D

Convolution

384

1×1×832

31 ReLU ReLU 79
2-D Max

Pooling
3×3

12

7
ReLU ReLU

32
2-D

Convolution

32

1×1×256
80

2-D

Convolution

64

1×1×512

12

8

2-D

Convolution

192

1×1×832

33 ReLU ReLU 81 ReLU ReLU
12

9
ReLU ReLU

34
2-D

Convolution
96 5×5×32 82

Depth

concatenatio

n

4 inputs
13

0

2-D

Convolution

384

3×3×192

35 ReLU ReLU 83
2-D

Convolution

112

1×1×512

13

1
ReLU ReLU

36
2-D Max

Pooling
3×3 84 ReLU ReLU

13

2

2-D

Convolution

48

1×1×832

37
2-D

Convolution

64

1×1×256
85

2-D

Convolution

144

1×1×512

13

3
ReLU ReLU

38 ReLU ReLU 86 ReLU ReLU
13

4

2-D

Convolution

128

5×5×48

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

433

39

Depth

concatenatio

n

4 inputs 87
2-D

Convolution

288

3×3×144

13

5
ReLU ReLU

40
2-D Max

Pooling
3×3 88 ReLU ReLU

13

6

2-D Max

Pooling
3×3

41
2-D

Convolution

192

1×1×480
89

2-D

Convolution

32

1×1×512

13

7

2-D

Convolution

128

1×1×832

42 ReLU ReLU 90 ReLU ReLU
13

8
ReLU ReLU

43
2-D

Convolution

96

1×1×480
91

2-D

Convolution
64 5×5×32

13

9

Depth

concatenation
4 inputs

44 ReLU ReLU 92 ReLU ReLU
14

0

2-D Global

Avg. Pooling
2-D

45
2-D

Convolution

208

3×3×96
93

2-D Max

Pooling
3×3

14

1
Dropout

40%

dropout

46 ReLU ReLU 94
2-D

Convolution

64

1×1×512

14

2

Fully

Connected
2

47
2-D

Convolution

16

1×1×480
95 ReLU ReLU

14

3
Softmax softmax

48 ReLU ReLU 96

Depth

concatenatio

n

4 inputs
14

4

Classification

Output
2 classes

3.3. ResNet-50

ResNet stands for Residual Network introduced in the 2015 p by He Kaiming et. al.[35] ResNet50 is a

CNN architecture with 50-layer deep CNN. Pre-trained network can classify into 1000 categories. The

architecture has 25.6 million parameters. The detailed configuration of ResNet-50 model for this study

is given in Table 5.

Table 5 The architecture of ResNet-50 model

No Layer Properties No Layer Properties No Layer Properties

1

Image

Input 224×224×3 60

2-D

Conv.

128

1×1×512 119 Batch Norm.

1024

channels

2

2-D

Conv. 64 7×7×3 61

Batch

Norm.

128

channels 120 Addition 2 inputs

3

Batch

Norm.

64

channels 62 ReLU ReLU 121 ReLU ReLU

4 ReLU ReLU 63

2-D

Conv.

128

3×3×128 122 2-D Conv.

256

1×1×1024

5

2-D Max

Pooling 3×3 64

Batch

Norm.

128

channels 123 Batch Norm.

256

channels

6

2-D

Conv. 64 1×1×64 65 ReLU ReLU 124 ReLU ReLU

7

Batch

Norm.

64

channels 66

2-D

Conv.

512

1×1×128 125 2-D Conv.

256

3×3×256

8 ReLU ReLU 67

Batch

Norm.

512

channels 126 Batch Norm.

256

channels

9

2-D

Conv. 64 3×3×64 68 Addition 2 inputs 127 ReLU ReLU

10

Batch

Norm.

64

channels 69 ReLU ReLU 128 2-D Conv.

1024

1×1×256

11 ReLU ReLU 70

2-D

Conv.

128

1×1×512 129 Batch Norm.

1024

channels

12

2-D

Conv.

256

1×1×64 71

Batch

Norm.

128

channels 130 Addition 2 inputs

13

2-D

Conv.

256

1×1×64 72 ReLU ReLU 131 ReLU ReLU

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

434

14

Batch

Norm.

256

channels 73

2-D

Conv.

128

3×3×128 132 2-D Conv.

256

1×1×1024

15

Batch

Norm.

256

channels 74

Batch

Norm.

128

channels 133 Batch Norm.

256

channels

16 Addition 2 inputs 75 ReLU ReLU 134 ReLU ReLU

17 ReLU ReLU 76

2-D

Conv.

512

1×1×128 135 2-D Conv.

256

3×3×256

18

2-D

Conv.

64

1×1×256 77

Batch

Norm.

512

channels 136 Batch Norm.

256

channels

19

Batch

Norm.

64

channels 78 Addition 2 inputs 137 ReLU ReLU

20 ReLU ReLU 79 ReLU ReLU 138 2-D Conv.

1024

1×1×256

21

2-D

Conv. 64 3×3×64 80

2-D

Conv.

256

1×1×512 139 Batch Norm.

1024

channels

22

Batch

Norm.

64

channels 81

Batch

Norm.

256

channels 140 Addition 2 inputs

23 ReLU ReLU 82 ReLU ReLU 141 ReLU ReLU

24

2-D

Conv.

256

1×1×64 83

2-D

Conv.

256

3×3×256 142 2-D Conv.

512

1×1×1024

25

Batch

Norm.

256

channels 84

Batch

Norm.

256

channels 143 Batch Norm.

512

channels

26 Addition 2 inputs 85 ReLU ReLU 144 ReLU ReLU

27 ReLU ReLU 86

2-D

Conv.

1024

1×1×256 145 2-D Conv.

512

3×3×512

28

2-D

Conv.

64

1×1×256 87

2-D

Conv.

1024

1×1×512 146 Batch Norm.

512

channels

29

Batch

Norm.

64

channels 88

Batch

Norm.

1024

channels 147 ReLU ReLU

30 ReLU ReLU 89

Batch

Norm.

1024

channels 148 2-D Conv.

2048

1×1×512

31

2-D

Conv. 64 3×3×64 90 Addition 2 inputs 149 2-D Conv.

2048

1×1×1024

32

Batch

Norm.

64

channels 91 ReLU ReLU 150 Batch Norm.

2048

channels

33 ReLU ReLU 92

2-D

Conv.

256

1×1×1024 151 Batch Norm.

2048

channels

34

2-D

Conv.

256

1×1×64 93

Batch

Norm.

256

channels 152 Addition 2 inputs

35

Batch

Norm.

256

channels 94 ReLU ReLU 153 ReLU ReLU

36 Addition 2 inputs 95

2-D

Conv.

256

3×3×256 154 2-D Conv.

512

1×1×2048

37 ReLU ReLU 96

Batch

Norm.

256

channels 155 Batch Norm.

512

channels

38

2-D

Conv.

128

1×1×256 97 ReLU ReLU 156 ReLU ReLU

39

Batch

Norm.

128

channels 98

2-D

Conv.

1024

1×1×256 157 2-D Conv.

512

3×3×512

40 ReLU ReLU 99

Batch

Norm.

1024

channels 158 Batch Norm.

512

channels

41

2-D

Conv.

128

3×3×128 100 Addition 2 inputs 159 ReLU ReLU

42

Batch

Norm.

128

channels 101 ReLU ReLU 160 2-D Conv.

2048

1×1×512

43 ReLU ReLU 102

2-D

Conv.

256

1×1×1024 161 Batch Norm.

2048

channels

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

435

44

2-D

Conv.

512

1×1×128 103

Batch

Norm.

256

channels 162 Addition 2 inputs

45

2-D

Conv.

512

1×1×256 104 ReLU ReLU 163 ReLU ReLU

46

Batch

Norm.

512

channels 105

2-D

Conv.

256

3×3×256 164 2-D Conv.

512

1×1×2048

47

Batch

Norm.

512

channels 106

Batch

Norm.

256

channels 165 Batch Norm.

512

channels

48 Addition 2 inputs 107 ReLU ReLU 166 ReLU ReLU

49 ReLU ReLU 108

2-D

Conv.

1024

1×1×256 167 2-D Conv.

512

3×3×512

50

2-D

Conv.

128

1×1×512 109

Batch

Norm.

1024

channels 168 Batch Norm.

512

channels

51

Batch

Norm.

128

channels 110 Addition 2 inputs 169 ReLU ReLU

52 ReLU ReLU 111 ReLU ReLU 170 2-D Conv.

2048

1×1×512

53

2-D

Conv.

128

3×3×128 112

2-D

Conv.

256

1×1×1024 171 Batch Norm.

2048

channels

54

Batch

Norm.

128

channels 113

Batch

Norm.

256

channels 172 Addition 2 inputs

55 ReLU ReLU 114 ReLU ReLU 173 ReLU ReLU

56

2-D

Conv.

512

1×1×128 115

2-D

Conv.

256

3×3×256 174

2-D Global Average

Pooling 2-D

57

Batch

Norm.

512

channels 116

Batch

Norm.

256

channels 175 Fully Connected

Fully

Connected

58 Addition 2 inputs 117 ReLU ReLU 176 Softmax softmax

59 ReLU ReLU 118

2-D

Conv.

1024

1×1×256 177

Classification

Output 2 classes

3.4. MobileNet-v2

MobileNet-v2 has an architecture designed to be used mostly on mobile devices. With 3.5 million

parameters, it has fewer parameters than other architectures. It has 53-layer deep CNN. It is trained with

over a million data from the ImageNet dataset. The pre-trained network can classify into 1000

categories. The low number of parameters also reduces the training time. The detailed configuration of

MobileNet-v2 model for this study is given in Table 6.

Table 6 The architecture of MobileNet-v2 model

Layer Properties No Layer Properties No Layer Properties

Image

Input
224×224×3 53

2-D

Conv.
192 1×1×32 105 2-D Conv. 576 1×1×96

2-D

Conv.
32 3×3×3 54

Batch

Norm.

192

channels
106 Batch Norm. 576 channels

Batch

Norm.
32 channels 55

Clipped

ReLU
ceiling 6 107 Clipped ReLU ceiling 6

Clipped

ReLU
ceiling 6 56

2-D

Grouped

Conv.

192 groups

of 1 3×3×1
108

2-D Grouped

Conv.
576 groups

2-D

Grouped

Conv.

32 groups 57
Batch

Norm.

192

channels
109 Batch Norm. 576 channels

Batch

Norm.
32 channels 58

Clipped

ReLU
ceiling 6 110 Clipped ReLU ceiling 6

Clipped

ReLU
ceiling 6 59

2-D

Conv.
64 1×1×192 111 2-D Conv. 96 1×1×576

2-D

Conv.
16 1×1×32 60

Batch

Norm.
64 channels 112 Batch Norm. 96 channels

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

436

Batch

Norm.
16 channels 61

2-D

Conv.
384 1×1×64 113 Addition 2 inputs

2-D

Conv.
96 1×1×16 62

Batch

Norm.

384

channels
114 2-D Conv. 576 1×1×96

Batch

Norm.
96 channels 63

Clipped

ReLU
ceiling 6 115 Batch Norm. 576 channels

Clipped

ReLU
ceiling 6 64

2-D

Grouped

Conv.

384 groups 116 Clipped ReLU ceiling 6

2-D

Grouped

Conv.

96 groups of 1

3×3×1
65

Batch

Norm.

384

channels
117

2-D Grouped

Conv.

576 groups of

1 3×3×1

Batch

Norm.
96 channels 66

Clipped

ReLU
ceiling 6 118 Batch Norm. 576 channels

Clipped

ReLU
ceiling 6 67

2-D

Conv.
64 1×1×384 119 Clipped ReLU ceiling 6

2-D

Conv.
24 1×1×96 68

Batch

Norm.
64 channels 120 2-D Conv. 160 1×1×576

Batch

Norm.
24 channels 69 Addition 2 inputs 121 Batch Norm. 160 channels

2-D

Conv.
144 1×1×24 70

2-D

Conv.
384 1×1×64 122 2-D Conv. 960 1×1×160

Batch

Norm.
144 channels 71

Batch

Norm.

384

channels
123 Batch Norm. 960 channels

Clipped

ReLU
ceiling 6 72

Clipped

ReLU
ceiling 6 124 Clipped ReLU ceiling 6

2-D

Grouped

Conv.

144 groups 73

2-D

Grouped

Conv.

384 groups 125
2-D Grouped

Conv.
960 groups

Batch

Norm.
144 channels 74

Batch

Norm.

384

channels
126 Batch Norm. 960 channels

Clipped

ReLU
ceiling 6 75

Clipped

ReLU
ceiling 6 127 Clipped ReLU ceiling 6

2-D

Conv.
24 1×1×144 76

2-D

Conv.
64 1×1×384 128 2-D Conv. 160 1×1×960

Batch

Norm.
24 channels 77

Batch

Norm.
64 channels 129 Batch Norm. 160 channels

Addition 2 inputs 78 Addition 2 inputs 130 Addition 2 inputs

2-D

Conv.
144 1×1×24 79

2-D

Conv.
384 1×1×64 131 2-D Conv. 960 1×1×160

Batch

Norm.
144 channels 80

Batch

Norm.

384

channels
132 Batch Norm. 960 channels

Clipped

ReLU
ceiling 6 81

Clipped

ReLU
ceiling 6 133 Clipped ReLU ceiling 6

2-D

Grouped

Conv.

144 groups of

1 3×3×1
82

2-D

Grouped

Conv.

384 groups 134
2-D Grouped

Conv.
960 groups

Batch

Norm.
144 channels 83

Batch

Norm.

384

channels
135 Batch Norm. 960 channels

Clipped

ReLU
ceiling 6 84

Clipped

ReLU
ceiling 6 136 Clipped ReLU ceiling 6

2-D

Conv.
32 1×1×144 85

2-D

Conv.
64 1×1×384 137 2-D Conv. 160 1×1×960

Batch

Norm.
32 channels 86

Batch

Norm.
64 channels 138 Batch Norm. 160 channels

2-D

Conv.
192 1×1×32 87 Addition 2 inputs 139 Addition 2 inputs

Batch

Norm.
192 channels 88

2-D

Conv.
384 1×1×64 140 2-D Conv. 960 1×1×160

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

437

Clipped

ReLU
ceiling 6 89

Batch

Norm.

384

channels
141 Batch Norm. 960 channels

2-D

Grouped

Conv.

192 groups 90
Clipped

ReLU
ceiling 6 142 Clipped ReLU ceiling 6

Batch

Norm.
192 channels 91

2-D

Grouped

Conv.

384 groups 143
2-D Grouped

Conv.
960 groups

Clipped

ReLU
ceiling 6 92

Batch

Norm.

384

channels
144 Batch Norm. 960 channels

2-D

Conv.
32 1×1×192 93

Clipped

ReLU
ceiling 6 145 Clipped ReLU ceiling 6

Batch

Norm.
32 channels 94

2-D

Conv.
96 1×1×384 146 2-D Conv. 320 1×1×960

Addition 2 inputs 95
Batch

Norm.
96 channels 147 Batch Norm. 320 channels

2-D

Conv.
192 1×1×32 96

2-D

Conv.
576 1×1×96 148 2-D Conv. 1280 1×1×320

Batch

Norm.
192 channels 97

Batch

Norm.

576

channels
149 Batch Norm. 1280 channels

Clipped

ReLU
ceiling 6 98

Clipped

ReLU
ceiling 6 150 Clipped ReLU ceiling 6

2-D

Grouped

Conv.

192 groups 99

2-D

Grouped

Conv.

576 groups 151

2-D Global

Average

Pooling

2-D global

average

pooling

Batch

Norm.
192 channels 100

Batch

Norm.

576

channels
152

Fully

Connected

Fully

connected

Clipped

ReLU
ceiling 6 101

Clipped

ReLU
ceiling 6 153 Softmax softmax

2-D

Conv.
32 1×1×192 102

2-D

Conv.
96 1×1×576 154

Classification

Output
2 classes

Batch

Norm.
32 channels 103

Batch

Norm.
96 channels

Addition 2 inputs 104 Addition 2 inputs

3.5. VGG-16

It is trained with more than 14 million data in the VGG-16 ImageNet dataset. It’s training took weeks.

It has 41 layers. With 138 million parameters, it is the architecture with the most parameters among

those used in this study. The pre-trained network can classify into 1000 categories. The detailed

configuration of VGG-16 model for this study is given in Table 7.

Table 7 The architecture of VGG-16 model

No Layer Properties No Layer Properties No Layer Properties

1 Image Input 224x224x3 15 ReLU ReLU 29 ReLU ReLU

2 Convolution 64 3x3x3 16 Convolution
256

3x3x256
30 Convolution

512

3x3x512

3 ReLU ReLU 17 ReLU ReLU 31 ReLU ReLU

4 Convolution 64 3x3x64 18
Max

Pooling
2x2 32 Max Pooling 2x2

5 ReLU ReLU 19 Convolution
512

3x3x256
33 Fully Connected 4096

6
Max

Pooling
2x2 20 ReLU ReLU 34 ReLU ReLU

7 Convolution
128

3x3x64
21 Convolution

512

3x3x512
35 Dropout

50%

dropout

8 ReLU ReLU 22 ReLU ReLU 36 Fully Connected 4096

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

438

9 Convolution
128

3x3x128
23 Convolution

512

3x3x512
37 ReLU ReLU

10 ReLU ReLU 24 ReLU ReLU 38 Dropout
50%

dropout

11
Max

Pooling
2x2 25

Max

Pooling
2x2 39 Fully Connected 2

12 Convolution
256

3x3x128
26 Convolution

512

3x3x512
40 Softmax softmax

13 ReLU ReLU 27 ReLU ReLU 41
Classification

Output
2 classes

14 Convolution
256

3x3x256
28 Convolution

512

3x3x512

3.6. Dataset

The data set used in this study was created with a mobile application developed to take microscopic

images and samples taken from patients and non-sick individuals in Mahidol-Oxford Tropical Medicine

Research Unit in Bangkok [36]. The data set was shared on the internet available to researchers. It is

possible to reach the data set from many different links. In this study, the data obtained from the Kaggle

platform was used [37]. The Malaria dataset contains a total of 27,558 cell images with samples of

equally parasitized and uninfected cells from thin blood smear slide images of segmented cells. Sample

images from dataset is given in Figure 3. Parasitized cells contain Plasmodium in different sizes and

shapes.

(a)

(b)

Figure 3 Sample dataset images (a) uninfected (b) parasitized

The image sizes in the data set are resized according to the input sizes of the network to be used. In this

study data augmentation was not applied. 70% of the data were used as training data and 30% as test

data. Number of images for training is 19290 and number of images for validation is 8268. Number of

parasitized and uninfected images are equal.

4. Training of models

Learning curves that showing the progress over the experience during the training of a machine learning

models are just a mathematical representation of the learning process. We observe accuracy and loss

performances from plots according to validation data. In this section training progress of models are

given.

Screenshots of the training window for AlexNet are given in Fig. 4, Fig. 5, and Fig.6 respectively.

Accuracy and loss rates according to iteration are shown in these graphs. The validation accuracy is

obtained 95,9% with sgdm optimizer, 50% with adam optimizer, 95,22% with rmsprop optimizer at

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

439

learning rate of 0.001 and 96.08% with sgdm optimizer, 94.19% with adam optimizer, 95.85% with

rmsprop optimizer learning rate of 0.0001.

 (a) (b)

Figure 4 Re-training of AlexNet Network Model with sgdm Optimizer (a)lr=0.001 (b) lr=0.0001

 (a) (b)

Figure 5 Re-training of AlexNet Network Model with adam Optimizer (a)lr=0.001 (b) lr=0.0001

 (a) (b)

Figure 6 Re-training of AlexNet Network Model with rmsprop Optimizer (a)lr=0.001 (b) lr=0.0001

Screenshots of the training window for GoogLeNet are given in Fig. 7, Fig. 8, and Fig.9 respectively.

Accuracy and loss rates according to iteration are shown in these graphs. Accuracy and loss rates

according to iteration are shown in these graphs. The validation accuracy is obtained 95,22% with sgdm

optimizer, 95,46% with adam optimizer, 95,54% with rmsprop optimizer and 96.07% with sgdm

optimizer, 96.26% with adam optimizer, 96.73% with rmsprop optimizer learning rate of 0.0001.

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

440

 (a) (b)

Figure 7 Re-training of GoogLeNet Network Model with sgdm Optimizer (a)lr=0.001 (b) lr=0.0001

 (a) (b)

Figure 8 Re-training of GoogLeNet Network Model with adam Optimizer (a)lr=0.001 (b) lr=0.0001

 (a) (b)

Figure 9 Re-training of GoogLeNet Network Model with rmsprop Optimizer (a)lr=0.001 (b) lr=0.0001

Screenshots of the training window for ResNet-50 are given in Fig. 10, Fig. 11, and Fig.12 respectively.

Accuracy and loss rates according to iteration are shown in these graphs. The validation accuracy is

obtained 95,57% with sgdm optimizer, 95,66% with adam optimizer, 95,05% with rmsprop optimizer

at learning rate of 0.001 and 95.65% with sgdm optimizer, 96.76% with adam optimizer, 96.07% with

rmsprop optimizer learning rate of 0.0001.

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

441

 (a) (b)

Figure 10 Re-training of ResNet-50 Network Model with sgdm Optimizer (a)lr=0.001 (b) lr=0.0001

 (a) (b)

Figure 3 Re-training of ResNet-50 Network Model with adam Optimizer (a)lr=0.001 (b) lr=0.0001

 (a) (b)

Figure 4 Re-training of ResNet-50 Network Model with rmsprop Optimizer (a)lr=0.001 (b) lr=0.0001

Screenshots of the training window for MobileNet-v2 are given in Fig. 13, Fig. 14, and Fig.15

respectively. Accuracy and loss rates according to iteration are shown in these graphs. The validation

accuracy is obtained 95,09% with sgdm optimizer, 96,53% with adam optimizer, 96,31% with rmsprop

optimizer at learning rate of 0.001 and 95.72% with sgdm optimizer, 95.63% with adam optimizer,

96.13% with rmsprop optimizer learning rate of 0.0001.

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

442

 (a) (b)

Figure 5 Re-training of MobileNet-v2 Network Model with sgdm Optimizer (a)lr=0.001 (b) lr=0.0001

 (a) (b)

Figure 6 Re-training of MobileNet-v2 Network Model with adam Optimizer (a)lr=0.001 (b) lr=0.0001

 (a) (b)

Figure 7 Re-training of MobileNet-v2 Network Model with rmsprop Optimizer (a)lr=0.001 (b) lr=0.0001

A large number of parameters also affects the retraining speed. Among the architectures used in this

study, the longest training period belongs to this architecture. Screenshots of training window for VGG-

16 are given in Fig. 16, Fig. 17, and Fig.18 respectively. The validation accuracy is obtained 93,89%

with sgdm optimizer, 50% with adam optimizer, 50% with rmsprop optimizer at learning rate of 0.001

and 95.42% with sgdm optimizer, 96.46% with adam optimizer, 95.52% with rmsprop optimizer

learning rate of 0.0001.

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

443

 (a) (b)

Figure 8 Re-training of the VGG-16 Network Model with sgdm Optimizer (a)lr=0.001 (b) lr=0.0001

 (a) (b)

Figure 9 Re-training of the VGG-16 Network Model with adam Optimizer (a)lr=0.001 (b) lr=0.0001

 (a) (b)

Figure 10 Re-Training of The VGG-16 Network Model with Rmsprop Optimizer (a)lr=0.001 (b) lr=0.0001

5. Results

Table 8. represents the entire training results for 0.001 initial learning rate, 30 batch size, and 10 epoch.

The most successful results were obtained when the MobileNet-v2 network was trained using the adam

optimizer. The network reached a 96,53% validation accuracy rate.

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

444

Table 8 Re-training results of network models at 0.001 learning rate

No Architecture
Learning

Algorithm

Learning

Rate

Batch

Size

Validation

Accuracy

1 AlexNet sgdm 0.001 30 95.9

2 AlexNet adam 0.001 30 50

3 AlexNet rmsprop 0.001 30 95.22

4 GoogLeNet sgdm 0.001 30 95.46

5 GoogLeNet adam 0.001 30 95.75

6 GoogLeNet rmsprop 0.001 30 95.54

7 ResNet-50 sgdm 0.001 30 95.57

8 ResNet-50 adam 0.001 30 95.66

9 ResNet-50 rmsprop 0.001 30 95.05

10 MobileNet-v2 sgdm 0.001 30 95.09

11 MobileNet-v2 adam 0.001 30 96.53

12 MobileNet-v2 rmsprop 0.001 30 96.31

13 VGG-16 sgdm 0.001 30 93.89

14 VGG-16 adam 0.001 30 50

15 VGG-16 rmsprop 0.001 30 50

Performance rates from highest to lowest at 0.001 learning rate are given in Figure 19. According to the

experimental results, the best results were obtained from the combination of MobileNet-v2 architecture,

adam learning algorithm. Goodfits are obtained except three experiments. Combinations VGA16 -sgdm,

VGA16-adam, AlexNet-adam failed with this problem.

Figure 11 Success Rates of Models at 0.001 learning rate

Table 9. represents the entire training results for 0.0001 initial learning rate, 30 batch size, and 10 epoch.

The most successful results were obtained when the ResNet-50 network was trained using the adam

optimizer. The network reached a 96,76 % validation accuracy rate. The optimizer type setting is

important when using a low learning rate.

9
6

,5
3

9
6

,3
1

9
5

,9

9
5

,7
5

9
5

,6
6

9
5

,5
7

9
5

,5
4

9
5

,4
6

9
5

,2
2

9
5

,0
9

9
5

,0
5

9
3

,8
9

5
0

5
0

5
0

40

50

60

70

80

90

100

A
C

C
U

R
A

C
Y(

%
)

ARCHITECTURE_LEARNING ALGORITHM

MobileNet-v2 (adam)

MobileNet-v2 (rmsprop)

AlexNet (sgdm)

GoogleNet (adam)

ResNet (adam)

ResNet (sgdm)

GoogleNet (rmsprop)

GoogleNet (sgdm)

AlexNet (rmsprop)

MobileNet-v2 (sgdm)

ResNet (rmsprop)

VGG-16 (sgdm)

VGG-16 (adam)

AlexNet (adam)

VGG-16 (rmsprop)

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

445

Table 9 Re-training results of network models at 0.0001 learning rate

No Architecture
Learning

Algorithm

Learning

Rate

Batch

Size

Validation

Accuracy

1 AlexNet sgdm 0.0001 30 96.08

2 AlexNet adam 0.0001 30 94.19

3 AlexNet rmsprop 0.0001 30 95.85

4 GoogleNet sgdm 0.0001 30 96.07

5 GoogleNet adam 0.0001 30 96.26

6 GoogleNet rmsprop 0.0001 30 96.73

7 ResNet-50 sgdm 0.0001 30 95.65

8 ResNet-50 adam 0.0001 30 96.76

9 ResNet-50 rmsprop 0.0001 30 96.07

10 MobileNet-v2 sgdm 0.0001 30 95.72

11 MobileNet-v2 adam 0.0001 30 95.63

12 MobileNet-v2 rmsprop 0.0001 30 96.13

13 VGG-16 sgdm 0.0001 30 95.42

14 VGG-16 adam 0.0001 30 96.46

15 VGG-16 rmsprop 0.0001 30 95.52

Performance rates from highest to lowest at 0.0001 learning rate are given in Figure 20. According to

the experimental results, the best results were obtained from the combination of ResNet architecture,

adam learning algorithm.

Figure 20 Success Rates of Models at 0.0001 learning rate

In general, the training results were good when the learning rate value was set to 0.0001. Goodfits have

been obtained. There is not much difference between the performance rates of the models. For situations

where the performance ratios are close to each other, it would be logical to choose the architecture with

less number of parameters. In this way, the processing load is less and the result is calculated faster.

6. Conclusions

Malaria is a type of disease that kills when left untreated. Thousands of people die each year due to this

disease. When treated, there is full recovery. Malaria can be diagnosed by looking for the malaria

9
6

,7
6

9
6

,7
3

9
6

,4
6

9
6

,2
6

9
6

,1
3

9
6

,0
8

9
6

,0
7

9
6

,0
7

9
5

,8
5

9
5

,7
2

9
5

,6
5

9
5

,6
3

9
5

,5
2

9
5

,4
2

9
4

,1
9

90

91

92

93

94

95

96

97

98

99

100

A C C U R A C Y (%)

A
C

C
U

R
A

C
Y

(%
)

ARCHITECTURE-LEARNING ALGORITHM

ResNet-adam

GoogleNet-rmsprop

VGG-16-adam

GoogleNet-adam

MobileNet-v2-rmsprop

AlexNet-sgdm

GoogleNet-sgdm

ResNet-rmsprop

AlexNet-rmsprop

MobileNet-v2-sgdm

ResNet-sgdm

MobileNet-v2-adam

VGG-16-rmsprop

VGG-16-sgdm

AlexNet-adam

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

446

parasite in the red blood cell. Deep learning techniques are frequently used in disease detection. Deep

learning techniques are very successful in classification problems. Using transfer-based deep learning

techniques provides fast and high-performance solutions in image classification. Pre-trained networks

are trained using millions of data sets and have proven architectures. In this study, the effect of 3 types

of learning algorithms on the performance of 5 types of pre-trained networks at two different learning

rate values was investigated. The disease was diagnosed by classifying the red blood cells as having or

not having malaria parasites. The duration of the re-trainings, the success rates, and the effects of the

learning algorithm on the success was interpreted. When the learning value is set to 0.0001 with the

ResNet-50 model and adam optimizer, the maximum success rate of 96.76% has been reached.

References

[1] “Sıtma.” [Online]. Available: https://hsgm.saglik.gov.tr/tr/zoonotikvektorel-sitma/detay.html.

[2] WHO, “World malaria report 2020- WHO,” 2020. [Online]. Available:

https://www.who.int/publications/i/item/9789240015791.

[3] “What is malaria?,” Global Health, Division of Parasitic Diseases and Malaria, 2021. [Online].

Available: https://www.cdc.gov/.

[4] E. Soylu, T. Soylu, and R. Bayir, “Design and implementation of SOC prediction for a Li-Ion

battery pack in an electric car with an embedded system,” Entropy, vol. 19, no. 4, 2017.

[5] Y. Karabacak and A. Uysal, “Fuzzy logic controlled brushless direct current motor drive design

and application for regenerative braking,” in 2017 International Artificial Intelligence and Data

Processing Symposium (IDAP), 2017, pp. 1–7.

[6] A. Uysal, S. Gokay, E. Soylu, T. Soylu, and S. Çaşka, “Fuzzy proportional-integral speed control

of switched reluctance motor with MATLAB/Simulink and programmable logic controller

communication,” Meas. Control (United Kingdom), vol. 52, no. 7–8, 2019.

[7] L. V. Selby, W. R. Narain, A. Russo, V. E. Strong, and P. Stetson, “Autonomous detection,

grading, and reporting of postoperative complications using natural language processing,” Surg.

(United States), vol. 164, no. 6, pp. 1300–1305, 2018.

[8] A. Shustanov and P. Yakimov, “CNN Design for Real-Time Traffic Sign Recognition,”

Procedia Eng., vol. 201, pp. 718–725, 2017.

[9] Y. LeCun et al., “Comparison of learning algorithms for handwritten digit recognition,” in

International conference on artificial neural networks, 1995, vol. 60, pp. 53–60.

[10] Philipp Seeböck, “Deep Learning in Medical Image Analysis,” Vienna University of Technology

Faculty of Informatics, Master Thesis , 2015.

[11] U. Kaya, A. Yılmaz, and Y. Dikmen, “Sağlık Alanında Kullanılan Derin Öğrenme Yöntemleri,”

Eur. J. Sci. Technol., no. 16, pp. 792–808, 2019.

[12] V. B. Kumar, S. S. Kumar, and V. Saboo, “Dermatological Disease Detection Using Image

Processing and Machine Learning,” 2016 3rd Int. Conf. Artif. Intell. Pattern Recognition, AIPR

2016, pp. 88–93, 2016.

[13] S. Jain, V. Jagtap, and N. Pise, “Computer aided melanoma skin cancer detection using image

processing,” in Procedia Computer Science, International Conference on Intelligent Computing,

Communication & Convergence (ICCC-2015), 2015, vol. 48, no. C, pp. 735–740.

[14] A. Chaudhary and S. S. Singh, “Lung cancer detection on CT images by using image

processing,” Proc. Turing 100 - Int. Conf. Comput. Sci. ICCS 2012, pp. 142–146, 2012.

[15] P. Kumar Mallick, S. H. Ryu, S. K. Satapathy, S. Mishra, G. N. Nguyen, and P. Tiwari, “Brain

MRI Image Classification for Cancer Detection Using Deep Wavelet Autoencoder-Based Deep

Neural Network,” IEEE Access, vol. 7, pp. 46278–46287, 2019.

[16] M. J. Horry et al., “COVID-19 Detection through Transfer Learning Using Multimodal Imaging

Data,” IEEE Access, vol. 8, pp. 149808–149824, 2020.

[17] M. Toğaçar, B. Ergen, and Z. Cömert, “Tumor type detection in brain MR images of the deep

model developed using hypercolumn technique, attention modules, and residual blocks,” Med.

Biol. Eng. Comput., vol. 59, no. 1, pp. 57–70, 2021.

[18] A. A. Abbasi et al., “Detecting prostate cancer using deep learning convolution neural network

with transfer learning approach,” Cogn. Neurodyn., vol. 14, no. 4, pp. 523–533, 2020.

Sakarya University Journal of Computer and Information Sciences

Emel SOYLU

447

[19] T. Rahman et al., “Transfer learning with deep Convolutional Neural Network (CNN) for

pneumonia detection using chest X-ray,” Appl. Sci., vol. 10, no. 9, 2020.

[20] Vijayalakshmi A and Rajesh Kanna B, “Deep learning approach to detect malaria from

microscopic images,” Multimed. Tools Appl., vol. 79, no. 21–22, pp. 15297–15317, 2020.

[21] Y. Dong et al., “Evaluations of deep convolutional neural networks for automatic identification

of malaria infected cells,” 2017 IEEE EMBS Int. Conf. Biomed. Heal. Informatics, BHI 2017,

pp. 101–104, 2017.

[22] F. Yang et al., “Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood

Smears,” IEEE J. Biomed. Heal. Informatics, vol. 24, no. 5, pp. 1427–1438, 2020.

[23] W. D. Pan, Y. Dong, and D. Wu, “Classification of Malaria-Infected Cells Using Deep

Convolutional Neural Networks,” in Machine Learning - Advanced Techniques and Emerging

Applications, 2018, pp. 159–173.

[24] A. Sai Bharadwaj Reddy and D. Sujitha Juliet, “Transfer learning with RESNET-50 for malaria

cell-image classification,” Proc. 2019 IEEE Int. Conf. Commun. Signal Process. ICCSP 2019,

pp. 945–949, 2019.

[25] K. M. F. Fuhad, J. F. Tuba, M. R. A. Sarker, S. Momen, N. Mohammed, and T. Rahman, “Deep

learning based automatic malaria parasite detection from blood smear and its smartphone based

application,” Diagnostics, vol. 10, no. 5, 2020.

[26] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural

network,” Proc. 2017 Int. Conf. Eng. Technol. ICET 2017, vol. 2018-Janua, pp. 1–6, 2018.

[27] B. Bayar and M. C. Stamm, “A deep learning approach to universal image manipulation

detection using a new convolutional layer,” IH MMSec 2016 - Proc. 2016 ACM Inf. Hiding

Multimed. Secur. Work., pp. 5–10, 2016.

[28] D. Miao, W. Pedrycz, D. Ślezak, G. Peters, Q. Hu, and R. Wang, “Mixed Pooling for

Convolutional Neural Networks,” in International Conference on Rough Sets and Knowledge

Technology, 2014, vol. 8818, pp. 364–375.

[29] M. Sun, Z. Song, X. Jiang, J. Pan, and Y. Pang, “Learning Pooling for Convolutional Neural

Network,” Neurocomputing, vol. 224, no. April 2016, pp. 96–104, 2017.

[30] S. Postalcıloǧlu, “Performance Analysis of Different Optimizers for Deep Learning-Based

Image Recognition,” Int. J. Pattern Recognit. Artif. Intell., vol. 34, no. 2, 2020.

[31] H. Chen et al., “Deep Transfer Learning for Person Re-Identification,” 2018 IEEE 4th Int. Conf.

Multimed. Big Data, BigMM 2018, 2018.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “2012 AlexNet,” Adv. Neural Inf. Process. Syst.,

2012. [Online]. Available: https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c843

6e924a68c45b-Abstract.html.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional

neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017.

[34] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2015, pp. 1–9.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–

778.

[36] S. Rajaraman et al., “Pre-trained convolutional neural networks as feature extractors toward

improved malaria parasite detection in thin blood smear images,” PeerJ, vol. 6, p. e4568, 2018.

[37] “Malaria Cell Images Dataset.” [Online]. Available: https://www.kaggle.com/iarunava/cell-

images-for-detecting-malaria.

