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ABSTRACT 
The COVID-19 pandemic, caused by a novel coronavirus, has become a global epidemic. Although the reverse 

transcription-polymerase chain reaction (RT-PCR) test is the current gold standard for detecting the virus, its 

low reliability has led to the use of CT and X-ray imaging in diagnostics. As limited vaccine availability 
necessitates rapid and accurate detection, this study applies k-means and fuzzy c-means segmentation to CT and 

X-ray images to classify COVID-19 cases as either diseased or healthy for CT scans and diseased, healthy, or 

non-COVID pneumonia for X-rays. Our research employs four open-access, widely used datasets and is 

conducted in four stages: preprocessing, segmentation, feature extraction, and classification. During feature 

extraction, we employ the Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Pattern (LBP), and 

Histogram of Oriented Gradients (HOG). In the classification process, our approach involves utilizing k-Nearest 
Neighbor (kNN), Support Vector Machines (SVM), and Extreme Learning Machines (ELM) techniques. Our 

research achieved a sensitivity rate exceeding 99%, which is higher than the 60-70% sensitivity rate of PCR 

tests. As a result, our study can serve as a decision support system that can help medical professionals make 
rapid and precise diagnoses with a high level of sensitivity. 
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1. Introduction 

COVID-19, which emerged in Wuhan, China, has rapidly spread globally, affecting a vast number of individuals. As of May 

5, 2021, over 153 million people have been afflicted by the disease, and the death toll has surpassed 3.2 million [1]. This 

pandemic has caused profound impacts on society, manifesting various physical, mental, psychological, and sociological 

repercussions. A study conducted in early 2020 on 1,210 participants from 194 cities in China revealed that 54% of 

respondents rated the psychological impact of the COVID-19 outbreak as moderate to severe, with 29% exhibiting moderate 

to severe anxiety symptoms [2]. COVID-19 can present diverse symptoms in individuals, with fever and cough being the 

most prevalent [3]. However, the disease's asymptomatic transmission necessitates early diagnosis and isolation to interrupt 

the transmission chain and contain the epidemic [4]. It is imperative to resolve COVID-19 as soon as possible due to its 

detrimental effects on humanity. 

The gold standard for diagnosing COVID-19 is the reverse transcription-polymerase chain reaction (RT-PCR) test [5], [6]. 

However, this testing method has limitations, including high false-negative rates and sensitivity rates that can sometimes be 

as low as 60% [7]. COVID-19 primarily affects the lungs and can be detected through radiological imaging, such as X-rays 

and computed tomography (CT) scans [8], [9]. Although effective, manual evaluation of these images can be time-consuming, 

particularly for a widespread disease like COVID-19. To overcome this issue, a computer-aided diagnostic method has been 
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developed to predict COVID-19 from radiological images, using distinct patterns such as ground-glass opacity and embolism 

showing linear consolidation [10]. COVID-19 and pneumonia are diseases that have similar symptoms that affect the lungs 

and cause respiratory problems. Therefore, it is a very difficult process to distinguish between COVID-19 and non-COVID-

19 Pneumonia. As a result of all these diagnostic and diagnostic difficulties and findings, our study has been carried out with 

the idea that a fast and effective automatic diagnosis system can be established. This study builds upon the knowledge and 

expertise obtained from previous studies [11–13], but it differs in several ways. First, it compares different clustering methods 

to generate parameters for various classification methods. Second, it uses three different feature selection methods and models 

with both CT and X-ray images, as well as four different datasets. Another distinguishing feature of this study from [11–13] 

is the analysis of combined data sets from different image sources, where both healthy and diseased images were merged and 

classified. Efforts were made to improve the performance of the system in this context. 

The fundamental objective of this research is to create an automated system based on segmentation and machine learning 

techniques, capable of identifying COVID-19 disease on CT and X-ray images. We consolidated four datasets from different 

COVID-19 patient studies into one study. We performed binary classification to distinguish COVID-19 cases from non-

COVID-19 cases, and COVID-19 positive cases from non-COVID-19 pneumonia cases. In the three-class classification 

process, we classified cases as COVID-19, non-COVID-induced pneumonia, and non-COVID-19. The data sets used were 

publicly accessible and were chosen for their comprehensiveness. Our study outperforms previous studies in terms of 

accuracy, speed, and other performance metrics. Furthermore, our study's high-performance rates across different imaging 

modalities and data sets indicate its adaptability to various data sets. 

The subsequent sections of this paper are structured as follows. Section 2 comprises a comprehensive review of pertinent 

literature regarding COVID-19 diagnosis. Section 3 delineates the clinical aspects of the issue, outlines the utilized 

methodologies for detecting COVID-19 cases, and describes the datasets used in the experiment. Section 4 presents the 

experimental design and results of the COVID-19 detection. In Section 5, the outcomes of this study are analyzed and 

compared with those of other relevant studies in the literature. Finally, Section 6 concludes the article and proposes future 

research directions. 

2. Literature Review 

Numerous computer-based studies have been conducted in the literature for the detection and diagnosis of the COVID-19 

virus, utilizing either CT or X-ray images. Specifically, studies employing X-ray images for the diagnosis of COVID-19 are 

as follows: 

• Abraham et al. [14] conducted a study on the diagnosis of COVID-19 using two different X-ray datasets, where they 

employed Multi Convolutional Neural Networks (CNN) and BayesNet classifier. The initial dataset in the study was 

comprised of 453 samples positive for COVID-19 and 497 samples negative for COVID-19. The second dataset 

included 71 samples positive for COVID-19 and 7 samples negative for COVID-19. The study was able to achieve 

success rates of 91.16% and 97.44%, respectively, for these datasets. Joshi et al. utilized deep learning techniques 

for binary and four-class classification processes consisting of COVID-19, non-COVID-19, bacterial pneumonia, 

and viral pneumonia [15]. The accuracy rate for the binary classification process was determined to be 99.61%, 

whereas the multiclass classification process obtained an accuracy rate of 94.79%. 

• Aslan et al. conducted a study in which they used X-ray images for detecting COVID-19 infection and segmenting 

lung images [16]. The study used 219 COVID-19 positive, 1341 COVID-19 negative, and 1345 viral pneumonia X-

ray images, achieving an accuracy rate of 98.7%.  

• Demir suggested an LSTM model-based technique for the automatic detection of COVID-19 cases using X-ray 

images [17]. The images were subjected to Sobel gradient and watershed segmentation during the preprocessing 

stage to improve the model's performance. 

• Öztürk et al. conducted the DarkCovidNet study, which achieved a success rate of 98.08% using 1125 X-ray images, 

including 125 COVID-19 positive, 500 No Findings, and 500 Pneumonia images [18]. 

• Altan and Karasu utilized deep learning techniques in their study and achieved an accuracy rate of 99.69% using 

positive, negative, and viral pneumonia images [19]. 

• Nour et al. proposed a system that could classify X-ray images into three categories, COVID-19 positive, COVID-

19 negative, and viral pneumonia, using Deep Features and Bayesian Optimization methods [20].  

• Gupta et al. obtained a 99% recall and precision value in their study, named Integrated Stacking InstaCovNet-19, 

using a dataset consisting of 361 COVID-19-positive, 365 healthy, and 362 pneumonia images [21]. 

• Juel et al. propose a deep learning approach for recognizing Covid-19, Viral Pneumonia, Lung-Opacity, and normal 

chest from chest X-ray images using a Modified Convolutional Neural Network (M-CNN) and Bidirectional LSTM 

(BiLSTM) with a Multi-Support Vector Machine (M-SVM) classifier. The proposed method achieves an accuracy 

of 98.67% [22]. 

• Kong and Cheng propose a method for classifying chest X-ray images of COVID-19 patients using a fusion of 

DenseNet and VGG16 networks with an attention mechanism and ResNet segmentation. The proposed model 
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achieved 98% accuracy in binary and 97.3% three-category classification, making it a useful tool for clinicians and 

radiologists [23]. 

The studies utilizing CT images for the detection of COVID-19 in computer-aided studies in the literature are as follows: 

• Mishra et al. used VGG16 and ResNet50 transfer learning methods for the detection of COVID-19 in CT images. 

In addition to a binary classification of COVID-19 and non-COVID-19, the study also performed multiclass 

classification as COVID-19, normal, and pneumonia. The study achieved 99% success in binary classification with 

VGG16 and ResNet50. The multiple classification performance results for VGG16 and ResNet50 were 86.74% and 

88.52%, respectively [24]. 

• Chakraborty et al. used meta-heuristic and fuzzy segmentation methods to segment COVID-19 CT images and 

anomalies [25].  

• Ardakani et al. classified COVID-19 and non-COVID-19 CT images using 10 deep-learning models and found that 

ResNet and Xception models were the most successful ones [26]. 

• Gilanie et al. classified three different public datasets and achieved accuracy, specificity, and sensitivity values of 

96.68%, 95.65%, and 96.24%, respectively [27]. 

• Kalane et al. used a fully convolutional network method based on U-Net architecture for the automatic detection of 

COVID-19 in 1000 chest CT images and obtained an overall accuracy value of 94.10% [28]. 

• In their study, Li et al. utilized the 3D ResNet-18 model and reported a precision rate of 89.6% for detecting COVID-

19 cases. The dataset they used consisted of 305 COVID-19-positive cases, 872 Community-Acquired Pneumonia 

(CAP) cases, and 1498 non-pneumonia CT images [29].   

• Xu et al. proposed a new method for the detection of COVID-19 based on segmentation and feature extraction of 

CT images using the 3D-CNN model [30]. The accuracy rate for the binary classification process was determined 

to be 99.61%, whereas the multiclass classification process obtained an accuracy rate of 94.79%. 

• Jaiswal et al. used the DenseNet201-based deep learning method for the classification of COVID-19 CT images as 

diseased or healthy and achieved an accuracy of 97% in the study [31]. 

• Kathamuthu et al. propose a deep transfer learning-based convolution neural network model for COVID-19 

detection using computed tomography scan images for medical applications. The model aims to detect the presence 

of COVID-19 in chest CT images and has shown promising outcomes in detecting and monitoring COVID-19 

patients. The VGG16 model in the paper achieved an accuracy of 98.00% [32]. 

Numerous studies have been conducted in the literature focusing on the detection, segmentation, and classification of 

COVID-19. In addition to the aforementioned studies, Göreke et al. proposed a system that employs blood data of COVID-

19 patients to assist experts [33]. Using deep neural networks, they determined that ethnic and genetic differences have an 

impact on disease diagnosis. Based on the literature review, it can be observed that chest CT and X-ray imaging play a crucial 

role in identifying abnormalities for detecting COVID-19, and the implementation of image processing methods with machine 

learning algorithms has enabled this capability. 

3. Material and Methods 

3.1 Dataset 

In our study, we performed analysis procedures on four different publicly accessible datasets, consisting of two X-ray and 

two CT image datasets. We aimed to select datasets frequently used in the literature to ensure easy comparisons of success 

rates. Table 1 provides details on the datasets, which contain varying numbers of samples from different locations. The study 

results are expected to be suitable for different COVID-19 variants represented in the datasets from various locations. 

Notably, the X-ray datasets include three distinct classes, unlike the CT datasets, comprising healthy and diseased lung images 

and pneumonia class not caused by COVID-19. This differentiation can aid healthcare professionals in distinguishing 

between pneumonia associated with COVID-19 and pneumonia that is not related to it, which can be difficult due to the 

severity of COVID-19. Our research aims to make a valuable contribution to the process of expert diagnosis in this regard. 

Our study conducted analysis procedures on four different publicly accessible datasets, comprising two X-ray and two CT 

image datasets. We have selected datasets that are widely used in the literature to ensure that the obtained success rates can 

be easily compared. The details of the data used in the study are presented in Table 1. As shown in the table, the data sets 

consist of different numbers of samples obtained from various locations. It can be inferred that the findings of the study apply 

to different variants of COVID-19 based on the data sets from diverse locations. Moreover, the X-ray data sets consist of 

three distinct categories, which differ from the CT data sets. Whereas the CT images include healthy and diseased lung 

images, the X-ray images also incorporate the pneumonia category caused by reasons other than COVID-19. This distinction 

between COVID-19-induced pneumonia and pneumonia caused by other factors is significant, as medical professionals may 

sometimes misinterpret this due to the severity of the virus. Hence, this study can potentially help medical professionals to 

diagnose accurately. 
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Table 1. Dataset information 

 Type 
# of 

class 

# of 

cases 
Location Citation 

Dataset 1 CT 2 
(+) 349 

(-) 397 
China [34] 

Dataset 2 CT 2 
(+) 1252 

(-) 1230 
Sao Paulo, Brazil [35] 

Dataset 3 X-ray 3 

(+) 125 

(-) 500 

Non- COVID Pneumonia 500 

Mixed (Spain, Canada, 

United Kingdom, etc.) 

[18], 

[36], 

[37] 

Dataset 4 X-ray 3 

(+) 1200 

(-) 1341 

Non- COVID Pneumonia 

1345 

Italy 
[38], 

[39] 

 

In our study, four distinct data sets containing CT and X-ray images were utilized. Sample images from these data sets are 

illustrated in Figures 1 and 2. Figure 1 presents the normal and COVID-19 images of Datasets 1 and 2, which include CT 

images. The contrast between CT images of healthy individuals and those diagnosed with COVID-19 can be observed in the 

same figure. 

    

Normal Cases (Dataset 1) COVID-19 affected cases (Dataset 1) 

    
Normal Cases (Dataset 2) COVID-19 affected cases (Dataset 2) 

Figure 1. Sample CT images from Dataset 1 [34] and Dataset 2 [35] 

Datasets 3 and 4, comprising X-ray images, contain three distinct classes. Figure 2 displays representative images from these 

datasets that depict normal lung X-rays as well as those depicting COVID-19 and non-COVID-19 pneumonia. Notably, it is 

essential to develop methods to differentiate between pneumonia caused by COVID-19 and other etiologies. 

      
Normal Cases (Dataset 3) COVID-19 affected cases (Dataset 3) Non- COVID Pneumonia (Dataset 3) 

      
Normal Cases (Dataset 4) COVID-19 affected cases (Dataset 4) Non- COVID Pneumonia (Dataset 4) 

Figure 2. Sample X-ray images from Dataset 3 [18], [36], [37] and Dataset 4 [38], [39] 

3.2 Preprocessing 

The data sets utilized in our study contained images with diverse dimensions and sizes. Therefore, we first converted all 

images to the same format, namely PNG format, and subsequently transformed them into gray levels. This resulted in 2-

channel images that are less computationally expensive to process compared to 3-channel images. The sizes of the images in 
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the four different datasets varied significantly. This guarantee that the study can be used for various data sets, all images were 

resized and converted to the dimensions of 256 x 256. In the next step, we performed image sharpening by setting the Standard 

deviation of the Gaussian low pass filter value and sharpening value as ‘2’. Following that, the image intensity values were 

normalized from the range of [0, 1] to the range of [0, 0.87], which accentuates the dark regions relatively more. Our final 

preprocessing step was the application of the Wiener filter [40], which we applied after segmentation because it improved 

the success of the experimental studies in our research. The Wiener filter is expressed by the formula below: 

𝑊(𝑢, 𝑣) =  
𝐻(𝑢, 𝑣)

|𝐻(𝑢, 𝑣)|2 + 𝑆𝑛𝑥(𝑢, 𝑣)
 (1) 

In the context of image processing, the noise ratio is denoted as 𝑆𝑛𝑥(𝑢, 𝑣), while the sinc function of the target pixel is 

represented by H (u, v). A neighborhood dimension of [4 4] is set for the Wiener filter. The parameters of the processes 

applied in the preprocessing stage were determined experimentally. After conducting experimental studies, the most 

appropriate values were determined. 

 

3.3 Segmentation 

The images in the datasets used in our study have homogenous regions due to their characteristics such as gray tones and 

texture features [41]. These features make them suitable for various clustering or segmentation methods to detect desired 

regions. In our study, we used k-means (KM) and fuzzy c-means (FCM) segmentation methods to identify anomalies in CT 

and X-ray images. 

The FCM segmentation method is an unsupervised method that has been successfully applied in various fields such as medical 

imaging, target recognition, and data analysis [42]. This method does not require any class tags since its primary purpose is 

to group images based on their specific features. The objective of the algorithm is to minimize the J objective function in 

equation number 2, where X=(x1, x2, …, xN) is an image with N pixels that we want to divide into c sets. 

𝐽 = ∑ ∑ uij
m‖𝑥𝑗-𝑣𝑖‖

2
𝑐

𝑖=1

𝑁

𝑗=1

 (2) 

Here uij, denotes the membership value of the jth pixel belonging to the ith cluster, vi denotes the center point of the ith cluster, 

and m denotes the blur constantly.  

In our study, the blur constant m was chosen as the default value of 2. As can be seen from Formula 2, the FCM method 

allows a data point to be included in more than one cluster. The decisive factor here is the membership value. The higher the 

membership value a data point is connected to a cluster, the more similar it is to that cluster. The total membership value of 

pixels in different clusters is always 1. The membership values and cluster centers are calculated according to formulas 3 and 

4; 

𝑢𝑖𝑗 =
1

∑ (
‖𝑥𝑗-𝑣𝑖‖

‖𝑥𝑗-𝑣𝑘‖
)

2
(𝑚−1)⁄

c
k=1

 
(3) 

𝑣𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑥j𝑁
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑗=1

   (4) 

The algorithm starts the first iteration with randomly selected cluster centers, and for the termination process, it decides 

according to the number of changes in the membership function or cluster centers in two consecutive iterations. Or, it can be 

terminated after a certain number of iterations. 

In our study, we also employ the k-means (KM) clustering algorithm, which was developed by J.B. MacQueen in 1967, 

making it one of the oldest clustering algorithms [43]. It is a widely used non-parametric learning method. Unlike fuzzy c-

means, the KM algorithm allows each data point to belong to only one cluster [44]. The steps of the k-means algorithm are 

as follows: 

• First, the number of cluster centers is selected, and an equal number of samples are randomly chosen to be the 

centers. 

• The remaining samples are assigned to the cluster they are closest to based on their distances from the cluster centers. 

• The center points of the clusters are then recalculated based on the new sample assignments, and the distances of 

the samples to the centers are re-examined. 

• The algorithm continues to run until there is no change in the cluster assignments. 

The sum squared error (SSE) is used to evaluate the k-means clustering method. The clustering result with the lowest SSE 

value is considered to be the most successful result. SSE calculation is performed using the following formula [45]; 

𝑆𝑆𝐸 = ∑ ∑ 𝑑𝑖𝑠𝑡2(mi, x)𝑥∈𝐶i
𝑘
𝑖=1    (5) 

x: An object in Ci cluster, mi: Center point of Ci cluster, k: Number of clusters. Here, dist is the standard Euclidean Distance 

between two objects, an object whose x value is in the Ci set, and the mi value is the center point of the set Ci. The number 



 

Saygılı A.                                                                                                           Sakarya University Journal of Computer and Information Sciences 6 (2) 2023 
 

128 

 

of clusters was determined to be 2 in both KM and FCM methods because of the black background and lungs in the anterior 

part in CT and X-ray images. 

3.4 Feature extraction 

Feature extraction is a process of identifying distinctive parts of an image from a large number of pixels [46]. In our study, 

we utilized three different feature extraction methods: Gray Level Co-occurrence Matrix (GLCM), Histogram of Oriented 

Gradients (HOG), and Local Binary Pattern (LBP). 

In the first method used in our study, seven textural features based on GLCM were calculated for four different directions 

(0º, 45º, 90º, and 135º) from each image. Seven Haralick texture descriptors, including Angular Second Moment, Contrast, 

Inverse Difference Moment/Homogeneity, Dissimilarity, Entropy, Maximum Probability, and Inverse, were extracted from 

each co-occurrence matrix calculated at each of the four angles [47]. 

Histogram of Oriented Gradients (HOG) is a feature extraction method that has shown effective results in object and pattern 

recognition. The primary objective of the HOG method is to display the image as local histograms [48]. The process of 

extracting HOG features from an image involves applying horizontal and vertical Sobel filters. This is followed by calculating 

the gradient size and orientation angle during the feature extraction process. 

The extraction of features using a Local Binary Pattern (LBP) is a non-parametric approach [49], [50]. LBP has important 

advantages, such as high tolerance to images with different lighting conditions, sensitivity to small changes in gray-level 

images, and low calculation cost, making it frequently preferred, especially in image processing studies. The process of 

calculating the LBP identifier obtained from a 3x3 frame according to the 8-neighborhood is computed using Equation 6. 

LBPP,R(xc) = ∑ u(xp − xc)2p

P−1

p=0

, u(y) = {
0,   if  y < 0

1, if  y ≥ 0 
 (6) 

The notation used in our study defines xc as the central pixel, xp as the neighboring pixels surrounding the central pixel, R as 

the distance between the central pixel and its neighboring pixels, and P as the number of neighbors considered. 

3.5 Classification 

In our study, we employed three different classifiers to classify the features obtained from segmented images: Extreme 

Learning Machines (ELM), Support Vector Machines (SVM), and the k-nearest neighbor (kNN) method, which is a simple 

yet effective approach. 

ELM is a type of single hidden layer feed-forward neural network (SLFN) [51], [52]. In this method, input weights are 

randomly determined, while output weights are calculated analytically [53]. In our study, we experimented with many hidden 

layers set to 4096 and a regularization parameter of 1e-1 for the ELM method. SVM, which stands for Support Vector 

Machine, is a supervised classification approach created for binary classification tasks but has proven to be effective in 

handling multi-class problems as well. The primary goal of SVM is to identify the hyperplane that can best differentiate the 

two classes, as noted in [54]. For multiclass SVM, we followed the one-versus-all approach. 

(𝑥𝑖 , 𝑦𝑖)1≤𝑖≤𝑁 shows the training examples. Each example shows the size of the 𝑥𝑖 ∈  𝑅𝑑 , d feature space. yi shows class labels. 

SVM aims to find a hyperplane that separates the data from each other, where the samples with the same label will stay on 

the same side. For this, a line equation is defined as in 7. 

𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) > 0,  i=1, … , N (7) 

If a hyperplane exists, as shown in Formula 7, it indicates that the data can be separated linearly. However, if the data is 

distributed nonlinearly, it can still be separated linearly by transforming the feature space into a high-dimensional feature 

spaceThe Support Vector Machines (SVM) is a type of classifier that is based on kernels. The literature on SVM commonly 

uses radial, polynomial, and linear kernels as kernel functions [55]. In our study, we employed the polynomial kernel as it 

performed better than the other kernels for our datasets. 

On the other hand, k-Nearest Neighbor (kNN) is a non-parametric classification method that has been widely applied in 

various classification problems [56]. The classification process is performed by examining the nearest neighbors of the 

samples and assigning them to the cluster they are most similar. The kNN classifier generates feature vectors and labels of 

the training samples and applies the same features to the test sample whose class is unknown. Distances between data points 

are calculated, and the k closest samples are selected. Among these samples, the majority class is assigned to the new instance. 

In our study, we set the k value to 1 and used Euclidean distance for distance measurement. Despite its simplicity, kNN is a 

popular and effective method as it produces successful results and is simple and easy to apply. 

3.6 Modeling 

There are various methods for modeling data, with the most popular ones involving partitioning data into separate sets for 

training and testing. However, in cases where there are imbalanced class distributions, this partitioning approach may not be 

suitable. Instead, cross-validation (CV) is a widely used method where the entire dataset can be utilized for both training and 

testing. In our classification studies, we adopt the 10-fold cross-validation method, which involves dividing the dataset into 

10 equal parts. During each iteration, one part is used for testing while the other nine parts are used for training. This process 

is repeated ten times, with the testing part being changed at each iteration. Finally, the average of the values obtained from 
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each iteration is calculated. This ensures that all data is utilized for both training and testing. A visual representation of the 

tenfold cross-validation method is illustrated in Figure 3. 

 

 

Figure 3. 10-fold cross-validation schema 

3.7 Performance measurement 

The metrics given below will be used to measure the success of the classification processes in our study. 

 

Accuracy =
TP + TN

(TP + TN + FP + FN)
∗ 100 (8) 

 

Recall =
TP

(TP+FN)
∗ 100                                                                                                                                                (9) 

 

Specificity =
TN

(TN + FP)
∗ 100 (10) 

 

Precision =
TP

(TP+FP)
∗ 100  (11) 

 

NPV =
TN

(TN + FN)
∗ 100 (12) 

TP shows correctly predicted positive samples, TN correctly predicted negative samples, FP incorrectly predicted positive 

samples, and FN incorrectly predicted negative samples. The choice of which metric to focus on depends on the particular 

aspect of the test under consideration. For instance, if identifying positive samples is more important, then the recall metric 

would be a suitable choice. This was the case in our study. On the other hand, the accuracy metric would be more appropriate 

if we want to assess the correct identification of both positive and negative samples. However, in cases where the class 

distribution is unbalanced, accuracy may not be a suitable evaluation metric [57]. 

The flow chart showing the methods and implementation process described in the third section is shown in Figure 4. 

4. Experimental results 

We conducted experimental studies using four different datasets with varying sizes and characteristics. The experiments were 

performed on a desktop computer equipped with an i5 processor and 4 GB graphic cards. To differentiate between healthy 

and patient samples, we employed five performance metrics to assess the outcomes. We will report all five metrics in our 

results; however, Recall and Accuracy metrics are of primary importance to our study. 

As depicted in Figure 4, our study included stages of data acquisition, preprocessing, segmentation, feature extraction, 

classification, and modeling, as well as performance evaluation. The feature extraction process was conducted on segmented 

images, and the segmented images obtained by employing KM and FCM methods are presented in Figures 5 and 6. The FCM 

method divided CT images into two clusters, as shown in Figure 5. The segmentation results indicate significant differences 

between diseased and healthy images. As previously mentioned, COVID-19 anomalies in the lungs become more apparent 

after segmentation, which is evident in both Figure 5 and Figure 6. 
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3. Segmentation and Noise Removal1. Image Acquisition (CT and X-ray Dataset) 2. Preprocessing

6. 10-Fold Cross Validation7. Performance Evaluation 5. Classification Stage 4. Feature Extraction

1. Segmentation with Fuzzy c-means

2. Segmentation with K-means 
4. Contrast 

Enhancement

2. Image resizing
1. Gray-level 

transformations

3. Image 

Sharpening

3. Noise Removel with Wiener Filter

…

I1

I2

I3

I10

Iteration 1
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Figure 4. A diagram illustrating the sequence of actions performed by the system. 
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Figure 5. Segmented Sample CT images with FCM method 

Figure 6 shows a few examples of diseased and healthy images for obtaining the KM segmentation method on X-ray images. 

Here, too, the dashed structures on the new images obtained as a result of the segmentation of the images in the first two 

lines, which are COVID-19, stand out. However, the result sets obtained by segmentation of healthy images seen in the last 

two lines are seen smoothly and clearly. 
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Figure 6. Sample segmented X-ray images with the k-means method 

The performance measurement results obtained for four different datasets in the study are presented in Tables 2, 3, 4, and 5. 

All the detailed results obtained by combining three different classifiers, three different feature extraction methods, and two 

different segmentation methods are shown in all four tables. Table 2 displays the binary classification results for CT datasets. 

Upon inspection, it is observed that Dataset 1 yields a Recall value of 90.8% and an Accuracy value of 90.2%. For Dataset 

2, these values increase to 99.4% and 98.8%, respectively. The images in Dataset 1 are low resolution and noisy, while 

Dataset 2 comprises images with higher resolution and less noise. It is believed that this difference accounts for the 

performance discrepancy. Additionally, Table 2 indicates that the KM and FCM segmentation methods do not offer a 

significant advantage over one another. Both methods exhibit superior results in different scenarios. FCM segmentation 

produces better results for Dataset 1, whereas the KM method performs better for Dataset 2. Upon examining the feature 

extraction methods, it is observed that the GLCM method and its classification results are subpar compared to the HOG and 

LBP methods, which yield better results across all models. Comparing the HOG and LBP methods, Table 2 demonstrates 

that the LBP method delivers relatively superior results. Although the HOG method produces comparable results, the LBP 

method stands out as a feature extraction method in the model that yields the highest values in both CT datasets. Looking at 

the classification methods in Table 2, it is evident that the kNN method is the most effective, consistent with many prior 

studies. Additionally, ELM yields relatively better results than SVM. 

Table 3 presents the three-class classification results for X-ray data sets, including COVID-19 positive, healthy, and non-

COVID-19-derived pneumonia classes. As shown in Table 3, the best results are achieved with the ELM-SVM methods, 

which differ from Table 2, which presents the results for CT data sets. For Dataset 3, the highest values are obtained with the 

SVM, LBP, and KM combination, with a Recall value of 84.0% and an accuracy value of 83.9%. However, for Dataset 4, 

the triplet of ELM, LBP, and KM produced higher results, with a Recall value of 98.7% and an accuracy value of 99.6%. 

The results for Dataset 4 are considerably better than those for Dataset 3 because the images in Dataset 4 are cleaner, less 

noisy, and higher in resolution. In particular, Dataset 3 contains many images with various artifacts, which negatively affects 

the success. Table 3 also shows that the KM segmentation method performs better than the FCM method in X-ray images. 

Additionally, the LBP method is more successful than the HOG method in both X-ray and CT images, while the GLCM 

method yields the least successful results as a feature extraction method. 
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As previously mentioned, our X-ray data sets include three different classes. In contradistinction to the CT image sets, the 

X-ray datasets comprise images of non-COVID-19 pneumonia, enabling the differentiation between images of COVID-19 

and those of healthy individuals, as well as discerning between images of COVID-19 and pneumonia resulting from other 

causes. The results for these scenarios are presented in Tables 4 and 5. Table 4 displays the classification results of X-ray 

images according to COVID-19 and pneumonia classes, whereas Table 5 presents the results for COVID-19 and healthy 

classes. As known, COVID-19 disease causes pneumonia, making it a time-consuming process for an expert to differentiate 

between pneumonia and not COVID-19, which can lead to errors. As shown in Table 4, while Dataset 3's Recall value was 

92.8%, the accuracy value was 97.7%. For Dataset 4, these values were 99.1% and 99.3%, respectively. This finding suggests 

that the system we have created can accurately differentiate between pneumonia caused by COVID-19 and pneumonia caused 

by other factors, which is a noteworthy and valuable outcome. When we examine Table 5, which is related to the detection 

of COVID-19 and healthy individuals from X-ray images, an accuracy rate of 98.6% was achieved for Dataset 3, and an 

accuracy rate of 99.5% was achieved for Dataset 4. These findings demonstrate that the distinction between healthy and sick 

individuals can be made with even higher accuracy. 

Table 6 presents the average execution time of the classification method utilized in this research. The ELM method, which 

includes a large number of hidden layers, requires a considerably longer processing time. On the other hand, the kNN 

classifier provides the shortest processing times. Moreover, the SVM method produces results similar to those of the kNN 

method. As can be seen from Table 6, the size of the data set also affects the classification process. 

Table 7 demonstrates the highest accuracy rates obtained for the four distinct data sets in this study through the confusion 

matrix. The confusion matrices c and d indicate erroneous classifications between COVID-19 positive and negative, as well 

as COVID-19 negative and non-COVID-19 ones. Another noteworthy finding is that COVID-19-positive cases and 

pneumonia can be more successfully distinguished. 

Table 7. Confusion Matrices with Performance Metrics for Binary and Multiclass Classification in Four Different Datasets. 

Yellow values show Accuracy, Bottom-Left blue value Precision, Bottom-right blue value NPV, Right-upper blue recall, 

and Right-bottom blue specificity values.  
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Table 2. Mixed performance measurement results for Dataset 1 and 2 (CT datasets) were obtained with three different classifiers, three different feature extraction, and 

two different segmentation methods (The highest performance values are shown in bold) 

  

  

Dataset 1 

  

Dataset 2 

Classification 

Methods 

Feature 

Extraction  

Methods 

Segmentation  

Methods 
Accuracy Recall Specificity Precision NPV Accuracy Recall Specificity Precision NPV 

E
L

M
 

GLCM 
KM 71.3 69.3 73.0 69.3 73.0 86.9 86.9 86.9 87.1 86.7 

FCM 60.3 54.7 65.2 58.1 62.1 82.0 80.4 83.6 83.3 80.7 

HOG 
KM 79.5 77.9 80.9 78.2 80.7 93.6 92.5 94.6 94.6 92.5 

FCM 82.0 81.1 82.9 80.6 83.3 94.6 94.4 94.8 94.8 94.3 

LBP 
KM 84.0 83.4 84.6 82.7 85.3 94.5 93.8 95.3 95.3 93.8 

FCM 84.2 82.5 85.6 83.5 84.8 93.3 92.8 93.8 93.9 92.8 

k
N

N
 

GLCM 
KM 76.4 77.1 75.8 73.7 79.0 94.5 96.0 93.0 93.3 95.8 

FCM 67.0 65.9 68.0 64.4 69.4 88.7 90.2 87.2 87.8 89.7 

HOG 
KM 79.2 75.9 82.1 78.9 79.5 97.3 98.7 95.9 96.1 98.7 

FCM 79.8 77.1 82.1 79.1 80.3 97.1 98.6 95.5 95.7 98.5 

LBP 
KM 86.6 88.0 85.4 84.1 89.0 98.8 99.4 98.2 98.3 99.4 

FCM 90.2 90.8 89.7 88.5 91.8 97.9 99.0 96.9 97.0 98.9 

S
V

M
 

GLCM 
KM 56.0 65.3 47.9 52.4 61.1 63.3 61.6 65.0 64.2 62.4 

FCM 49.5 63.3 37.2 47.0 53.6 62.2 65.6 58.8 61.9 62.7 

HOG 
KM 74.9 74.5 75.3 72.6 77.1 89.8 86.5 93.2 92.9 87.1 

FCM 76.7 70.8 81.9 77.4 76.1 89.0 87.1 91.0 90.8 87.4 

LBP 
KM 75.7 73.1 78.1 74.6 76.7 91.8 89.9 93.7 93.5 90.1 

FCM 77.9 75.4 80.1 76.9 78.7 88.7 87.9 89.5 89.5 87.9 

 

Table 3. Multi-class mixed performance measurement results for Datasets 3 and 4 (X-ray datasets) were obtained with three different classifiers, three different feature 

extraction, and two different segmentation methods (The highest performance values are shown in bold) 

  

  

Dataset 3 (Three Class) 

  

Dataset 4 (Three Class) 

Classification 

Methods 

Feature 

Extraction  

Methods 

Segmentation  

Methods 
Accuracy Recall Specificity Precision NPV Accuracy Recall Specificity Precision NPV 

E
L

M
 

GLCM 
KM 72.2 54.4 97.6 73.9 94.5 74.7 78.3 91.8 81.0 90.4 

FCM 65.2 33.6 96.1 51.9 92.0 70.5 72.5 89.4 75.3 87.9 

HOG 
KM 80.2 76.0 99.2 92.2 97.1 96.0 98.6 99.3 98.5 99.4 

FCM 77.2 82.4 98.7 88.8 97.8 96.3 98.3 99.6 99.1 99.3 

LBP 
KM 83.1 85.6 99.3 93.9 98.2 98.7 99.6 99.6 99.0 99.4 

FCM 82.0 84.8 98.9 90.6 98.1 96.8 98.8 99.7 99.4 99.5 

k N N
 

GLCM KM 71.6 48.8 97.3 69.3 93.8 80.6 86.3 95.4 89.4 94.0 
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FCM 67.7 60.8 95.2 61.3 95.1 79.9 86.0 97.1 92.9 93.9 

HOG 
KM 73.9 72.8 96.7 73.4 96.6 92.1 96.0 99.3 98.4 98.2 

FCM 72.5 77.6 96.1 71.3 97.2 90.7 94.0 99.7 99.3 97.4 

LBP 
KM 78.8 80.8 99.2 92.7 97.6 94.4 97.3 99.7 99.2 98.8 

FCM 77.2 83.2 99.1 92.0 97.9 94.1 97.9 99.8 99.5 99.1 

S
V

M
 

GLCM 
KM 43.1 33.6 86.9 24.3 91.3 80.6 86.3 95.4 89.4 94.0 

FCM 43.8 48.8 91.5 41.8 93.5 79.9 86.0 97.1 92.9 93.9 

HOG 
KM 81.2 71.2 99.1 90.8 96.5 92.1 96.0 99.3 98.4 98.2 

FCM 79.4 81.6 99.5 95.3 97.7 90.7 94.0 99.7 99.3 97.4 

LBP 
KM 83.9 84.0 99.4 94.6 98.0 96.1 98.3 99.4 98.6 99.3 

FCM 83.2 83.2 99.7 97.2 97.9 96.1 98.0 99.2 98.2 99.1 

 

Table 4. Binary classification results in which the distinction between COVID-19 and pneumonia is addressed in X-ray data sets (The highest performance values are 

shown in bold) 
 

  

Dataset 3 (Binary Class) 

  

Dataset 4 (Binary Class) 

Classification 

Methods 

Feature 

Extraction  

Methods 

Segmentation  

Methods 
Accuracy Recall Specificity Precision NPV Accuracy Recall Specificity Precision NPV 

E
L

M
 

GLCM 
KM 88.6 61.6 95.4 77.0 90.9 84.4 84.1 84.8 83.1 85.6 

FCM 82.7 36.8 94.2 61.3 85.6 78.7 75.7 81.4 78.4 78.9 

HOG 
KM 95.4 84.0 98.2 92.1 96.1 98.9 98.8 99.1 99.0 98.9 

FCM 97.3 92.0 98.6 94.3 98.0 99.3 98.9 99.6 99.5 99.0 

LBP 
KM 96.8 90.4 98.4 93.4 97.6 99.3 99.1 99.4 99.3 99.2 

FCM 97.7 92.8 99.0 95.9 98.2 99.3 98.9 99.6 99.6 99.0 

k
N

N
 

GLCM 
KM 87.8 93.2 94.0 72.5 91.1 88.4 87.2 89.5 88.1 88.7 

FCM 86.4 64.8 91.8 66.4 91.3 91.7 89.1 94.1 93.0 90.6 

HOG 
KM 90.2 77.6 93.4 74.6 94.3 97.8 96.7 98.9 98.7 97.1 

FCM 90.7 81.6 93.0 74.5 95.3 98.2 96.3 99.8 99.7 96.8 

LBP 
KM 95.4 84.8 98.0 91.4 96.3 98.8 97.9 99.6 99.5 98.2 

FCM 94.2 82.4 97.2 88.0 95.7 98.9 98.3 99.6 99.5 98.5 

S
V

M
 

GLCM 
KM 51.8 54.4 51.2 21.8 81.8 49.9 59.8 41.1 47.5 53.4 

FCM 70.7 62.4 72.8 36.4 88.6 57.2 65.6 49.8 53.8 61.9 

HOG 
KM 93.3 76.0 97.6 88.8 94.2 98.9 98.5 99.2 99.1 98.7 

FCM 95.8 85.6 98.4 93.0 96.5 99.1 98.8 99.3 99.2 98.9 

LBP 
KM 96.6 88.0 98.8 94.8 97.1 98.7 98.5 99.0 98.8 98.7 

FCM 96.8 89.6 98.6 94.1 97.4 98.9 98.5 99.2 99.1 98.7 
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Table 5. Binary classification results in which the distinction between COVID-19 and healthy is discussed in the X-ray data sets (The highest performance values are 

shown in bold) 

  

  

Dataset 3 (Binary Class) 

  

Dataset 4 (Binary Class) 

Classification 

Methods 

Feature 

Extraction  

Methods 

Segmentation  

Methods 
Accuracy Recall Specificity Precision NPV Accuracy Recall Specificity Precision NPV 

E
L

M
 

GLCM 
KM 92.0 72.0 97.0 85.7 93.3 93.0 91.9 94.0 93.2 92.9 

FCM 91.5 68.0 97.4 86.7 92.4 87.4 85.3 89.3 87.7 87.2 

HOG 
KM 97.3 89.6 99.2 96.6 97.4 99.4 99.2 99.6 99.6 99.3 

FCM 98.4 95.2 99.2 96.7 98.8 99.3 99.0 99.5 99.4 99.1 

LBP 
KM 98.2 92.0 99.8 99.1 98.0 99.5 99.4 99.6 99.5 99.5 

FCM 98.6 95.2 99.4 97.5 98.8 99.3 98.8 99.7 99.7 99.0 

k
N

N
 

GLCM 
KM 90.4 64.8 96.8 83.5 91.7 95.9 93.8 97.8 97.5 94.6 

FCM 91.2 84.8 92.8 74.6 96.1 95.6 92.6 98.2 97.9 93.7 

HOG 
KM 95.7 88.8 97.4 89.5 97.2 98.3 97.1 99.4 99.3 97.4 

FCM 95.2 90.4 96.4 86.3 97.6 97.8 95.6 99.7 99.7 96.2 

LBP 
KM 97.9 92.8 99.2 96.7 98.2 99.2 98.5 99.8 99.7 98.7 

FCM 97.0 90.4 98.6 94.2 97.6 99.4 98.8 99.9 99.8 99.0 

S
V

M
 

GLCM 
KM 57.9 52.0 59.4 24.3 83.2 55.8 68.6 44.4 52.5 61.3 

FCM 91.2 83.2 93.2 75.4 95.7 63.7 67.3 60.5 60.4 67.4 

HOG 
KM 97.7 91.2 99.4 97.4 97.8 99.2 98.8 99.5 99.4 99.0 

FCM 98.1 95.2 98.8 95.2 98.8 99.2 98.9 99.4 99.3 99.0 

LBP 
KM 98.1 92.8 99.4 97.5 98.2 99.4 99.1 99.7 99.7 99.2 

FCM 97.8 90.4 99.6 98.3 97.6 99.0 98.4 99.6 99.5 98.6 

Table 6. Classification average execution time of the method 

  Dataset-1 Dataset-2 Dataset-3 Dataset-4 

Time 

(s) 

ELM 33.9 59.3 42.2 91.2 

kNN 29.9 3.1 0.4 2.5 

SVM 45.6 5.3 1.0 4.7 
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4. Discussion 

Our study aims to propose an approach that can achieve successful results with various imaging modes and datasets and 

support early diagnosis of COVID-19. In the modeling, a system has been developed to be applied to datasets that are 

independent of the dataset, and the results demonstrate success on all four different datasets. Table 8 compares our study with 

other studies in the literature, focusing on the use of one of the four datasets used in our study. However, it should be noted 

that comparing different studies using the same dataset may not be entirely accurate since they may use different subsets of 

the same dataset. Despite this limitation, Table 8 provides a general comparison of our study with other studies. Upon 

reviewing Table 8, it can be observed that our study achieved a higher success rate than the state-of-the-art studies in nearly 

all of the four distinct datasets. For instance, in the study of Ozturk et al., while an accuracy of 87.02% was obtained in the 

multiclass classification of X-ray images, this rate was 83.9% in our study. However, our study produced far more successful 

results in terms of recall values in the same comparison. Therefore, our study can be considered very successful in detecting 

COVID-19-positive samples. Similarly, while Chowdhury et al. achieved an accuracy rate of 99.41% for multiclass 

classification in their study, our study obtained an accuracy rate of 99.3%. Nonetheless, our study achieved a recall value of 

99.6%, whereas Chowdhury et al. achieved a recall value of 96.61%. 

Table 8. Comparison of the performances of the state of the art studies 

Author(s) Dataset Accuracy (%) Recall (%) Precision (%) 

Yang et al. [34] Dataset-1 89.0 NA NA 

Soares et al. [35] Dataset-2 97.38 95.53 99.16 

Jaiswal et al. [31] Dataset-2 96.25 96.29 96.29 

Ozturk et al. [18] Dataset-3 (Binary) 98.08 95.13 98.03 

Ozturk et al. [18] Dataset-3 (Multiclass) 87.02 85.35 89.96 

Rahman et al. [39] Dataset-4 (Multiclass) 96.29 97.28 NA 

Chowdhury et al. [38] Dataset-4 (Binary) 99.41 99.41 99.42 

Chowdhury et al. [38] Dataset-4 (Multiclass) 97.74 96.61 96.61 

This Study Dataset-1 90.2 90.8 88.5 

This Study Dataset-2 98.8 99.4 98.3 

This Study Dataset-3 (Binary) 97.7 92.8 95.9 

This Study Dataset-3 (Multiclass) 83.9 94.0 94.6 

This Study Dataset-4 (Binary) 99.3 99.1 99.6 

This Study Dataset-4 (Multiclass) 98.7 99.6 99.0 

In general, we can say that a more effective system has been produced compared to other studies. It is noteworthy that the 

developed system operates on four distinct datasets acquired through various imaging modes, delivering superior 

performance when compared to prior studies in the field. Furthermore, the classification times presented in Table 6 indicate 

that the evaluation duration of the system is less than 1 minute. This is seen as another positive aspect that needs attention. 

5. Conclusion 

Our research yielded a comprehensive system that can diagnose COVID-19 from datasets captured through various imaging 

modes. This system was created by adopting a holistic approach that integrates image processing, segmentation, feature 

extraction, and machine learning methods. Our model can be applied to any dataset and has demonstrated its efficacy by 

achieving successful results. We developed a holistic approach that is not limited to any specific dataset. Our study not only 

distinguished between COVID-positive and negative cases but also conducted a multi-class classification process, where we 

identified COVID-19-positive, healthy, and pneumonia classes. Our research achieved a remarkable accuracy rate of 97.7% 

and 99.3% in two distinct datasets in identifying individuals with COVID-19 and those with pneumonia but without COVID-

19. Considering that non-COVID-19 pneumonia and COVID-19 pneumonia exhibit comparable characteristics, making it 

challenging for healthcare experts to differentiate between them, the achievements of this research are noteworthy. 

For more than two years, the entire world has been mobilized to detect and treat COVID-19. Although the contagiousness of 

the virus has decreased, pneumonia still affects people due to various factors. Therefore, the results obtained from our study 

are considered important, and they could provide support for medical professionals in their decision-making. A limitation of 

our study is the lack of information on the period of the disease in which the data were collected. Future studies could create 

datasets containing this information to provide a more in-depth analysis of the effects of the disease. 
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