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ABSTRACT 

Identifying and classifying malware has become a critical task in ensuring the security and resilience of 

computer systems and networks. Traditional techniques for malware assessment often rely on signature-based 
methods, which struggle to keep up with the constantly evolving landscape of malware variations. Recently, the 

application of advanced deep learning methods has shown promising results in automating the malware 

classification process. This study presents an innovative strategy for classifying malware images using the 
Vision Transformer (ViT) architecture. The ViT model is adapted to the domain of malware analysis by 

representing malware images as input tokens. A comprehensive dataset of 14,226 malware samples from 26 

families was used to evaluate the effectiveness of this approach. A comparative analysis was performed between 
the performance of the ViT-based classifier, traditional machine learning approaches and other deep learning 

architectures. Our experimental results demonstrate the potential of ViT in handling malware images, achieving 

a classification accuracy of 98.80%. The presented approach establishes a strong foundation for further research 
in utilizing cutting-edge deep learning architectures for enhanced malware analysis and detection techniques. 
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1. Introduction

The relentless advance of Internet technology has brought about a period of rapid expansion in the computer software sector. 

This has led to the development of a wide range of software applications that have become seamlessly integrated into the 

fabric of everyday life [1]. Nevertheless, this technological advancement has concurrently led to a concerning issue: the 

rampant proliferation of detrimental malware. This presents a substantial threat to the security of users' personal information, 

causing significant disruptions to computers, servers, and cloud infrastructures [2]. Malware is a type of software that 

threatens computer systems today and is designed to steal user data, exploit systems or for other malicious purposes [3]. This 

malware often runs without the user's permission or awareness and compromises personal security, privacy and the integrity 

of computer systems [4]. The most common types of malware today can be summarized as follows: 

 Viruses: Malware that can infect other files and spread by making copies of themselves. They usually attach

themselves to other files, infect them and then spread [5].

 Worms: Malicious software that self-replicates and spreads rapidly across computer networks to other systems.

They do not infect files but spread by sending copies of themselves across the network to other devices [6].

 Trojans: Malicious software hidden in seemingly innocuous and useful programs that users tend to download. While

installed by the user, its real purpose may be to covertly cause damage or steal information [7].

 Spyware: Software designed to secretly steal information by monitoring a user's computer activity. This information

can often be sensitive, such as a user's online habits, personal or financial information [8].

 Adware: Malware designed to generate revenue by constantly displaying advertisements to the user. The ads appear

without the user's consent and often have a negative impact on the user's experience [9].

 Ransomware: Malware that encrypts the user's files or system and demands a ransom to get them back [10].
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Malware detection methods can be divided into two main categories: traditional static and dynamic approaches [11]. Static 

methods involve analyzing the structural characteristics of software to determine the presence of malware. In contrast, 

dynamic methods monitor the behavior of executing programs to identify potential malware instances [12]. These strategies 

offer distinct advantages and disadvantages in the quest for effective malware detection. 

Dynamic detection is particularly accurate because it actively monitors the behavior of programs as they run, allowing it to 

quickly identify malicious software [13]. However, this approach is time-consuming because it requires continuous 

monitoring of running processes. This real-time analysis may not be conducive to the timely detection of emerging malware 

threats. In contrast, static detection can serve as a valuable complement to dynamic methods, helping to overcome their time-

consuming aspect. By analyzing the structural attributes of software without executing it, static detection can quickly assess 

potential threats [14]. However, traditional static detection techniques rely on powerful antivirus engines and extensive virus 

databases [15]. This reliance on known signatures and patterns poses a significant challenge in detecting unseen or previously 

unknown malware, often resulting in the limited performance of traditional static approaches [16]. Efforts to strike a balance 

between static and dynamic detection techniques remain critical to improving the overall effectiveness of malware detection 

[17]. 

To overcome the limitations of traditional static detection approaches, researchers have looked at innovative ways to detect 

malware using visualization technology. These innovative techniques have shown promising performance in malware 

detection [18]. In many cases, malware variants are created through automation or reuse of critical function modules, resulting 

in a degree of similarity in their binary or assembly code [19]. Visualization technology is proving to be very useful in 

capturing these similarities and presenting them in a visual form. Interestingly, the challenges of malware detection are similar 

to those of image recognition, as both require the identification of variants or patterns within the original samples. By visually 

representing the structural characteristics and behavioral patterns of malware, visualization-based malware analysis reveals 

unique features that improve detection accuracy. By revealing hidden relationships and commonalities between malware 

variants, this approach promises to strengthen defenses against both known and previously unseen threats [20].  

With the rapid advancement of artificial intelligence technology, researchers are increasingly using deep learning models to 

detect and classify malware. Yadav et al. [21] proposed a novel deep learning based two-stage framework for detecting and 

classifying DEX files images. The framework uses the EfficientNetB0 model to extract relevant features from malware 

images. These features are then processed through a stacking classifier, utilizing linear support vector machine (SVM) and 

random forest (RF) algorithms as base-level classifiers and logistic regression. The proposed method achieves impressive 

results, obtaining 100% accuracy in binary classification and 92.9% in 5-class classification. Khan et al. [22] proposed a 

malware detection framework called Deep Squeezed-Boosted and Ensemble Learning (DSBEL). The proposed DSBEL 

framework incorporates a novel Squeezed-Boosted Boundary-Region Split-Transform-Merge (SB-BR-STM) CNN that 

employs multi-path dilated convolutional, boundary and regional operations to capture global malicious patterns. The 

performance evaluation of the DSBEL framework and the SB-BR-STM CNN is performed on the IOT_Malware dataset, 

yielding results of 98.50% accuracy, 97.12% F-1 score, 95.97% recall and 98.42% precision. Xing et al. [23] proposed a 

state-of-the-art malware detection method. The method introduces a novel approach that involves representing malware as 

grey-scale images and incorporating an auto-encoder network for analysis. The viability of the grey-scale image 

representation is assessed by evaluating the reconstruction error of the auto-encoder. Furthermore, the dimensionality 

reduction capabilities of the auto-encoder are exploited to classify malware from benign software. Experimental evaluations 

conducted on an Android-side dataset demonstrate the effectiveness of the model, which achieves an impressive accuracy 

rate of 96% and a stable F1-score of around 96%. Asam et al. [24] introduced a novel CNN-based architecture called IoT 

malware detection architecture (iMDA) for effective detection. The iMDA architecture is designed with modularity and 

incorporates various feature learning schemes such as edge exploration and smoothing, multi-path dilated convolutional 

operations, and channel squeezing and boosting within the CNN framework. The performance evaluation of iMDA on a 

benchmark IoT dataset demonstrates its promising capabilities in malware detection, achieving 97.93% accuracy, 93.94% F-

1 score, 98.64% precision, and 88.73% recall. Kumar and Janet [25] proposed deep transfer learning for malware image 

classification (DTMIC). By converting portable executable files (PEs) into grayscale images, DTMIC exploits the visual 

characteristics of similar malware families. The effectiveness and robustness of DTMIC are evaluated using MalImg and 

Microsoft BIG dataset. DTMIC achieves high detection accuracies of 98.92% for MalImg and 93.19% for Microsoft datasets, 

outperforming established CNN architectures. 

Within the realm of malware detection and classification, CNN-based architectures, together with classical machine learning 

methods, have achieved significant success in image processing and are widely used in the literature. However, CNN-based 

classifiers often have limitations such as special architectural designs and input data with predetermined dimensions [26]. To 

overcome such problems, Vision Transformer (ViT) is a new approach that has recently attracted attention [27]. It is a 

transformer architecture based on this attention mechanism and designed for image classification problems. By treating the 

data as an irregular array of pixels, ViT provides a more flexible approach to better understand the relationships of objects in 

images and to detect important patterns [28]. ViT's particular scalability and ability to deal with large datasets and complex 

classification problems make it a suitable and promising candidate for malware image classification. Thanks to its ability to 

learn distant relationships between data, ViT can detect subtle differences between different types and subtypes of malware 
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and achieve higher classification accuracy. In addition, ViT's attention mechanism prevents significant information loss in 

the feature extraction process, allowing for more comprehensive and detailed analysis. 

This paper proposes a method for fine-tuning the default ViT architecture for automatic classification of malware images. 

The proposed model initially divides the image into patches and extracts features through the encoder network. Subsequently, 

these features are classified using an MLP (Multi-Layer Perceptron) head to determine the malware class. Moreover, to the 

best of the authors' knowledge, this is the first study on the classification of the MaleVis dataset utilizing the ViT model. 

The main contributions of this study can be summarized as follows: 

 The ViT model achieved high performance values using the MaleVis dataset, which contains 25 different types of 

malware. 

 The ViT model demonstrated effective prediction on input images of different classes, eliminating the need for any 

feature engineering. 

 A system that can classify malware images without depending on any resolution value. 

 Leveraging the transfer learning method, the study attained higher performance values compared to similar research 

with fewer hardware requirements. 

The remaining sections of this paper are structured as follows: Section 2 outlines the proposed method, explains the dataset 

used for model training, introduces the classifier model and describes the performance metrics. Section 3 explains the 

experimental setup and presents the results obtained, and Section 4 contains the discussion section of the study. The 

conclusions of the study are presented in Section 5. 

2. Material and Methods 

This paper proposes a ViT model for classifying malware images. Instead of taking the input images directly as input, the 

model processes them by dividing them into patches and vectorizing them. This approach allows the model to work faster 

and more efficiently by processing smaller parts of the input images by dividing them into patches. A schematic diagram of 

the proposed malware image classification method is given in Figure 1. 
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Figure 1 Schematic diagram of the proposed method. 

 

The effectiveness of the deep learning models is highly dependent on the quality, diversity and size of the dataset. A well-

curated and comprehensive dataset of malware images plays a crucial role in enabling the ViT model to learn meaningful 

representations and features that distinguish between different types of malware. By using a large and diverse dataset of 

malware images, the ViT model can effectively learn to extract relevant patterns and structures from the input images. The 

model's ability to divide the input images into smaller patches and vectorize them allows it to exploit the inherent spatial 

relationships in the dataset. This process facilitates the capture of fine-grained details and local features within each patch, 

enabling the model to make accurate and efficient classifications. Furthermore, the use of a diverse dataset can help improve 

the generalization capabilities of the ViT model. By exposing the model to a wide variety of malware samples with different 

characteristics, the model can better adapt to unseen and real-world scenarios. Consequently, this increases the overall 

robustness and reliability of the proposed malware image classification method. 

2.1 Dataset 

The public dataset used in this study is called Malware Evaluation with Vision (MaleVis) [29]. The MaleVis dataset consists 

of 25 different malware families, collected from samples that appeared between 2017 and 2018. These samples were created 

on PE files prepared by a cybersecurity company. These binary code files were converted into 224×224-pixel PNG images 

using the 'Bin2png' library. The samples that were randomly selected from the dataset are shown in Figure 2. 

 



 
Oğuzhan Katar and Özal Yildirim                                                         Sakarya University Journal of Computer and Information Sciences 7 (1) 2024, 22-35 

25 

AgentAdposhel Allaple Amonetize Androm Autorun BrowseFox

Dinwod Elex Expiro Fasong HackKMS Hlux Injector

InstallCore MultiPlug Neoreklami Neshta Regrun Sality Snarasite

Stantinko VBA VBKrypt Vilsel Other  

Figure 2 MaleVis Samples[29] 

 

Table 1 Distribution of the dataset samples 

Class Name Category 
Number of Samples in 

MaleVis 

Number of Samples in Subsets 

(Train/Validation/Test) 

Adposhel Adware 494 396/49/49 

Agent Trojan 470 376/47/47 

Allaple Worm 478 382/48/48 

Amonetize Adware 497 397/50/50 

Androm Backdoor 500 400/50/50 

Autorun Worm 496 396/50/50 

BrowseFox Adware 493 395/49/49 

Dinwod Trojan 499 399/50/50 

Elex Trojan 500 400/50/50 

Expiro Virus 501 401/50/50 

Fasong Worm 500 400/50/50 

HackKMS Trojan 499 399/50/50 

Hlux Worm 500 400/50/50 

Injector Trojan 495 397/49/49 

InstallCore Adware 500 400/50/50 

MultiPlug Adware 499 399/50/50 

Neoreklami Adware 500 400/50/50 

Neshta Virus 497 397/50/50 

Regrun Trojan 485 389/48/48 

Sality Virus 499 399/50/50 

Snarasite Trojan 500 400/50/50 

Stantinko Backdoor 500 400/50/50 

VBA Virus 500 400/50/50 

VBKrypt Trojan 496 396/50/50 

Vilsel Trojan 496 396/50/50 

Other Legitimate 1832 1466/183/183 
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The MaleVis dataset, which consists of 26 classes, only possesses legitimate content in the form of the "Other" class, while 

the remaining classes, constitute malware. The dataset is divided into five categories of malware, including Adware, Trojan, 

Worm, Backdoor, and Virus. With a balanced distribution of approximately 500 samples per class, no data augmentation was 

deemed necessary. The dataset was divided into training, validation, and testing subsets, with 80% of the samples allocated 

for training, 10% for validation, and 10% for testing. The class-wise distribution of the dataset is presented in Table 1. 

2.2 ViT Model 

The profound impact of transformer networks on natural language processing tasks has been widely acknowledged. Building 

upon the success of the original transformer architecture, Dosovitskiy et al. [30] introduced the ViT model, specifically 

tailored for image processing tasks. The ViT model consists of self-attention blocks and MLP networks, equipped with linear 

projection and positional embedding mechanisms to handle input images effectively. The ViT architecture is based on the 

process of dividing the input image into fixed size, non-overlapping patches [31]. These patches are then flattened and a 

spatial embedding step is performed using linear projection. The purpose of spatial embedding is to preserve the spatial 

information of the original image within the flattened patches. The resulting vector is then fed into a stack of N transform 

encoder blocks. The architecture of these encoder blocks used for feature extraction in the ViT model is given in Figure 3. 
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Figure 3 Architecture of the ViT encoder block 

 

The basic components of a transformer encoder block include multi-head self-attention (MHA) and MLP layers. Each 

component is complemented by a normalization layer and a residual connection for improved training stability. Within MHA, 

self-attention is applied to each patch individually, producing three distinct vectors: query (Q), key (K) and value (V) [32]. 

To measure the importance or saliency of each embedded patch, a dot product operation is performed between the Q and K 

vectors, producing a score matrix. This matrix is then passed through the SoftMax activation function, which converts the 

scores into attention weights [33]. Finally, the output is obtained by element-wise multiplication of the attention weights and 

the V vector. This process produces the self-attention result as seen in Equation 1, where dk denotes the dimensionality of 

the key vector K. 

𝑆𝑒𝑙𝑓 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

) × 𝑉 (1) 

The self-attention matrices are concatenated and then passed to a linear layer followed by a regression head. This application 

of self-attention allows the model to recognize relevant semantic features at different locations in the image, facilitating 

accurate classification. Within the transformer encoder, there can be MHA blocks, each contributing to the overall 

understanding of the image. Following the MHA layer, the transformer block contains an MLP. These MLP layers are 

equipped with a GeLU activation function [34]. The final output of the transformer block is calculated as shown in Equation 

2. K. 

 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑜𝑢𝑡 = 𝑀𝐿𝑃(𝑁𝑂𝑅𝑀(𝑀𝐻𝐴𝑜𝑢𝑡)) + 𝑀𝐻𝐴𝑜𝑢𝑡 (2) 

2.3 Performance Metrics 

Evaluating the performance of deep learning models is critical to understanding their effectiveness in solving real-world 

problems. Performance metrics play a vital role in quantifying the quality and reliability of these models, and some of the 
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most important metrics include true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). These 

metrics can be summarized as follows.  

 TP signifies the number of instances that are correctly classified as belonging to that specific class. It's the count of 

correctly identified positive samples for each class. 

 TN signifies the number of instances that are correctly classified as not belonging to that specific class. It's the count 

of correctly identified negative samples for each class. 

 FP signifies the number of instances that are incorrectly classified as belonging to that specific class when they 

actually don't belong to it. It's the count of incorrectly identified positive samples for each class. 

 FN signifies the number of instances that are incorrectly classified as not belonging to that specific class when they 

actually belong to it. It's the count of incorrectly identified negative samples for each class. 

In addition to the basic metrics of TP, TN, FP and FN, the evaluation of deep learning models includes the construction of a 

confusion matrix, which provides a comprehensive summary of the model's performance across all classes. The confusion 

matrix is a table that represents the predicted labels against the true labels, allowing a more detailed analysis of the model's 

behavior. The confusion matrix for the performance evaluation of a 26-class deep learning model is shown in Figure 4. 

 

 

Figure 4 A confusion matrix with 26 classes 

 

The main performance measures and mathematical equations used to evaluate deep learning models can be summarized as 

follows: 

1. Accuracy (Acc): This metric quantifies the overall correctness of the model's predictions. It is the ratio of correctly 

classified samples to the total number of samples. The Acc can be calculated as seen in Equation 3. 

𝐴𝑐𝑐 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
 (3) 

2. Precision (Pre): Premeasures the proportion of positively labelled samples that the model correctly identifies. It 

focuses on the ability of the model not to misclassify negative samples as positive, reflecting its ability to make 

accurate positive predictions. The Pre can be calculated as seen in Equation 4. 
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𝑃𝑟𝑒 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
(4) 

3. Recall (Rec): Rec, also known as sensitivity, assesses the ability of the model to correctly identify true positive

samples. It is particularly relevant when the aim is to minimize false negatives and avoid missing positives. The Rec

can be calculated as seen in Equation 5.

𝑅𝑒𝑐 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
(5) 

4. Specificity (Spe): This metric assesses the model's ability to correctly identify negative samples. It gauges the

model's performance in avoiding false positives and accurately recognizing negative instances. The Spe can be

calculated as seen in Equation 6.

𝑆𝑝𝑒 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
(6) 

5. F-1 Score (F1): The F1 is the harmonic mean of Pre and Rec. It is particularly useful when there is an imbalance

between positive and negative samples, as it balances the trade-off between precision and recall. The F1 can be

calculated as seen in Equation 7.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
(2 × 𝑃𝑟𝑒 × 𝑅𝑒𝑐)

(𝑃𝑟𝑒 + 𝑅𝑒𝑐)
(7) 

3. Experiments

The experiments conducted to evaluate the performance of the ViT model are presented in this section. Additionally, the 

following sections present the analyses of the experimental results, along with the performance metrics. 

3.1 Experimental Setups 

In this study, we used the ViT-B/16 model, which has a resolution of 224×224 pixels and was pre-trained on the ImageNet 

[35] dataset. The ViT-B models include a hidden size of 768, an MLP size of 3072, and an overall parameter count of 86

million [30]. The input-output shapes and trainability of the layers of the model are summarized in Table 2.

Table 2 Details of the ViT model 

Count Layer Input Shape Output Shape Trainable 

×1 Patch Embedding (1, 3, 224, 224) (1, 196, 768) True 

×1 Dropout (pos_drop) (1, 197, 768) (1, 197, 768) False 

×1 Identity (patch_drop) (1, 197, 768) (1, 197, 768) False 

×1 Identity (norm_pre) (1, 197, 768) (1, 197, 768) False 

×12 

(Encoder) 

LayerNorm (norm1) (1, 197, 768) (1, 197, 768) True 

Attention (attn) (1, 197, 768) (1, 197, 768) True 

Identity (ls1) (1, 197, 768) (1, 197, 768) False 

Identity (drop_path1) (1, 197, 768) (1, 197, 768) False 

LayerNorm (norm2) (1, 197, 768) (1, 197, 768) True 

Mlp (mlp) (1, 197, 768) (1, 197, 768) True 

Identity (ls2) (1, 197, 768) (1, 197, 768) False 

Identity (drop_path2) (1, 197, 768) (1, 197, 768) False 

×1 LayerNorm (norm) (1, 197, 768) (1, 197, 768) True 

×1 Identity (fc_norm) (1, 768) (1, 768) False 

×1 Dropout (head_drop) (1, 768) (1, 768) False 

×1 Linear (head) (1, 768) (1, 26) True 

The model was implemented using the timm library. During model training, 11,380 samples were randomly selected from 

the dataset, representing 80% of the total dataset samples. The remaining samples were divided equally to be used for the 

validation and testing phases. A visual representation of the proposed experimental setup framework is shown in Figure 5. 
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ViT best_weights.pth

ViT
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Fine-tuned Model

Pre-trained Model

Performance Evaluation  

Figure 5 The proposed experimental setup framework 

 

The training set was used to learn the parameters of the model, while the validation set was used to adjust the hyper-parameters 

and check for overfitting. The training and test samples were included in the training with a batch size of 32. The learning 

rate of the model was set to 0.00002 and the AdamW optimizer was used. The maximum number of epochs defined for the 

training and validation processes is 100. The CrossEntropyLoss function was used to calculate the loss value at each epoch. 

The software, hyperparameters and library versions used in the study are summarized in Table 3. 

 

Table 3 Experimental environment and parameters 

Name Type Version / Value 

Python Programming Language 3.10.11 

Timm Library 0.9.2 

Torch Library 2.0.1 

Torchvision Library 0.15.2 

Transformers Library 4.32.1 

Batch Size Hyperparameter 32 

Learning Rate Hyperparameter 0.00002 

Max Epoch Hyperparameter 100 

Epsilon Hyperparameter 0.000001 

 

When training the ViT model with ImageNet weights, an early stopping function is defined to monitor the training phase. 

This function monitors the validation accuracy value and stops training if there is no improvement for twenty consecutive 

epochs. In this way, the weights of the epoch with the highest validation accuracy value were saved as 'best_weights.pth'. 

The best_weights.pth values were transferred to the ViT model, and the fine-tuned model was obtained. The fine-tuned ViT 

model was given test examples as input, which the model had never encountered before, and the performance of the model 

was determined by analyzing the predictions obtained. 

3.2 Results 

The ViT model was trained in the Google Colab environment using samples from the MaleVis dataset. By using optimized 

ImageNet weights as initial parameters, rather than random weights, the model achieved high accuracy rates in a relatively 

short time. The early stopping function set the validation accuracy value of 97.78% obtained in the 37th epoch as the stopping 

point, as there was no improvement in the subsequent twenty epochs. The weights obtained were saved for use during the 

test phase. The graphs showing the performance curves of the ViT model during the validation and training phases are shown 

in Figure 6. 
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Figure 6 Graphs of the training and validation performance 

 

Using the stopping point weights of the model, predictions were analyzed on randomly selected samples from the validation 

dataset. These predictions and their class-based probabilities are given in Figure 7. 

 

True Label: Snarasite
Predicted Label: 
99.91% Snarasite 
0.05% Sality 
0.02% Neshta 
0.02% Elex 

True Label: VBKrypt
Predicted Label: 
99.74% VBKrypt
0.19% Androm 
0.04% Adposhel 
0.03% Sality 

True Label: Other
Predicted Label: 
99.87% Other 
0.07% Sality 
0.03% Androm 
0.03% HackKMS 

True Label: Amonetize
Predicted Label: 
100% Amonetize

True Label: Dinwod
Predicted Label: 
97.31% Dinwod
2.63% Injector 
0.03% Androm 
0.03% Amonetize 

True Label: HackKMS
Predicted Label: 
99.97% HackKMS
0.02% Agent 
0.01% Fasong 

True Label: MultiPlug
Predicted Label: 
99.98% MultiPlug
0.01% InstallCore 
0.01% Hlux 

True Label: Fasong
Predicted Label: 
100% Fasong

True Label: Agent
Predicted Label: 
99.32% Agent
0.62% Allaple 
0.04% HackKMS 
0.02% Vilsel  

Figure 7 The validation predictions and their class-based probabilities  

 

As the accuracy of the ViT model was at the desired level during training, the weights were transferred to the model. Test 

images were used as input to the model to verify the robustness of the model. The model achieved an accuracy rate of 98.80% 

with only 17 misclassifications on 1423 test images. The confusion matrix resulting from the model's predictions on the test 

images is shown in Figure 8. When analyzing the test results of the model, it can be seen that the predicted class for most of 

the misclassifications is 'Other'. The main reason for this is that the features of the 'Other' class, which contains more examples 

than other classes, are dominant. 
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Figure 8 The confusion matrix for the test dataset 

 

The block plots illustrating the class-based values of the performance metrics obtained during the test phase are presented in 

Figure 9. 

 

 

Figure 9 Class-based performance values obtained from the test samples 

 

When analyzing the experimental results, it is observed that the Pre rate reaches 100% for twenty classes. Similarly, the 

remaining six classes are also characterized by high Pre values. The lowest Pre rate was observed in the Sality class with a 
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value of 94.23%. Of the classes, only thirteen achieved a Rec rate of 100%, while the lowest recall value was obtained in the 

Injector class, with a rate of 95.91%. In terms of the Specificity metric, which boasts the highest average percentage, 25 

classes reached a specificity of 100%. The Other class is the sole exception, exhibiting a specificity value that is distinctively 

lower than that of the other classes. Upon scrutinizing the class-based F-1 scores, it becomes evident that 25 classes exhibit 

scores surpassing 97%. However, the Sality class displays the lowest F-1 score at 96%. These statistical findings collectively 

demonstrate the model's proficient performance in the multiclass classification task, effectively identifying various classes. 

4. Discussion 

In the field of cybersecurity, the accurate classification of malware images is of paramount importance, serving as a central 

tool for identifying and mitigating a wide range of digital threats. While the classification of malware images has traditionally 

involved labor-intensive processes, the integration of machine learning methods to automate fundamental tasks has become 

essential in various domains, including information security. Leveraging advances in deep learning, a path pioneered by 

CNNs, the field continues to flourish with a number of novel architectures, each contributing to the evolving threat detection 

landscape. This study presents an implementation of ViTs, which have recently gained popularity, to classify malware with 

high accuracy. Table 4 lists similar research studies with the same dataset. Patil et al. [36] proposed a novel approach for 

malware image classification using machine learning, achieving accuracy rates of 93.00% for RF, 93.70% for EfficientNet-

B0, and 92.00% for VGG-16 models. Ilyas and Mohammad [37] proposed a method for malware image classification. Their 

approach incorporated the employment of MobileNetV2, InceptionV3, ResNet50, and LittleVGG architectures. Notably, 

MobileNetV2 exhibited high performance compared to the other models, achieving an accuracy rate of 95.19%. 

Fathurrahman et al. [38] introduced a lightweight CNN model designed for malware image classification in IoT applications, 

particularly suitable for embedded systems. The proposed model achieved an average accuracy of 96.22%. Atitallah et al. 

[39] proposed a novel vision-based approach for classifying IoT malware images, utilizing deep transfer learning with 

ensembling strategies. The proposed approach, which fuses ResNet18, MobileNetV2, and DenseNet161 CNNs using an RF 

voting strategy, achieves exceptional performance with an accuracy of 98.68%. 

 

Table 4 Comparison of our work with studies developed on the same dataset 

Study Year Architecture Model Performance 

Patil et al. [36] 2021 CNN EfficientNet-B0 Acc = 93.70% 

Iyas and Mohammad [37] 2021 CNN MobileNetV2 Acc = 95.19% 

Fathurrahman et al. [38] 2022 CNN Custom CNN Acc = 96.22% 

Atitallah et al. [39] 2022 CNN ResNet18+MobileNetV2+DenseNet161 Acc = 98.68% 

The proposed study 2023 Transformer ViT-B/16 Acc = 98.80% 

 

In this study, the ViT model was used to classify malware images, achieving an impressive accuracy rate of 98.80% across 

26 different classes. This performance surpasses the accuracy rates reported in other studies listed in Table 4. The ViT model's 

superiority can be attributed to its enhanced ability to comprehend pixel relationships, thanks to its attention mechanism, 

allowing it to effectively capture and represent crucial image features. However, in the context of malware classification, it's 

imperative to carefully consider the implications of both FP and FN classifications. FP can trigger unnecessary alarms or 

resource-intensive benign file investigations, while FN may pose significant security risks by allowing malicious files to 

evade detection. When examining the studies outlined in Table 4, it's evident that our research resulted in fewer FP and FN 

predictions. Additionally, the Sality class consistently displayed the lowest accuracy across all the studies in Table 4. By 

understanding the unique challenges associated with this class and exploring the potential reasons for its lower accuracy, can 

enhance the model's robustness and contribute to more reliable real-world malware detection systems. The ViT model's 

superior ability to grasp pixel relationships through its attention mechanism makes it especially advantageous for images with 

intricate structures, such as malware. 

The advantages of our transformer-based model can be summarized as follows: 

 The conceptual foundation of the proposed model is built upon ViTs, which are presently a prominent area of 

research. This is a pioneering work to investigate the performance of transformer-based image classifier models in 

the cybersecurity domain. 

 Since the transfer learning method is used, the model achieves high performance values with low cost. 

 The proposed model improves computational efficiency by vectorizing the input images with 16×16 patches, while 

minimizing important information lost in feature extraction. 

 The proposed model can be fine-tuned and easily used to detect different types of malwares.  

While our research demonstrates the encouraging possibilities of the ViT model in classifying malware images, it is important 

to acknowledge the inherent limitations and potential challenges associated with its application. Specifically, our ViT-based 

classifier requires a significant amount of labeled data for training, which may not be readily available in certain malware 
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analysis scenarios, particularly for rare or emerging malware families. Furthermore, while the ViT model has impressive 

accuracy in classifying malware images, its real-time response time has not been evaluated. Another consideration is the 

computational requirements and scalability of the ViT model. Our study primarily focuses on its classification accuracy, but 

it's important to recognize that deploying the ViT model for real-time malware analysis on a large scale may demand 

substantial computational resources. Therefore, a thorough evaluation of the computational requirements and an assessment 

of the feasibility of deploying the ViT model for real-time malware analysis on a large scale are necessary. However, the 

black box nature of the proposed method may create difficulties in understanding how it makes classification decisions. 

Without the ability to gain insight into the features and attributes that the ViT model uses for classification, it may be difficult 

to gain meaningful information about the characteristics and behavior of different malware families. These limitations 

highlight the need for complementary methods or tools that can provide transparency and interpretability in the context of 

malware analysis, offering a more comprehensive and reliable approach to cybersecurity. In future work, we will extend our 

efforts by exploring malware detection using alternative state-of-the-art transformer-based architectures. Additionally, we 

intend to develop an explainable method that visualizes the specific pixel areas to which these models’ pay attention in their 

predictions. 

5. Conclusions 

In this study, we proposed a ViT model designed for the automated classification of malware images. The proposed model 

is trained and validated on a public dataset with 26 different classes consisting of 14,226 samples. The ViT model with 

ImageNet weights is fine-tuned on malware images. As a result of the training phase using the early stopping function, the 

weights of the epoch with the highest validation accuracy value were recorded and implemented to the model. This model 

achieved 98.80% accuracy on test images it had never seen before. When analyzing the model's predictions on the test images, 

it can be seen that all performance metrics reach 100% for 12 classes. The performance values obtained for the other classes 

are also quite high. However, the model showed the lowest classification performance on the Sality class samples. The main 

limitation of the study is that it does not evaluate the performance of real-time applications. The proposed model can perform 

the classification of malware images automatically and can be effectively used by experts due to its high accuracy rates. 

Moreover, the proposed model can be easily fine-tuned for similar tasks to achieve high performance with low training costs. 
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