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ABSTRACT 
Deep learning is a powerful technique that has been applied to stroke detection using medical imaging. Stroke 

is a medical condition that occurs when the blood supply to the brain is interrupted, which can cause brain 
damage and other serious complications. Stroke detection is important to minimize damage and improve patient 

outcomes. One of the most common imaging modalities for stroke detection is CT (Computed Tomography). 

CT can provide detailed images of the brain and can be used to identify the presence and location of a stroke. 
Deep learning models, particularly convolutional neural networks (CNNs), have shown promise for stroke 

detection using CT images. These models can learn to automatically identify patterns in the images that are 

indicative of a stroke, such as the presence of an infarct or hemorrhage. Some examples of deep learning models 
used for stroke detection in CT images are U-Net, which is commonly used for medical image segmentation 

tasks, and CNNs, which have been trained to classify brain CT images into normal or abnormal. The purpose 

of this study is to identify the type of stroke from brain CT images taken without the administration of a contrast 
agent, i.e., occlusive (ischemic) or hemorrhagic (hemorrhagic). Stroke images were collected, and a dataset was 

constructed with medical specialists. Deep learning classification models were evaluated with hyperparameter 
optimization techniques. And the result is segmented with an improved Unet model to visualize the stroke in 

CT images. Classification models were compared and VGG16 achieved %94 success. Unet model achieved 

%60 IOU and detected the ischemia and hemorrhage differences. 
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1. Introduction 

Stroke detection is a critical area of research in medical artificial intelligence. In recent studies, deep learning algorithms have 

been explored to predict hematoma expansion from non-contrast computed tomography (NCCT) scans through external 

validation [1]. One novel CNN, SkullNetV1, uses CNN for feature extraction and a lazy learning approach to classify five 

types of skull fractures from brain CT images [2]. Another study formulated intracranial hemorrhage (ICH) detection as a 

problem of multiple instance learning (MIL), which enables training with only scan-level annotations [3]. Deep learning-

based automated analysis of CT scan slices has been proposed for detecting various levels of brain hemorrhages [4]. A 

combination of deep learning and machine learning classification algorithms has been used to establish an explainable 

COVID-19 detection system using CT scans and chest X-rays [5]. The proposed research focuses on several deep transfers 

learning-based CNN approaches for detecting COVID-19 in chest CT images, using foundation models such as VGG16, 

VGG19, Densenet121, InceptionV3, Xception, and Resnet50 [7]. A method for detecting pulmonary nodules based on 

multiscale fusion has been shown to have a higher detection rate for small nodules and improve the classification performance 

of true and false-positive nodules [8,9], with competitive performance in terms of sensitivity compared to state-of-the-art 

methods [10]. 

http://saucis.sakarya.edu.tr/
https://orcid.org/0000-0002-3879-557X
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There are also studies proposing deep learning-based methods for CT [11,12], proposing fully automated lesion detection 

and segmentation systems on whole-body PET/CT scans [13,14], and developing effective segmentation techniques based 

on deep learning algorithms for optimal identification of regions of interest and segmentation [15-17]. Other influential work 

includes developing a deep learning model capable of segmenting IVCF from CT scan slices along the axial plane [18] and 

showing a deep learning model that segments acute ischemic stroke on NCCT at a level comparable to neuroradiologists 

[19]. Medical images differ from natural images in many ways, and a domain expert should be consulted to assess the model's 

performance. Detecting stroke in CT images is a challenging task due to its nature. It is important to verify the outcomes of 

deep learning models on different datasets and with different preprocessing methods, as the models' performance may vary 

depending on these factors. 

The purpose of this study is to identify the type of stroke from brain CT images taken without the administration of a contrast 

agent, i.e., occlusive (ischemic) or hemorrhagic (hemorrhagic). A deep learning model was used to visualize the important 

area (ischemia and/or bleeding site) on the CT image, and classification algorithms were used. In addition, a study was carried 

out on determining the stroke region with the segmentation structure.  The most successful classification model accuracy was 

94 % and the improved UNET segmentation model IOU metric accuracy was 60 %. The paper is organized as follows, 

Materials and Methods, Transfer learning, Data Augmentation, Segmentation Mode, Results and Discussion and Conclusion. 

2. Materials and Methods 

The quantity of the training dataset and the variability of the data are key factors in the network's success. For deep learning 

models to function well, large datasets are required. Data augmentation and transfer learning techniques were applied. The 

data was used from Kaggle (Brain MRI dataset) and collected from the hospitals and labeled with the medical professionals. 

Due to its structure, learning transfer removes the requirement for additional data and improves model performance by cutting 

down on learning time. As pre-trained networks already modify weights by learning from many data, they are known to need 

less input than networks trained from the start. 

To create a project on stroke detection using deep learning classification and segmentation models, several steps need to be 

taken: 

● Assembling a database of medical CT scans including unaffected and photos showing the effects of a stroke. Having 

a varied dataset that encompasses various stroke types and imaging circumstances is crucial. 

● Images need to be resized or normalized, and the dataset might be divided into training, validation, and test sets.  

● Training the model on a custom dataset, the training needs to be adjusted to the model's parameters to accurately 

classify and segment the images. 

● Evaluating the model's performance using the validation and test sets. To observe how well the model can classify 

and segment new images that have not been seen before. 

● For the model to correctly categorize and segment the images, the parameters need to be adjusted using the training 

set (Hyperparameter optimization). 

2.1 Transfer learning 

Transfer learning is a technique in machine learning that allows a model trained on one task to be used for a different but 

related task. In the context of medical imaging, transfer learning can be used to apply a model trained on a large dataset of 

general images to a smaller dataset of medical images. 

There are two main ways to use transfer learning for medical imaging: 

● Feature extraction: In this approach, a pre-trained model extracts features from the medical images. The extracted 

features are then used as input to a separate classifier to recognize specific medical conditions. This allows the model 

to take advantage of the pre-trained model's ability to detect low-level features, while still allowing the classifier to 

learn the specific characteristics of the medical images. 

● Fine-tuning: In this approach, a pre-trained model is used as a starting point and is further trained on a medical 

imaging dataset. This allows the model to adapt to the specific characteristics of the medical images, while still taking 

advantage of the knowledge learned from the pre-trained model. 
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Transfer learning can be useful in medical imaging because it allows for the training of models with a smaller amount of 

data, which is often a limitation in the medical field. Additionally, transfer learning can also help to improve the 

performance of models by leveraging the knowledge learned from pre-trained models on large datasets. 

Even with transfer learning, it's still important to have a diverse and high-quality dataset, as well as to evaluate the model's 

performance and ensure that it generalizes well to new cases. In this study, classification models combined the feature 

extraction and fine-tuning methods. 

2.2. Data augmentation 

Furthermore, a study evaluated various methodologies, deep learning architectures, approaches, bioinformatics, specified 

function requirements, monitoring tools, artificial neural network (ANN) algorithms, data labeling, and annotation algorithms 

that control data validation, modeling, and diagnosis of different diseases using smart monitoring health informatics 

applications [23]. Another study proposed an end-to-end Generative Adversarial Network (GAN) architecture capable of 

generating high-resolution 3D images [24]. 

Additionally, an Extreme Gradient Boosting (XGBoost) algorithm was developed to classify four subtypes of brain tumors: 

normal, gliomas, meningiomas, and pituitary tumors [25]. Tumor segmentation is a specific task that requires clinicians to 

label every slice of volumetric scans for each patient, which can become impractical for training neural networks with a large 

dataset. To address this issue, a novel semi-supervised framework was proposed to train any segmentation model using only 

the presence of a tumor in the image, as well as a few annotated images [26]. The training pipeline of the dataset included 

histogram equalization and data augmentation [29,30]. Data augmentation is a machine learning technique that applies 

various transformations to existing data, such as flipping, rotation, scaling, and cropping, to artificially increase the size of 

the dataset. In medical imaging, data augmentation can be used to increase the training data available for a model, and thus 

improve its performance. 

There are several reasons why data augmentation is important in medical imaging: 

● Small datasets: Medical imaging datasets are often small in size due to the high cost and complexity of acquiring 

medical images. Data augmentation can help to overcome this limitation by artificially increasing the size of the dataset. 

● Variability: Medical images can vary greatly depending on the imaging modality, patient population, and imaging 

conditions. Data augmentation can help to increase the diversity of the dataset and make the model more robust to these 

variations. 

● Overfitting: Deep learning models can easily be overfit to the training data, resulting in poor performance on new 

data. Data augmentation can help to reduce overfitting by introducing additional variations in the training data. 

Common data augmentation techniques used in medical imaging include flipping, rotation, scaling, translation, shearing, and 

adding noise. Additionally, it is important to keep in mind that data augmentation should be applied carefully and with 

consideration of the specific characteristics of the medical images, as well as the medical condition being analyzed, to avoid 

creating unrealistic or misleading images. 

The data augmentation techniques applied should be chosen carefully and considering the specific characteristics of the 

medical images, as well as the medical condition being analyzed, to avoid creating unrealistic or misleading images. 

Additionally, it is important to consider the regulatory requirements for your project, such as HIPAA compliance, as well as 

ethical considerations. 

2.3. Classification model 

Using pre-trained models such as VGG16, InceptionV3, DenseNet, and Xception for medical image classification is a 

common approach in deep learning. These models have already been trained on large image datasets and can be fine-tuned 

for a specific medical imaging task. Here is a general outline of the process: 

● First, a dataset of medical images labeled with the appropriate class labels. 

● Fully connected layers need to be removed, which is used for the original image classification task the model was 

trained on. 

● Then, a fully connected layer with the number of neurons corresponding to the number of classes was added for our 

study. 

● Fine-tune the model by training on a medical image dataset. This can be done by "freezing" the weights of the pre-

trained layers and only training the added fully connected layer. 

A big, diversified dataset with high-quality photos might be challenging to get in the field of medical imaging. Additionally, 

it is preferable to have a domain specialist assess the model's performance because medical images differ from natural photos 

in many ways. Therefore, the dataset was constructed with radiologists. 
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2.4. Segmentation model 

U-Net style convolutional neural networks (CNNs) are a popular choice for the segmentation of medical images. The U-Net 

architecture is designed specifically for image segmentation, with a contracting path (downsampling) and an expansive path 

(upsampling). The contracting path is based on a traditional CNN, while the expansive path uses a transposed CNN 

(deconvolution) to increase the spatial resolution of the feature maps. The two paths are connected via skip connections, 

which concatenate feature maps from the contracting path with corresponding feature maps from the expansive path. By 

leveraging information from earlier layers in the contracting path, the U-Net architecture can achieve more precise 

segmentation results. 

Improved UNet is an enhanced version of the original UNet architecture. It aims to improve the performance of the original 

UNet by incorporating some novel techniques such as: 

● Attention Mechanism 

● Multi-Scale Feature Fusion 

● Residual Connection 

● Spatial Dropout 

● Batch Normalization 

● Weighted Cross-Entropy Loss 

These changes help to improve the accuracy and stability of the model. In this study, improved UNet was trained and tested 

with parameter optimizations. 

2.5. Hyperparameter optimization 

Hyperparameter optimization is the process of finding the best set of hyperparameters for a given model and dataset. 

Hyperparameters are parameters that are not learned during the training process, but rather set before the training process 

begins. Examples of hyperparameters in the UNET model include learning rate, batch size, and number of filters in each 

layer. 

One possible approach to hyperparameter optimization is grid search, which involves evaluating the model's performance for 

all possible combinations of hyperparameters in a predefined range. Another approach is random search, which involves 

sampling hyperparameters from a distribution. In practice, it is often useful to use a combination of these methods, along 

with techniques such as early stopping and cross-validation, to find the best set of hyperparameters for a given task. Pixel-

level thresholding is a post-processing technique used in image segmentation tasks to improve the accuracy of the 

segmentation. In this technique, a threshold value is applied to the predicted probabilities to binarize the output image. The 

threshold value can be set based on the distribution of the predicted probabilities, or it can be optimized using a validation 

set. By setting an appropriate threshold value, the output image can be refined to better separate the foreground and 

background. 

In addition to the weighted cross-entropy loss function, there are several other loss functions that can be used in the UNET 

model for image segmentation tasks. These include Dice Loss: This loss function measures the overlap between the predicted 

and true segmentation masks using the Dice coefficient. Jaccard Loss: This loss function measures the similarity between the 

predicted and true segmentation masks using the Jaccard coefficient. Focal Loss: This loss function is designed to give more 

weight to hard examples in the training data by down-weighting easy examples. Lovasz Softmax Loss: This loss function is 

based on the Lovasz extension of submodular functions and is designed to optimize the intersection-over-union (IoU) metric 

directly. The choice of loss function depends on the specific task and the performance metric of interest. In practice, it is 

often useful to experiment with different loss functions and compare their performance on a validation set. Therefore, Dice 

loss was used in the dataset to compare very similar stroke types. 

Multi-scale feature fusion is a technique used to combine features from different scales to improve the accuracy of the model. 

In the UNET model, multi-scale feature fusion is typically achieved by concatenating feature maps from different layers of 

the encoder and decoder networks. This allows the model to capture both high-level and low-level features, which can be 

particularly useful in tasks where objects of different sizes need to be segmented. Mathematically, the multi-scale feature 

fusion operation can be represented as follows: 

 Fi = Concatenate (Fi -1, Gi)                        (1) 

Where Fi is the i-th feature map in the decoder network, Fi -1 is the corresponding feature map in the encoder network, and 

Gi is the i-th feature map in the corresponding decoder layer. The resulting feature map is then processed further in the 

decoder network to refine the segmentation output. 

A residual connection is a technique used to improve the training of deep neural networks by allowing gradients to flow more 
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easily through the network. In the UNET model, residual connections are typically used to connect layers in the encoder and 

decoder networks. Mathematically, a residual connection can be represented as follows: 

Fi = Gi + Conv (Fi -1)     (2) 

Where Fi is the i-th feature map, Gi is the corresponding feature map in the same layer, Conv is a convolutional layer, and 

the '+' operator denotes element-wise addition. The resulting feature map is then processed further in the decoder network to 

refine the segmentation output. 

Spatial dropout is a variant of the standard dropout technique used in deep learning to prevent overfitting. In the UNET 

model, spatial dropout is typically applied to the input feature maps to the decoder network. Mathematically, spatial dropout 

can be represented as follows: 

Fi = Dropout (Fi -1)    (3) 

Where F_i-1 is the input feature map, Dropout is the spatial dropout layer, and F_i is the resulting feature map with some of 

its elements set to zero. The resulting feature map is then processed further in the decoder network to refine the segmentation 

output. 

Batch normalization is a technique used in deep learning to normalize the inputs to each network layer. In the UNET model, 

batch normalization is typically applied to the convolutional layers in both the encoder and decoder networks. 

Mathematically, batch normalization can be represented as follows: 

Fi = BatchNorm (Conv (Fi -1))    (4) 

Where Fi-1 is the input feature map, Conv is the convolutional layer, BatchNorm is the batch normalization layer, and F_i is 

the resulting feature map with normalized values. The resulting feature map is then processed further in the decoder network 

to refine the segmentation output. 

In the UNET model, the weighted cross-entropy loss function can be used to improve the accuracy of segmentation tasks by 

giving more weight to certain classes or regions of interest in the image. 

The Dice loss is a commonly used loss function in deep learning models for image segmentation tasks. It is named after the 

Dice coefficient, which is a statistical metric used to measure the similarity between two sets. 

The Dice coefficient is defined as follows: 

Dice coefficient = (2 * |A ∩ B|) / (|A| + |B|)  (5) 

where A and B are two sets, and |A| and |B| represents the number of elements in each set. |A ∩ B| represents the number of 

common elements between A and B. 

The Dice loss is derived from the Dice coefficient and is used to measure the dissimilarity between the predicted segmentation 

mask and the ground truth segmentation mask. The Dice loss is defined as follows: 

Dice loss = 1 - (2 * |P ∩ G|) / (|P| + |G|)  (6) 

where P and G represent the predicted and ground truth segmentation masks, respectively, and |P| and |G| represent the number 

of pixels in each mask. |P ∩ G| represents the number of common pixels between the predicted and ground truth masks. 

The Dice loss ranges from 0 to 1, with a value of 0 indicating complete dissimilarity between the predicted and ground truth 

masks, and a value of 1 indicating perfect similarity. 

In the UNET model, the Dice loss is commonly used as the loss function to optimize the model during training. The UNET 

architecture is designed for image segmentation tasks. The Dice loss is well-suited for this type of problem because it 

penalizes false positives and false negatives equally, making it a more balanced loss function than other options like binary 

cross-entropy. 

During training, the UNET model updates its weights to minimize the Dice loss between the predicted and ground truth 

segmentation masks. By minimizing this loss, the model learns to produce more accurate segmentation masks, which is more 
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effective for medical imaging. 

Intersection over Union (IOU) is a common evaluation metric used in image segmentation tasks to measure the accuracy of 

the segmentation output. It measures the overlap between the predicted segmentation mask and the ground truth mask. 

In conclusion, hyperparameter optimization techniques such as grid search, random search, and Bayesian optimization is 

used to optimize hyperparameters in a UNET model for image segmentation tasks to maximize IOU metrics. These 

techniques involve exhaustively searching through all possible combinations, randomly sampling from a predefined 

distribution, or using a probabilistic model to predict performance, respectively. 

3. Results and Discussion 

In this study, VGG16, InceptionV3, DenseNet, Xception and InceptionResnetV2 were compared with data augmentation, 

fine-tuning and transfer learning methods. Also, the hyperparameter-optimized UNet model was trained to segment the stroke 

type and region from the CT scan. The Dice loss optimization, multiscale feature optimization, batch normalization, learning 

rate optimization, Residual Connection, and Spatial Dropout Loss were used in our study. 

 

 
Figure 1 Labeled data example of CT image. 

 

 
Figure 2 Rotate, contrast, brightness, mirror, and ROI example of data augmentation. 

 

Data augmentation was performed to evaluate the performance of the CT scan. The critical point of the augmentation is that 

every augmentation type needs to have a reason to add to the dataset. For example, in CT the images can rotate, contrast can 

change, brightness can change, and the images can be mirrored depending on the application. Therefore, in the study, these 

parameters were made accordingly. Table 1 shows the augmentation of the data and Table 2 shows split size of the model 

data for training and test purposes. 

 

Table 1 Dataset size after augmentation, 5-fold of original dataset 

 

Class Dataset size 

Positive 8892 

Negative 8854 
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Table 2 Training, validation, and test data size for comparison 

Model Data Data Size 

Training 12422 

Test 3550 

Validation 1774 

 

As shown in Table 3, the preprocessed data were prepared for training as ischemia and hemorrhage for the segmentation 

model. Additionally, data augmentation procedures are shown in Figure 11.  

 

Table 3 The segmentation model data size for ischemia and hemorrhage 

Class Dataset size 

Ischemia 6780 

Hemorrhage 6558 

 

Table 4 Classification model training results for stroke detection 

Model Accuracy Val_acc Loss Val_Loss 

VGG16 0.9189 0.9336 0.193 0.227 

Inceptionv3 0.8793 0.9152 0.277 0.266 

DenseNet 0.8025 0.8863 0.454 0.399 

Xception 0.9235 0.9256 0.190 0.198 

InceptionResnetV2 0.9052 0.9262 0.211 0.234 

 

Table 5 Classification result parameters for detecting the stroke. 

Model Class Accuracy Precision-Recall F1 score 

VGG16 Negative 0.92 0.96 0.94 

Positive 0.95 0.94 0.92 

Inceptionv3 Negative 0.81 0.92 0.87 

Positive 0.97 0.83 0.85 

DenseNet Negative 0.72 0.93 0.86 

Positive 0.98 0.72 0.80 

Xception Negative 0.91 0.91 0.90 

Positive 0.96 0.90 0.92 

Inception ResnetV2 Negative 0.92 0.92 0.95 

Positive 0.94 0.88 0.94 
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Table 6 Improved UNet segmentation results for IOU metric to detect ischemia and hemorrhage. 

Model Accuracy Val_acc IOU Loss Val_Loss 

U-Net 0.8825 0.8125 0.6505 0.2125 0.2397 

 

 

 
Figure 3. Ischemia and hemorrhage data examples 

 
Figure 4 Improved Unet Segmentation results compared to the ground truth. 

 

 
 

 
Figure 5 F1, IOU and Loss graphics. 

 

 

We have demonstrated how classification models can be used to detect strokes in CT images. These models can be trained 

to recognize patterns in the images that are indicative of a stroke and can provide a more accurate and efficient way to detect 

stroke compared to traditional image analysis methods. 
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One of the benefits of using classification models for stroke detection in CT images is that they can provide a binary output, 

indicating whether a stroke is present in the image. This can help physicians quickly and easily identify patients who require 

further examination or treatment. 

Another benefit is that these models can be trained with a large dataset of CT images, which can improve their accuracy and 

generalizability. Additionally, these models can be implemented with different architectures such as CNNs, RNNs and others, 

which can further improve their performance. 

Also, in our study segmentation model was used. Segmentation models can be used to detect ischemia and hemorrhage in 

medical images. These models can segment or label specific regions of an image, such as the brain or blood vessels. They 

can be trained to identify patterns in the images that are indicative of ischemia or hemorrhage. 

One of the benefits of using segmentation models for ischemia and hemorrhage detection is that they can provide more 

specific information about the location and extent of the condition within the image. This can help physicians to make more 

accurate diagnoses and treatment decisions. Additionally, these models can be used to automatically segment the regions of 

interest in an image, which can save time and reduce the need for manual annotation. 

4. Conclusion 

Ischemia and hemorrhage detection in CT images with deep learning can be challenging for a few reasons: 

● Variability in imaging protocols: Different imaging protocols can result in variations in the appearance of ischemia 

and hemorrhage in CT images. This can make it difficult for deep learning models to learn to recognize patterns that 

are indicative of these conditions. 

● Limited annotated data: Obtaining a large dataset of annotated CT images that contain ischemia and hemorrhage 

can be difficult. This can make it challenging to train deep learning models that are able to accurately detect these 

conditions. 

● High dimensionality: CT images are high-dimensional, making it difficult for deep-learning models to learn to 

recognize patterns in the images. 

● Overlapping features: Ischemia and hemorrhage can have similar features, making it difficult for deep learning 

models to differentiate between them. 

● Class imbalance: Ischemia and hemorrhage may be rare in some datasets, making it difficult for deep learning 

models to learn to detect these conditions. 

All these challenges could be addressed by using more sophisticated models, more data, and more advanced pre-processing 

techniques. In our work classification and segmentation models were used to challenge the task of detecting the stroke type 

automatically. The IOU metric is a very difficult metric to improve given the ischemia and hemorrhage similarities on CT 

images. Therefore pixel-wise accurate models must be evaluated and given to the medical professional for usage.  
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