

Mugla Journal of Science and Technology

HIGH PERFORMANCE FACIAL RECOGNITION MATCHER

Gulsum AKKUZU KAYA*, Computer Engineering /Faculty of Engineering and Architecture, Kirsheir Ahi Evran University/ Turkey,
gulsum.akkuzukaya@ahievran.edu.tr

(https://orcid.org/0000-0003-1806-7759)

Received: 14.12.2022, Accepted: 23.04.2023
*Corresponding author

Research Article

DOI: 10.22531/muglajsci.1218915

Abstract

The utilization of biometric products is an expanding landscape; from general consumers employing it for authenticating
into their devices to governments deploying it at the forefront of crime and border control. One sizeable organization
required an expansion in their offering within the industryThis study aims to develop a facial matching solution that offers
high performance and meets the requirements of the organization’s biometric Subject Matter Experts in order to meet the
current gap in the offering. A facial recognition approach known as FaceNet was utilized along with the GO language and
MongoDB to produce an application capable of performing enrolments and matches against a persistent set of candidates.
This solution was validated against the labeled Faces in the Wild dataset, a challenging set of facial biometric data in
function, performance, and accuracy testing. For a subset of 6000 images from the dataset, a 100 % accuracy was recorded
from multiple test runs demonstrating no false matches. The application's performance against this subset was averaged
over multiple executions using two concurrent connections, which concluded an average enroll response time of 70ms and
236ms for match requests giving transactions per second values of 29 and 8 respectively.
Keywords: Face recognition, Machine learning, Robust, Reliable, Functionality

YÜKSEK PERFORMANSLI YÜZ TANIMA EŞLEŞTİRİCİSİ

Özet

Biyometrik ürünlerin kullanımı sürekli genişleyen bir çerçevede olup günden güne artmaktadır; cihazlarında kimlik
doğrulaması yapmak için kullanan genel tüketicilerden, onu suç ve sınır kontrolünün ön saflarında konuşlandıran
hükümetlere kadar hemen her alanda biyometrik urunler kullanilmaktadir. Bu çalışma, buyumekte olan bir siber güvenlik
sirketinin mevcut program boşluğunu doldurmak için yüksek performans ve kuruluşun biyometrik gereksinimlerini
karşılayan bir yüz eşleştirme çözümü sunan programi geliştirmeyi amaçlamaktadır. Sirket bünyesinde sürekli bir calişan
grubuna ait kayıtları ve eşleşmeleri hızlı bir şekilde gerçekleştirebilen bir uygulama üretmek için; FaceNet olarak bilinen
bir yüz tanıma yaklaşımı, GO programlama dili ve MongoDB kullanıldı. Bu çözüm, işlev, performans ve doğruluk testi
biçiminde iyi bilinen ve zorlu bir yüz biyometrik veri seti olan Labelled Faces Wild veri setine karşı doğrulandı. Veri
kümesindeki 6000 görüntüden oluşan bir alt küme için, yanlış eşleşme olmadığını gösteren çoklu test çalıştırmalarından
%100 doğruluk kaydedildi. Uygulamanın bu alt kümeye karşı performansının, iki eşzamanlı bağlantı kullanılarak birden
fazla yürütme üzerinden ortalaması alındı; bu, sırasıyla 29 ve 8 saniye başına işlem değerleri veren eşleştirme istekleri için
ortalama kayıt yanıt süresi 70 ms ve 236 ms olarak sonuçlandı. Bu araştırmanın yazılım ürünü, türetilmiş gereksinimleri
karşılamada başarılıydı, bu da calismamizi bir kurumsal çözüm için ideal bir temel haline getirdi.
Anahtar Kelimeler: Yüz tanıma, Makine öğrenimi, Sağlam, Güvenilir, İşlevsellik
Cite
Akkuzu Kaya, G. (2023). “High Performance Facial Recognition Matcher”, Mugla Journal of Science and Technology, 9(1), 42-
52.

1. Introduction
Biometrics are a fundamental concept utilized within
systems across various industries, from security to crime
prevention. They are used knowingly by everyone daily
to unlock their phone or unknowingly through
technology such as public closed-circuit television
(CCTV). Although there is a plethora of facial recognition
solutions across the community, there are minimal

applications that offer the full functionality of a facial
matcher without significant cost. This is partially due to
the immense complexity of such solutions that must
utilize cutting-edge technology in fields such as machine
learning in order to stay competitive. Not only do
biometric applications need to be performant but also
ethical, secure, and reliable. From the biometric point,
the image processing methods and Machine Learning
(ML) techniques are needed to be used; image processing

Gulsum Akkuzu Kaya
High Performance Facial Recognition Matcher

44

is needed for face recognition. ML techniques then is
needed to classify the processed images.
Although the biometric industry contains a vast
landscape of corporations, the company, which is the
case study of this research, is one of the up-and-coming
giants in IT that are branching out into this product
space. Currently, they have a minimal offering with
products such as a palm vein-based authentication
method. In order to breach the facial recognition market,
they need to develop a new solution that provides
considerable benefits over the competition, such as high
performance, scalability, and utilization of fully open-
source technologies. The aim of this research is to design,
develop and evaluate a solution that provides a high-
performant, scalable, and accurate facial matcher that
addresses a current gap within the biometric market.
This aim was derived from an internal organization's
problem in improving its rapidly growing bio-metric
with a focus on crime prevention and border security.
The research objectives of this study are as follows:
• To design and develop an application that meets the
requirements of SMEs in the industry and the overall
research aim.
• To conduct performance and accuracy tests to
benchmark where the solution fits within the market and
if the application has met its requirements.
• To perform functional testing to confirm the application
is robust and reliable.
The structure of this paper is as follows; Section 2
includes the design of this research and its
methodological steps explanation. In Section 3, detailed
information of the developed applicationis given. In the
following section, we explained the implementation
phases and details of testing. In Section 5, the research is
concluded. The evaluation of this work is also given in
this section.

2. Research Design and Methodology
Software development projects, in general, are
cumbersome and may involve large numbers of people to
achieve end the goal. In order to be actioned efficiently,
there are frameworks that can be followed which provide
an outline of the entire project cycle from initial planning
to execution [5–7]. However not all projects are alike,
they vary in size, complexity, and time frames, meaning
one framework can not suit all. One of the most mature
software methodologies that are still widely used is
Waterfall [16]. This framework is very rigid and
sequential, following a process of requirements
gathering, design, development, validation, and support.
The waterfall is used extensively for its simple structure
that scales well and has resulted in many successfully
delivered projects. However, as technology advances,
projects are changing and, in many situations, requiring
a different style of framework. One of the biggest
transitions in modern development is the need for
fluidity in requirements and the ability to quickly adapt
to changing environments [1,8]. This is something that
Waterfall does not inherently support, which has led to

numerous variations of the framework that make it more
iterative to combat its inelasticity[4]. Although there is a
variety of Waterfall implementations that aim to provide
longevity in a world of ever-adapting technology and
projects, new frameworks built for these scenarios are
becoming more commonly used; with one of the major
players being Agile. This framework at its core aims to be
iterative and designed for a highly adaptive environment.
The Agile methodology outlines some key principles that
a subset of frameworks abide by; one of the most popular
being Scrum [2,11]. However, the flexibility of Agile
poses some challenges and confusion around what
makes a project comply with the principles and how to
fully define if one is implementing the framework
correctly. This is explored by Koubaa et al. [3,9,10] who
concluded that less than 15% of projects in their study of
556 data points completely comply with the full Agile
principles. However, they did find a trend in the adoption
of agility and how this has a positive correlation with
project success. Agile is not perfect for all scenarios but,
when implemented correctly, has been observed to
enhance the likelihood of achieving the goals of a
software development project that is operating with
modern technologies and requirements. We used Agile
because it is better suited for small and fast-paced
projects.
2.1. Data Collection
There are three main sections of data collection to
achieve the research aims that require a range of data
analysis methods:
• Performance metrics for the solution are collected to
evaluate the efficiency of the system under various
scenarios such as how the application throughput
changes with the size of candidates in the database. This
data has a correlation analysis and it is an interval type.
• Accuracy metrics for the solution are collected to
evaluate the precision of the system. Multiple runs of
accuracy tests are used on a large set of data to get a
range of metrics which are then analyzed to extract the
average false match percentage.
• Requirements gathering utilizes surveys to construct
and validate the requirements of the software.
2.2. Requirements Gathering
Through the research conducted within the literature re-
view, a base set of requirements has been derived to
address current gaps within the biometric market.
However, further requirements gathering is conducted
to gain an understand- ing of priority and additional
requirements. This action aims to validate and prioritize

the requirements to align them with the needs of a real-world

company. Therefore, to achieve this, a survey is issued to
a small subset of employees within the company’s bio-
metric division. The employees in question are targeted
as subject matter experts (SMEs) and are able to provide
an in-depth understanding of what is required from a
facial matcher. Candidates for the survey are identified
through the Chief Technology Officer of the company’s
bio-metric offering. This approach is taken as it provides
an efficient way of sending a survey to the required

Gulsum Akkuzu Kaya
High Performance Facial Recognition Matcher

45

individuals. Figure 1 illustrates the functional
requirements and detailed explanations of each

requirement. The non-functional requirements of this
research are presented in Figure 2.

Figure 1. An Example of Functional Requirements

Figure 2. An Example of Non-Functional Requirements

3. Application Design
As per the requirements, there is a variety of
functionality required in order to produce a useful
matcher product. Figure 1 illustrates the various
functions of the system.

Figure 3. Use Case Diagram for facial matcher design

• Enrol: The enroll functionality provides the ability to
add a new candidate into the system. It takes bio- metric
information (an image of a face) and biographic data
(candidate information such as name, age etc. . .) and
uses this data to store the candidate in the solution. The
storing of both biometric and biographic data aims to
satisfy requirement FR03. One piece of biographic data is
the collection a candidate is being stored in and is used
by the solution to segregate candidates in order to
comply with requirement FR02. The biometric data
stored should be the feature vector of the candidates’
faces as this is the minimum requirement for matching.

Gulsum Akkuzu Kaya
High Performance Facial Recognition Matcher

46

Once a candidate is enrolled, their data is persisted
indefinitely until a user specifically requests for them to
be deleted through their unique identifier (This satisfies
requirement FR01). Therefore, they can be searched
against using the match functionality while they exist in
the solution. Finally, this functionality is expected to
occur performantly as per requirement FR04. This use
case utilizes an external database.
• Match: The matching functionality provides the ability
for a user to take a face image and use it to search against
the solution and its enrolled candidates to look for the
closest possible match. If a close enough match is found
the matcher returns all the information it has on the
candidate. This functionality complies with requirement
FR05. The matching process is completed performantly
to comply with requirement FR06. This use case utilizes
an external database that has been populated using the
enroll functionality disclosed above.
• Retrieve: The retrieve functionality provides a user the
ability to get all the information of a previously enrolled
candidate, including both biometric and biographic data,
using their unique identifier. This use case satisfies
requirement FR07 and has an external dependency on
the solutions database where candidates are stored.
• Analyze:The analyze functionality provides a user the
ability to understand their biographic data and how it
gets interpreted by the solution. It should allow the
ability to count the number of faces it finds in images, an
image with boxes around all identified faces, and
segmented images of each face from an image. All this
functionality aims to satisfy requirements: FR09, FR10
FR11. This use case is the only one without any other
external dependencies as it does not interact with the
database and is a purely stateless flow.

3.1. High Level Architecture
In order to meet the requirements, the proposed
architecture is depicted in Figure 4a and Figure 4b. This
illustration comprises three key components: a load
balance, instances of the matcher service, and finally a
database. A proposed cloud variation of this can be seen
in Figure 5. The load balancer component in Figure 4 is
used to allow the matcher services to scale horizontally.
It does this by routing incoming traf- fic to a pool of
registered servers. The figure shows that HTTPS traffic
will be transmitted into the load balancer but forwarded
on as HTTP, this is important as SSL is crucial for securing
the solutions’ communication with the outside world.
However, once a connection has come into the private
network (either on-premises or in a VPC) continuing
with SSL would add additional CPU overhead. Keeping
the encryption on a dedicated server such as an F5 load
balancer reduces this burden and therefore, increases
the performance of the system. This is crucial to meet
requirements. To do so, the key design decision is the
matcher needs to accept HTTP traffic and should not be
expected to deal with encryption. A load balancer is
utilized to do this.

Figure 4a. Use Case Diagram for facial matcher design

Figure 4b. Use Case Diagram for facial matcher design

3.2. Request and Response Models
Each transaction shouldn’t have an expected request and
response body, due to the underlying interface being
REST, these objects are in JSON format as this is the
standard. The JSON formats are explored more in the
swagger definition of the application, however, to
provide context to the sequences of transactions in the
interface section Figure 5 illustrates the class diagram for
the internal application models for all accepted and
return objects. This shows what the application expects
for each type of transaction and what it theoretically
responds with.

Figure 5. Class Diagram of Request and Response
Objects

3.3. Enroll Sequence Flow, Match Sequence Flow,
Delete Sequence Flow, Retrieve Sequence Flow,
and Analyse Sequence Flow

The enroll flow is given in Figure 6 and is initialized with
a post request to the /enroll resource. The first step is to
parse the request and validate it to be valid. If a request
is invalid, it immediately closes the connection with a

Gulsum Akkuzu Kaya
High Performance Facial Recognition Matcher

47

status of 404. Once a request is considered valid, the
application takes the parsed image and runs a facial
detection algorithm on it. In that case, the recommended
trained model from the go-face library is
used(𝑚𝑚𝑜𝑑ℎ𝑢𝑚𝑎𝑛 𝑓𝑎𝑐𝑒𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟.𝑑𝑎𝑡). Once facial
detection has been completed, the number of faces is
known, if this value does not equal exactly one face in an
image the connection is closed with a 404 status code as
only one face can be accepted per request due to
biographic data being required for a candidate. Now it is
concluded there is a valid request in the system with a
single candidate’s biometrics, the 128-vector embedding
is calculated using the 𝑑𝑙𝑖𝑏 𝑓𝑎𝑐𝑒 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑛𝑒𝑡
𝑚𝑜𝑑𝑒𝑙𝑣1 trained model. Due to the detection step, there
should never be an error during the templating process
(although the application should gracefully handle any
unexpected error with a status 500). The generated
template is then stored in the database, within a specific
collection defined in the request, as well as all other
biographic information of the candidate. If the database
interaction fails, a 500 status will be returned. If the write
was successful, the application completes a JSON
response and returns it with status 200.

The match flow can be seen in Figure 7 and illustrates the
process of doing a match transaction. Similarly, to the
enroll flow, the first steps in handling the request are to
parse it and verify it – if this fails a 404 response is
returned to the caller. Once the request is parsed, it then
goes through the same process as the enroll – any faces
are detected with a 404 error being returned if there are
too many of few faces followed by the generation of the
biometric embedding. Now an embedding is calculated
for the input candidate, the logic flow deviates from
enrolling with the next step being to retrieve all
candidate biometrics from a specific collection (stored in
the database). If an error occurs during the retrieve
process a 500 error is returned. Once the embedding of
the input candidate is known as well as all the previously
enrolled candidates for a given collection being searched,
a classification machine learning model is run. This
model uses clustering to find the closest match to the
input candidate. The enrolled candidate with the highest
similarity is returned only if it is within a given threshold
of similarity (this should be configurable in the
application settings). If the classification model fails, a
500 is returned to the caller with a message – this
message should give context as to why a match could not
be returned such as “no candidates within threshold” or
“internal error, unable to classify”. If successful, a
response is created using the matched candidates’ stored
biometric and biographic data which are returned to the
caller.

Figure 6. Enrol Sequence Diagram

Figure 7. Match Sequence Diagram

The delete sequence diagram is shown in Figure 8 which
illustrates the logic flow for this transaction. Delete is a
straightforward request using the REST DELETE type
and Figure 7: Match Sequence Diagram it has no
interaction with underlying machine learning models.
Once a request is received, the unique identifier of an
enrolled candidate is passed in as a URL parameter. The
matcher first extracts this ID – if it is not present or in the
right format a 404 error is returned. Once the ID is
known, a delete request is sent to the database for that
candidate. If the delete fails, for example, if the candidate
does not exist or if the database connection is lost – a 500
error is returned with a message. If a successful delete is

Gulsum Akkuzu Kaya
High Performance Facial Recognition Matcher

48

returned from the database a status of 200 is returned to
the user with no response body.

Figure 8. Delete Sequence Diagram

 Figure 9. Retrieve Sequence Diagram

The retrieve sequence diagram is seen in Figure and is
very similar to that of a delete. However, for this
transaction rather than using the URL passed ID to delete
from the database, it gets the candidate and returns all
data stored for them. Here a 200 is returned with a
response body when compared to a deleted stand-alone
status code. The data returned is explored in the model’s
section. The analyze sequence diagram is illustrated in
Figure 10 and is one of the most complex flows due to the
many operations it performs. However, this type of
transaction does not have any interaction with the
database and is purely within the matcher. The first stage
of the flow is the same as enroll and match – the request
is received, parsed, and validated with 404 being

returned if any of this fails. The next step is like the
aforementioned transactions in terms of the detection
process; however, it does not care how many faces are
found (only unexpected errors are handled here with a
500- status code). For every face found, a template will
be generated for each as well as other information such
as location in the image. Using the location in the image
which represents the coordinates of a rectangle, each
face can be individually cropped out as well as have
boxes drawn on the original image. This results in three
new pieces of information; the number of faces in the
input image, individually cropped images per face, and
bounding boxes drawn on the original image for each
face. This new data is bundled up into a response object
and returned to the user with a 200-status code.

Figure 10: Analyze Sequence Diagram

4. Implementation and Testing
4.1. Implementation
Although not a core package of the matcher, many other
internal modules have a dependency on the
configuration module. This module encapsulates all the
configuration options and populates them on
initialization with environment variables – if these
variables are not present then default values are
automatically populated. All available options are given
in Figure 11 and can be configured by any administrator
deploying the facial matcher solution. A depiction of how
these variables sit within the internal module is
presented with a class diagram in Figure 12. The
Recogniser package encapsulates all the machine
learning logic to perform facial detection, embedding
creation, and matching. Figure 13 illustrates the class
diagram of this component. As shown, it is initialized
with a dependency on a populated con-fig structure and
exposes five functions.

Gulsum Akkuzu Kaya
High Performance Facial Recognition Matcher

49

Figure 11: All available configuration options

 Figure 12.
Retrieve Sequence
Diagram

Figure 13. Recogniser Package

Class Diagram

Figure 14. Handler Class Diagram

The handler package contains all the HTTP logic. The
package can be illustrated in Figure 14 with a class
diagram. As well as many of the internal packages of the
matcher it has a dependency on the con-fig, however, it
also needs to be initialized with the recognizer and
database structures. Private functions hold the business
logic of the operations whereas public functions are
those that are bound to the server and handle all HTTP
logic. The Database package contains all the logic
regarding the database. The package has a dependency
on the application configuration. The class diagram for
this package can be seen in Figure 15. As shown it has an
interface, this is to allow for dependency injection and
standalone unit tests. However, it also allows for another
database package to be created and, if it complies with
the interface, all other areas of the application can use it
without change. For example, a MySQL package could be

created as well as MongoDB – the application could then
easily support both types of databases.

Figure 15. Database Package Class Diagram

4.2. Testing

The application is evaluated with functional testing,
accuracy and performance. The validation of image
objects is a difficult problem, however, Postman does
atomically check: the number of faces identified is seven,
the number of segmented images returned is also seven
and the boxed base64 object isn’t empty. The application
is evaluated with functional testing, accuracy and
performance. The validation of image objects is a difficult
problem, however, Postman does atomically check: the
number of faces identified is seven, the number of
segmented images returned is also seven and the boxed
base64 object isn’t empty. The test illustrated in Figure
16 shows how a test is written in postman and that all of
them passed – allowing simple automation of testing.

Figure 16: Screenshot of Analyse test in Postman

4.3. Performance and Accuracy Testing

Performance and accuracy testing of a biometric solution
is a challenging and complex problem. This is made
increasingly more challenging when these kinds of tests
need to be run consistently through the application’s life
cycle to test how changes affect both its performance and
accuracy. In order to do this effectively, it needs to be
simple to perform a consistent test with very little
configuration and developer effort. To overcome this

Gulsum Akkuzu Kaya
High Performance Facial Recognition Matcher

50

challenge a specific tool has been designed to accompany
the matcher solution and allow developers to test
changes while also giving the potential for users to check
how it performs with their hardware and data
requirements. This tool has been labeled as FBAP (Facial
Bio-metric Accuracy and Performance testing). Figure
17.a shows the basic flow of logic for FBAP and how it
internally works. FBAP is a CLI application that was
developed using the swagger definition of the facial
matcher- using this a GO client can be generated. Using
the client, once images are read from disk, they can be
converted to base64 using one of the matcher helper
endpoints. These images get piped into an in-memory
queue, along with some file data. Multiple threads then
pull from the queue to perform simultaneous enrolls,
using the file name as the candidate ID in the request. The
time taken for the enroll to complete is recorded and
published to another internal queue for later processing
along with the enrolled candidate’s information. Once all
the enrolls have been performed, the matching process is
triggered – pulling of the same candidate queue as enroll
a match is done and the returned candidate and response
time is recorded and sent to another queue. Finally, the
result stage pulls in all the enroll and match results and
generates a PDF output with a row being a candidate
read from disk with an associated enroll and match
response time. As well as response time (measuring
performance) the match result is compared to the input
candidate; if they are not equal then the match has failed,
and this is also shown in the CSV output. Figure 17.b
presents an example of the

Figure 17.a : A high-level overview of FBAP and its

internal logic

Figure 17.b : An example of FBAP results CSV output

When performing testing using FBAP for this research, a
subset of the LFW dataset will be used; around 6000
candidates in order to comply with requirement FR06
with 1000 extra candidates to assess a worst-case
scenario. The features of the machine used for this study
are; Intel(R) Core (TM) i7- 10750H CPU @ 2.60GHz,2592
MHz, 6 Core(s), 12 Logical Processor(s), RAM 16.0 GB, OS
Microsoft Windows 10 Home, DELL XPS 15 9500, X64.
When analyzing the enroll results the following findings
are derived from FBAP output:

● Average Response Time: 69.83ms (rounded to
two decimal places)

● Transactions Per Second: 28.64 (rounded to two
decimal places)

● Error Rate: 0

● Slowest Transaction: 84ms

● Quickest Transaction: 55ms
As illustrated in Figure 18 the spread of response times
for enrolling transactions was consistent with minimal
variation. There were also no apparent trends seen – this
is reassuring as the response time did not seem to
increase in conjunction with the number of candidates
inserted into the system. Therefore, an assumption can
be made that the response times for enrolls should be
consistent no matter the size of the solution.

Figure 18: The spread of transaction times for enroll

requests from the Test

When analyzing the Match results the following findings
can be derived from FBAP output:

● Average Response Time: 236.45ms (rounded to
two decimal places)

● Transactions Per Second: 8.46 (rounded to two
decimal places)

● Error Rate: 0% Accuracy: 100% (no false
matches were made)

● Slowest Transaction: 371ms

● Quickest Transaction: 212ms
Figure 19 demonstrates the spread of response times for
the match transaction type. Although the data is mostly
consistent there are more spikes in transaction times
compared to enrolments with slightly more spread.
When investigating the CPU profiles, it was maxed out
during the long running transactions; indicating a CPU
bottleneck that correlated to high usage on MongoDB.
Therefore, the database appears to be the cause of the

Gulsum Akkuzu Kaya
High Performance Facial Recognition Matcher

51

transaction spikes. This investigation also raises
concerns about the scalability of the solutions as the
database usage correlates to the number of candidates
stored. Therefore, the bottleneck grows with the size of
the solution, and match response times will increase
accordingly. This was also seen when a smaller test of
1000 candidates was performed giving an average enroll
time of 70ms (consistent with the larger dataset) but
match times were significantly less with an average of
73.17ms. The results of this reduced match test are
shown in Figure 20. After running multiple performance
tests, the database had 11,616 candidates in the
database. This amounted to a total collection size of
17.7MB of data.

Figure 19: The spread of transaction times for match

requests from Test

Figure 20: The spread of transaction times for a reduced

match Test
4.4. Test Summary

The application held up to all the requirements it was
developed to accomplish. With a range of functional tests
to cover the basis of these requirements, a 100% success
rate was observed with no defects coming to light. The
test pack within postman provides a robust
implementation that can be automated into a CI/CD
pipeline going forward, however, the general coverage of
testing could be improved with multiple tests validating
each requirement with more focus on edge cases. For
example, testing every biographic field individually to
ensure it doesn’t produce a bug. Thanks to the
development of FBAP, performance and accuracy testing
is now an easy task if the data is available. Using the tool,
performance was easily measured and showed great
promise–meeting all requirements derived by SMEs
while maintaining very high accuracy. This testing
showed a 100% accuracy for direct matches – enrolling

and matching against identical biometric information.
However, the tool needs to be updated to provide paired
biometrics to calculate the accuracy of matches using a
variety of biometrics for a single candidate. This initial
test phase of a prototype application shows incredible
promise and a working solution against the
requirements.

5. Conclusion

We aimed to design, develop and evaluate a solution that
provides a high-performant, scalable, and accurate facial
matcher that addresses a current gap within the
biometric market. The solution needed to comply with
requirements derived from SMEs within the industry and
against organization’s internal business needs.
Requirements gathering was conducted through an
anonymous survey in order to not just understand the
requirements of SMEs but also their priority. Through an
evaluation of the current literature for facial matching,
the concepts of FaceNet were explored where a
convolutional neural network developed by Google in
2015 generates a 128 vector face embedding used for
matching and is at the cutting edge of facial recognition
technologies [3]. Combining the facial recognition
techniques of FaceNet with the modern database of
MongoDB and the performance of a compiled language
like GO has resulted in highly performant and scalable
solution. In order to evaluate the performance of the
software, a custom testing application was developed to
run various load scenarios with multiple concurrent
transactions simulating multiple external users. Before
running the performance testing, however, a fully
automated functional testing suite was used to validate if
the application met all the defined requirements – the
results of which were all successful with all functional
requirements receiving a good level of test coverage.
There was a minimum of one test per functional
requirement. Although no apparent bugs were seen, the
overall test coverage could have been improved with
more tests around edge and error cases. The results of
the performance testing were also very promising, with
all the data complying with the requirements and
demonstrating very high throughput. In summary, the
enrolled transactions consistently averaged response
times of 70ms and match transactions getting 236ms.
However, when varying the number of background
candidates in the solution, enroll transactions remained
consistent at 70ms whereas match response times
correlated with the number of candidates within the
system. This is to be expected as the more candidates
there are the more comparisons need to be made as well
as the higher volumes of data being transported, but this
is one area that can be optimized going forward.
Accuracy on the other hand was 100% with no false
matches being returned for direct biometric matches;
this is particularly impressive when considering the
dataset being used was LFW which is known for being
one of the most challenging for facial recognition [12].

Gulsum Akkuzu Kaya
High Performance Facial Recognition Matcher

52

As seen in the Performance and Accuracy Testing
performant, show an section, the rate of match
transactions, although increase in processing time in
correlation to the number of candidates in the database.
One way of improving the degradation of performance is
to implement a cache into the architecture [13] to reduce
the strain on the database and access larger amounts of
data quicker. This could be through an external
application such as Redis which is a very popular caching
system that many solutions utilise to increase
performance [14]. A more convoluted approach could be
to design a new algorithm for sorting 128 categorising
them –- vectors and reducing the number of similar
embeddings to match against for a given candidate. One
section of functionality SME’s showed considerable
interest was in the analysis of images using various
machine learning techniques to perform functions such
as quality assessment, tampering analysi s and soft
biometric detection like age. These kind of analysis are
possible as outlined by Galbally et al. [15], however, they
do add considerable complexity.

In conclusion, the aims and objectives devised for this
research have been met with the software solution. It
shows incredible promise for being the foundation of an
enterprise solution in the biometric industry and could
be part of the organization’s offering going forwards. It is
a prototype and there are many areas that can be
improved as well as further levels of functional and
performance testing required to consider the solution
enterprise-ready.

6. References

[1] Vijayasarathy, L.R., Butler, C.W., “Choice of
software development methodologies”. Colorado
State University. 2016.

[2] Hoda, R., Salleh, N., Grundy, J.,. “The rise and
evolution of agile software development”. IEEE
software 35, 58–6, 2018.

[3] Almeida, F., Simões, J., . “Moving from waterfall to
agile: Perspectives from it portuguese
companies”. International Journal of Service
Science Management, Engineering, and Technology
(IJSSMET) 10, 30–43, 2019.

[4] Hill, K. “The secretive company that might end
privacy as we know it”. In Ethics of Data and
Analytics (pp. 170-177), 2020.

[5] Kortli, Y., Jridi, M., Al Falou, A., and Atri, M.. “Face
recognition systems: A survey”. Sensors, 20(2),
342, 2020.

[6] Lim, K.Y.H., Zheng, P., Chen, C.H., . “A state-of-the-
art survey of digital twin: techniques, engineering
product lifecycle management and business
innovation perspectives”. Journal of Intelligent
Manufacturing 31, 1313–1337, 2020.

[7] Wang, Z., Wang, G., Huang, B., Xiong, Z., Hong, Q.,
Wu, H., ... and Liang, J. “Masked face recognition
dataset and application”. arXiv preprint
arXiv:2003.09093, 2020.

[8] Koubaa, A., Ammar, A., Kanhouch, A., AlHabashi, Y.,

“Cloud versus edge deployment strategies of real-
time face recognition inference.” IEEE
Transactions on Network Science and Engineering
9, 143–160, 2021.

[9] Wang, M., and Deng, W.. “Deep face recognition: A
survey.” Neurocomputing, 429, 215-244, 2021.

[10] Smith, M., and Miller, S.. “The ethical application of
biometric facial recognition technology”. Ai and
Society, 37(1), 167-175, 2022.

[11] Almeida, D., Shmarko, K., and Lomas, E. . “The
ethics of facial recognition technologies,
surveillance, and accountability in an age of
artificial intelligence: a comparative analysis of
US, EU, and UK regulatory frameworks”. AI and
Ethics, 2(3), 377-387, 2022.

[12] Zhang, N., and Deng, W. . Fine-grained LFW
database. In 2016 International Conference on
Biometrics (ICB) (pp. 1-6). IEEE, June, 2016.

[13] Rao, A. S., and Ganguly, P. Implementation of
Efficient Cache Architecture for Performance
Improvement in Communication based Systems.
In 2017 International Conference on Current
Trends in Computer, Electrical, Electronics and
Communication (CTCEEC) (pp. 1192-1195). IEEE,
September, 2017.

[14] Li, D., Dong, M., Yuan, Y., Chen, J., Ota, K., and Tang,
Y.. SEER-MCache: A prefetchable memory object
caching system for IoT real-time data
processing. IEEE Internet of Things Journal, 5(5),
3648-3660, 2018.

[15] GALLALLY, J., Marcel, S., and Fiérrez, J. Image
quality assessment for fake biometric detection:
application to iris, fingerprint and face recognition
[J]. IEEE Transactions on Image Processing, 23(2),
710-724, 2014.

[16] Budiarti, R. P. N., FATHIN, A. N., and Sulistiyani, E.
Website-Based Student Achievement Book Using
the Waterfall Method. IJRSM: International
Journal of Scientific Research and
Management, 10(3), 797-808, 2022.

