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ABSTRACT 
In this paper estimation of uplink channels using tensor modeling is addressed for multiple users in a 

reconfigurable intelligent surface (RIS)-aided multiple-input single-output (MISO) communication. The 

coherence interval is divided into structured frames of pilot symbols transmitted by the users and pattern of 
phase shifts applied by the RIS in order to estimate the base station (BS)-RIS channels and the RIS-user’s 

channels. Estimation methods that use tensor modeling including Khatri-Rao Factorization (KRF) and bilinear 

alternating least squares (BALS) are applied to the signal model. Numerical results show that both KRF and 
BALS are superior to the LS estimator by 10 dB SNR for the correlated Rayleigh fading channel model. 
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1. Introduction 

Energy consumption is an important concern for the emerging wireless networks such as 5G [1-2], 6G [2], the Internet of 

Things (IoT) [2], geostationary (GEO) satellite communications (SatCom) [3-4]. A massive number of devices such as mobile 

phones, sensors [2], and smart sockets [5] that require uninterrupted connectivity and increased quality of service (QoS) [6] 

are expected to be deployed in IoT. Thus, these wireless networks must be energy efficient to be realized [1]. One of the 

solutions is providing some control over the propagation environment via the concept of a smart radio environment [2]. 

A reconfigurable intelligent surface (RIS) is a candidate technology for making these emerging networks energy efficient. 

The RIS comprises many low-cost antennas or metamaterials on a 2D surface with integrated circuits that can passively shape 

an incoming electromagnetic field in desired ways [1-2]. The phase shift of each element of the RIS can be tuned so that the 

reflected signals can be coherently combined such that the whole incoming signal is amplified. The energy consumption of 

the RIS is much less compared to that of an Amplify-and-Forward (AF) relay transceiver since the RIS does not employ 

power amplifiers [7]. The RIS hardware can be easily deployed in a communication environment since they do not take up 

much space. 

One of the fundamental challenges in RIS-employed systems is obtaining the state information of the base station (BS)-RIS 

channel and the RIS-user channel. However, RIS with many elements means the system will have many channel links that 

must be estimated. In addition to this, the channels must be estimated at the receiver since no signal processing can be done 

http://saucis.sakarya.edu.tr/
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at the RIS due to the passive elements. The channel estimation problem is tackled by several previous works in the literature 

[8-16]. [8] shows the optimal selection for the activation pattern of the RIS elements using a minimum variance unbiased 

(MVU) estimator. [9] proposes a minimum mean squared error (MMSE) estimator for a deterministically scattered BS-RIS 

channel. A comparison of the MVU and the MMSE estimators is shown for a single user in [10]. A three-phase channel 

estimation protocol is given in [11] to deal with the BS-user channel or the direct channel by using the first phase to estimate 

the direct channel and then applying interference cancellation in the second phase. [12] applies the Khatri-Rao factorization 

(KRF) and bilinear alternating least squares (BALS) methods to estimate the downlink channels for a single user with multiple 

antennas. Channel estimation for multiple users using BALS is investigated in [13-15]. The tensor-based channel estimation 

in a system with double RIS is studied by [16]. 

We investigate the uplink channel estimation for multiple users in a RIS-aided multiple-input single-output (MISO) 

communication operating in a time division duplex (TDD). Compared to the conference paper [10], where there is only one 

user, we consider channel estimation for multiple users in this work. We focus on applying the tensor-based channel 

estimation methods, which decouple the estimation of the BS-RIS and the RIS-user’s channels with the direct channel 

between the BS and users considered unavailable, unlike the signal model in [10]. Our signal model employs the pilot symbols 

and the RIS phase shift structure of [9,12]. We apply the two tensor-based channel estimation methods, KRF and BALS, to 

our multiple-user signal model. Our KRF implementation differs from that of [12] since it’s built upon the least squares (LS) 

filtered signal and does not require the bilinear filtering step given in [12]. The performances of the algorithms are numerically 

evaluated for a multiple-user scenario with the channels modeled more realistically according to correlated Rayleigh fading, 

unlike the results given in [12-15] for uncorrelated Rayleigh fading. 

The contributions of the paper can be summarized as follows: 

• To the best of our knowledge, our formulation for the KRF method is the first in the literature that uses the output of the 

LS estimator as its input rather than the bilinear filtered signal given in [12]. 

• The proposed KRF method with the LS estimator is computationally efficient compared to the KRF method using 

bilinear filtering [12] since the LS estimator can be applied as a Fast Fourier Transform (FFT). 

• We use the more practical correlated Rayleigh fading as our channel model. Our numerical results differ from the rest of 

the literature [12-15] in showing the impact of spatial correlation of the channels concerning RIS elements on the 

performance of the channel estimation methods using tensor modeling. 

The remaining parts of this paper are organized in the following way: the discrete-time baseband received signal model of 

the MISO system is introduced in Section 2. Then, the derivations of the channel estimation methods, including the LS, KRF, 

and BALS, are given in Section 3. The performances of the investigated methods are compared in Section 4. Finally, Section 

6 presents the conclusions of the paper. 

 

Figure 1 𝑲 single antenna users being communicating with an 𝑴 -antenna BS in a RIS-assisted multi-user MISO system. 

Blue and green lines show the uplink channel vectors that must be estimated. The BS-users channel or the direct channel 

(black line with red cross) is ignored because of high attenuation. 

2. System Model 

We consider a narrow band MISO communication system with a BS equipped with 𝑀 antennas serving 𝐾 single-antenna 

users simultaneously, as seen in Figure 1. A RIS with 𝑁 passive reflecting elements, which can only shift the phases of the 

impinging waves, is deployed to assist the BS. The RIS is attached to a surrounding building’s façade, and the phase shift of 
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each RIS element can be adjusted by the BS over a backhaul link. The direct channels between the BS and any 𝐾 users are 

ignored due to high attenuation or can be estimated by turning off the RIS elements.  

The MISO system shown in Figure 1 operates in half-duplex TDD mode where the channel between antennas is the same in 

both directions within the coherence interval. Once the BS learns the uplink channel from uplink pilots sent by the users in 

the training step, it also automatically has an estimate of the downlink channel. So, a quasi-static block fading channel model, 

where the channels are constant within the coherence interval of 𝑇𝐶  time slots, is assumed. The total channel training time 𝑇𝐶  

is divided into 𝑆 sub-blocks where each sub-block has 𝑇 time slots so that 𝑇𝐶 = 𝑆𝑇. While the RIS phase shifts are kept fixed 

for the duration the 𝑠-th sub-block that is 𝑇 time slots, the users transmit the same pilot sequence across the 𝑆 sub-blocks 

[9,12].  The received baseband signal at the 𝑡-th time slot of the 𝑠-th sub-block 𝐲𝑠,𝑡 ∈ ℂ𝑀×1, is given as 

𝐲𝑠,𝑡 = 𝐇bs(𝛟𝑠 ⊙ 𝐇u𝐱𝑡) + 𝐧𝑠,𝑡 (1) 

where the channels between the RIS and BS are shown as 𝐇bs = [𝐡𝟏
bs … 𝐡𝑵

bs] ∈ ℂ𝑴×𝑵, the channels between the users and 

the RIS are represented as 𝐇u = [𝐡𝟏
u … 𝐡𝑲

u ] ∈ ℂ𝑵×𝑲, 𝐱𝒕 ∈ ℂ𝑲×𝟏 show the orthogonal pilot sequence transmitted by the users, 

and 𝐧𝒔,𝒕 ∈ ℂ𝑴×𝟏 shows the complex additive white Gaussian noise random vector with single-sided power spectral density 

of 𝑵𝟎, i.e. 𝐧𝒔,𝒕~𝓒𝓝(𝟎, 𝑵𝟎𝐈𝑴) where 𝐈𝑴 is the 𝑴 × 𝑴 identity matrix. The RIS phase shift vector applied at the 𝒔-th sub-

block is given as 𝛟𝒔 = [𝒆𝒊𝜽𝟏,𝒔 , … , 𝒆𝒊𝜽𝑵,𝒔]T ∈ ℂ𝑵×𝟏 where 𝜽𝒏,𝒔 ∈ (𝟎, 𝟐𝝅], and ⊙ is the element-wise multiplication, i.e. the 

Hadamard product shown as with 𝐇u𝐱𝒕 in Equation 1. 𝐡𝒏
bs and 𝐡𝒌

u  are modeled as correlated Rayleigh channels. 

𝐡𝑛
bs = √𝛽𝑛

bs𝐊𝑛
1/2

𝐠𝑛 (2) 

𝐡𝑘
u = √𝛽𝑘

𝑢𝐊𝑘
1/2

𝐠𝑘 (3) 

where 𝐊𝒏
𝟏/𝟐

 and 𝐊k
𝟏/𝟐

 are the correlation matrices at the BS and IRS respectively. 𝐠𝒏~𝓒𝓝(𝟎, 𝐈𝑴) and 𝐠𝒌~𝓒𝓝(𝟎, 𝐈𝑵)  are 

the fast-fading components while 𝜷𝒏
bs and 𝜷𝒌

u  are the path loss factors. The received signals for the 𝒔-th sub-block, 𝐘𝒔 =
[𝐲𝒔,𝟏, … , 𝐲𝒔,𝑻] ∈ ℂ𝑴×𝑻, can be written as 

𝐘𝑠 = 𝐇bsdiag{𝛟𝑠}𝐇u𝐗 + 𝐍𝑠 (4) 

where diag{𝛟𝑠} is the matrix with the elements of 𝛟𝑠 on its diagonal, 𝐗 = [𝐱1, … , 𝐱𝑇] ∈ ℂ𝐾×𝑇 is the pilot sequence matrix 

across the 𝑇 slots, and the noise matrix for the 𝑠-th sub-block is denoted as 𝐍𝑠 = [𝐧𝑠,1, … , 𝐧𝑠,𝑇] ∈ ℂ𝑀×𝑇. The receiver first 

despreads the received signal in Equation 4 by multiplying with Hermitian transpose of 𝐗, i.e., 𝐗H, resulting in 

𝐘𝑠 = 𝐇bsdiag{𝛟𝑠}𝐇u + �̃�𝑠 (5) 

where 𝐘𝒔 = 𝐘𝒔𝐗H, �̃�𝒔 = 𝐍𝒔𝐗H, and the size of both matrices is 𝑴 × 𝑲. Due to the pilot sequence matrix, 𝐗, being a unitary 

matrix, i.e., 𝐗𝐗H = 𝐈, the distribution of the noise vectors in �̃�𝒔 do not change. 

3. Channel Estimation Methods 

Channel estimation schemes take the received signal 𝐘𝑠 in Equation 5 as input and output an estimate of either each of the 

channel matrices 𝐇bs and 𝐇u or the cascade channel matrix which is the product of the individual channel matrices. The least 

squares method estimates the cascade channel matrix while the KRF and the BALS method estimate 𝐇bs and 𝐇u separately. 

Estimating the channel matrices separately is subject to complex scaling ambiguity, but the scaling factors cancel each other 

when the separate channel matrices are multiplied to calculate the cascade channel. 

3.1 Least Squares Channel Estimation 

Least squares (LS) estimation is a benchmark method of estimating the cascade channel matrix. If both sides of the Equation 

5 are vectorized, since diag{𝛟𝑠} is a diagonal matrix, it can be rewritten by using the properties vec{𝐀𝐁𝐂} =
(𝐂T◇𝐀)vecd{𝐁} as 

𝐫𝑠 = (�̅�u◇𝐇bs)𝛟𝑠 + 𝐰𝑠 (6) 

where 𝐫𝑠 = vec{𝐘𝑠} ∈ ℂ𝑀𝐾×1, 𝐰𝑠 = vec{�̃�𝑠} ∈ ℂ𝑀𝐾×1, �̅�u = [𝐇u]T ∈ ℂ𝐾×𝑁 that is the transpose of 𝐇u, ◇ denotes the 

Khatri-Rao product. If 𝐑 = [𝐫1 … 𝐫𝑆] ∈ ℂ𝑀𝐾×𝑆 and 𝐖 = [𝐰1 … 𝐰𝑆] ∈ ℂ𝑀𝐾×𝑆 are defined, then 𝐑 is equal to 

𝐑 = 𝐇cascade𝚽 + 𝐖 (7) 

where 𝐇cascade = [�̅�u◇𝐇bs] ∈ ℂ𝑀𝐾×𝑁 and 𝚽 = [𝛟1 … 𝛟𝑆] ∈ ℂ𝑁×𝑆. Applying another vectorization to both sides of Equation 

7 and then using the property vec{𝐀𝐁𝐂} = (𝐂T ⊗ 𝐀)vec{𝐁} yields 
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𝐫′ = (�̅� ⊗ 𝐈𝑀𝐾)vec{𝐇cascade} + 𝐳 (8) 

where 𝐫′ = vec{𝐑} ∈ ℂ𝑀𝐾𝑆×1, 𝐳 = vec{𝐖} ∈ ℂ𝑀𝐾𝑆×1, �̅� = 𝚽T ∈ ℂ𝑆×𝑁 that is the transpose of 𝚽 and ⊗ denotes the 

Kronecker product. Equation 8 can be rewritten as 

𝐫′ = 𝐐𝐡cascade + 𝐳 (9) 

where 𝐐 = [�̅� ⊗ 𝐈𝑀𝐾] ∈ ℂ𝑀𝐾𝑆×𝑀𝐾𝑁 and 𝐡cascade = vec{𝐇cascade} ∈ ℂ𝑀𝐾𝑁×1. The LS estimate is obtained from 

�̂�cascade = arg min
𝐡cascade

‖𝐫′ − 𝐐𝐡cascade‖
2

2
 (10) 

where the solution is equal to �̂�cascade = 𝐐†𝐫′ provided that 𝑆 ≥ 𝑁 holds and 𝐐† is the Moore-Penrose left inverse of 𝐐.  The 

LS estimate can be simplified to 

�̂�cascade = [(�̅�H�̅�)−1�̅�H ⊗ 𝐈𝑀𝐾]𝐫′ (11) 

where �̅�H is the conjugate transpose of �̅�. [8-9] shows that constructing �̅� from the 𝑆 leading columns of the 𝑁 × 𝑁 DFT 

matrix, 𝐅 ∈ ℂ𝑁×𝑆, as  

[�̅�]𝑠,𝑛 = [𝐅]𝑠,𝑛 = exp [−𝑖
2𝜋(𝑠 − 1)(𝑛 − 1)

𝑆
] , 𝑠 = 1, … 𝑆, 𝑛 = 1, … , 𝑁 (12) 

minimizes the LS error. Plugging Equation 12 into Equation 11 simplifies the LS estimator expression further as 

�̂�cascade = (1/S)[𝐅H ⊗ 𝐈𝑀𝐾]𝐫′ (13) 

where 𝐅H is the conjugate transpose of 𝐅. The LS estimator in Equation 13 can be calculated is in total 𝒪(𝑀𝐾𝑆 log 𝑆) 

operations due to the application of 𝑀𝐾 inverse DFT which can be implemented as FFT in 𝒪(𝑆 log 𝑆) operations [8]. 

3.2 Khatri-Rao Factorization Based Channel Estimation 

Once the LS estimator in Equation 13 is applied, we obtain 

�̃� = 𝐡cascade + �̃� (14) 

where �̃� = (1/N)[𝐅H ⊗ 𝐈𝑀𝐾]𝐫′, and �̃� = (1/N)[𝐅H ⊗ 𝐈𝑀𝐾]𝐳. If the filtered signal, �̃�, in Equation 14 is reshaped into a 

𝑀𝐾 × 𝑁 matrix, then it can be written using as 

�̃� = �̅�u◇𝐇bs + �̃� (15) 

where �̃� = [�̃�1 … �̃�𝑁] ∈ ℂ𝑀𝐾×𝑁 and  �̃� = [�̃�1 … �̃�𝑁] ∈ ℂ𝑀𝐾×𝑁. The Khatri-Rao least squares problem 

min
�̅�u,𝐇bs

‖�̃� − �̅�u◇𝐇bs‖
𝐹

2
 (16) 

deals with the solving both �̅�u and 𝐇bs in Equation 15 [12]. An efficient solution of the Khatri-Rao least squares problem in 

Equation 16 is the KRF algorithm which is shown in Algorithm 1. The 𝑛-th column of the Khatri-Rao product �̃� ≈ �̅�u◇𝐇bs 

is defined as �̃�𝑛 ≈ �̅�𝑛
u ⊗ 𝐡𝑛

bs which is a collection of all pair-wise product of its elements. This collection of products can be 

reshaped into a rank-one matrix, vec{�̃�𝑛} = �̃�𝑛, that is the outer product of two vectors that is �̃�𝑛 = 𝐡𝑛
bs(�̅�𝑛

u )
T
. The best rank-

one approximation is known to be given by the truncated singular value decomposition (SVD). The KRF algorithm 

(Algorithm 1) cannot give a unique solution since there exists one non-zero complex number which results in a scaling 

ambiguity per column that is  �̅�𝑛
u ⊗ 𝐡𝑛

bs = (𝛼𝑛�̅�𝑛
u ) ⊗ (

1

𝛼𝑛
𝐡𝑛

bs) ∀𝛼𝑛 ∈ ℂ≠0.  

The computational complexity of the KRF is determined by the fourth step in Algorithm 1, which calculates the truncated 

SVD. 𝑁 number of truncated SVD can be calculated in 𝒪(𝑀𝐾𝑁) operations which is the complexity of the KRF algorithm 

[12]. The flow chart of Algorithm 1 is shown in Figure 2. 

Algorithm 1 Khatri-Rao Factorization (KRF) 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

input �̃� 

for 𝑛 = 1, … , 𝑁 

  reshape 𝑛-th column of �̃� into �̃�𝑛 ∈ ℂ𝑀×𝐾 such that vec{�̃�𝑛} = �̃�𝑛 

  calculate the SVD of �̃�𝑛 as �̃�𝑛 = 𝐔𝑛𝚺𝑛𝐕𝑛
H 

  calculate the best rank-one approximations by truncating the    

  SVD as �̂�𝑛
u = √𝜎1𝐯1

∗ and �̂�𝑛
bs = √𝜎1𝐮1 where 𝜎1 is the largest singular  

  value and 𝐯1 and 𝐮1 are the first columns of 𝐕𝑛 and 𝐔𝑛 

end 

output �̂�u = [�̂�1
u … �̂�𝑁

u ] and �̂�bs = [�̂�1
bs … �̂�𝑁

bs] 
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Figure 2 The flow chart of Algorithm 1.  

3.3 Bilinear Alternating Least Squares Channel Estimation 

The signal part of the received signal in Equation 5 is given as 

𝐘𝑠
′ = 𝐇bsdiag{𝛟𝑠}[�̅�u]T (17) 

where 𝐘𝑠
′ ∈ ℂ𝑀×𝐾. The matrix, 𝐘𝑠

′, is the 𝑠-th frontal slice of a three-way signal tensor 𝒴′ ∈ ℂ𝑀×𝐾×𝑆. Using the canonical 

parallel factor (PARAFAC) decomposition, the signal tensor 𝒴′ can be factorized into a sum of rank-one tensors [17-18] as 

𝒴′ = ⟦𝐇bs, �̅�u, �̅�⟧ = ∑ 𝐡𝑛
bs ∘ �̅�𝑛

u

𝑁

𝑛=1

∘ �̅�𝑛 (18) 

where ∘ denotes the outer product. 𝒴′ in Equation 18 can be written in three matricized forms or mode-n unfoldings [17-18] 

as 

𝐘(1)
′ = 𝐇bs(�̅�◇�̅�u)T (19) 

𝐘(2)
′ = �̅�u(�̅�◇𝐇bs)T (20) 

𝐘(3)
′ = �̅�(�̅�u◇𝐇bs)T (21) 

where 𝐘(1)
′ = [𝐘1

′ , … , 𝐘𝑆
′] ∈ ℂ𝑀×𝐾𝑆, 𝐘(2)

′ = [𝐘1
′̅̅ ̅, … , 𝐘𝑆

′̅̅ ̅] ∈ ℂ𝐾×𝑀𝑆,  𝐘𝑠
′̅̅̅ = [𝐘𝑠

′]T, and 𝐘(3)
′ = [vec{𝐘1

′}, … , vec{𝐘𝑆
′}]T ∈ ℂ𝑆×𝑀𝐾 . 

When noise is added to the signal tensor in Equation 18, the received signal tensor is given as 

�̃� = 𝒴′ + �̃� (22) 

where the noise tensor is shown as �̃�. The mode-n unfoldings of the received signal tensor in Equation 22 are 
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𝐘(𝑙) = 𝐘′(𝑙) + �̃�(𝑙) (23) 

where 𝑙 = 1,2,3 and �̃�(𝑙) is the corresponding unfolding for the noise tensor, �̃�. The bilinear alternating least squares (BALS) 

estimation shown in Algorithm 2 is applied to the noisy versions of Equation 19 and Equation 20 which are 𝐘(1) and  𝐘(2) 

respectively. BALS requires �̅�u to be initialized and this is achieved by calculating the SVD of 𝐘(2)
′  and setting �̅�u to 𝑁 

leading left singular vectors of 𝐘(2)
′ . Since the RIS coefficients matrix, �̅�, is known and so does not need to be fixed, BALS 

first fixes �̅�u to solve for 𝐇bs by calculating 

�̂�bs = min
𝐇bs

‖𝐘(1) − 𝐇bs(�̅�◇�̅�u)T‖
𝐹

2
= 𝐘(1)[(�̅�◇�̅�u)T]† (24) 

where [(�̅�◇�̅�u)T]† is the Moore-Penrose right inverse (�̅�◇�̅�u)T and then fixes 𝐇bs = �̂�bs to solve for �̅�u by calculating 

�̂�u = min
𝐇u

‖𝐘(2) − �̅�u(�̅�◇𝐇bs)T‖
𝐹

2
= 𝐘(2)[(�̅�◇𝐇bs)T]

†
 (25) 

where [(�̅�◇𝐇bs)T]
†
 is the Moore-Penrose right inverse of (�̅�◇𝐇bs)T [12-13]. The necessary condition for obtaining unique 

solutions to Equations 24 and 25 is that the matrices (�̅�◇�̅�u) ∈ ℂ𝑆𝐾×𝑁 and (�̅�◇𝐇bs) ∈ ℂ𝑆𝑀×𝑁 must have full column rank 

which means 𝑆𝐾 ≥ 𝑁 and 𝑆𝑀 ≥ 𝑁. Satisfying these two inequalities at the same time yields 𝑆min(𝐾, 𝑀) ≥ 𝑁 [12]. This 

condition is not sufficient to guarantee the uniqueness of the BALS estimates. For the PARAFAC decomposition in Equation 

18 to be identifiable 𝑀, 𝐾 ≥ 𝑁 [13-14]. Both the number of users and the number of BS antennas of a practical MISO system 

is going to be less than the number of RIS elements. The identifiability condition may be satisfied by partitioning the RIS 

into groups of non-overlapping cells with the number of elements in each cell less than 𝑀 and 𝐾 [13]. The algorithm stops 

either when ‖𝜀𝑗 − 𝜀𝑗−1‖ < 𝜖 that is the error calculated at the 𝑗-th iteration of the algorithm, 𝜀𝑗 = ‖�̃� − �̂�𝑗‖
𝐹

2
, is less than a 

threshold, 𝜖, or a maximum number of iterations, 𝐽, has been completed. 

Algorithm 2 BALS 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

input �̅� 

initialize �̂�u by calculating SVD of 𝐘(2)
′  and set �̂�u to 𝑁 leading 

left singular vectors of 𝐘(2)
′  

for 𝑗 = 1, … , 𝐽 

  find an estimate of 𝐇bs by calculating �̂�bs = 𝐘(1)
′ [(�̅�◇�̂�u)T]

†
 

  find an estimate of �̅�u by calculating �̂�u = 𝐘(2)
′ [(�̅�◇�̂�bs)T]

†
 

  if ‖𝜀𝑗 − 𝜀𝑗−1‖ < 𝜖 
    break 

  end 

end 

output �̂�u and �̂�bs 

 

The computationally involved steps of the BALS estimation shown in Algorithm 2 are the fifth and sixth steps in which are 

the calculation of two right pseudo-inverses. The estimates of �̂�bs and �̂�u can be calculated in 𝒪(𝑁3 + 4𝑁2𝑀𝑆 − 𝑁𝑀𝑆) and 

𝒪(𝑁3 + 4𝑁2𝐾𝑆 − 𝑁𝐾𝑆) operations [14]. Thus, the complexity of the BALS for a maximum number of iterations is equal to 

𝒪(2𝑁3𝐽 + 4𝑁2𝑆𝐽(𝑀 + 𝐾) − 𝑁𝑆𝐽(𝑀 + 𝐾)). The flow chart of Algorithm 2 is shown in Figure 3. 

4. Numerical Results 

The numerical results are calculated in a MATLAB environment of R2023b release with version number 23.2.0.2409890 and 

3rd update installed on a personal computer (PC). The PC's operating system is 64-bit Windows 11 Pro with AMD Ryzen 5 

3600 6-Core Processor at 3.60 GHz and 16 GB RAM. The normalized mean square error (NMSE) is used to compare the 

performances of the investigated estimators. NMSE can be calculated in 

NMSE(�̂�𝑜) =
1

𝑅
∑

‖𝐇𝑟 − �̂�𝑟
𝑜‖

𝐹

2

‖𝐇𝑟‖𝐹
2

𝑅

𝑟=1

 (26) 

where 𝑜 ∈ {bs, u, cascade}, �̂�𝑟
𝑜 is the corresponding channel matrix estimated at the 𝑟-th iteration, 𝑅 is the total number of 

runs and ‖∙‖𝐹
2  shows the square of the Frobenius norm. The signal-to-noise ratio (SNR) is given as 
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SNR = 10 log10 (
‖𝒴′‖𝐹

2

‖�̃�‖
𝐹

2 ) (27) 

 

 

Figure 3 The flow chart of Algorithm 2.  

 where ‖�̃�‖
𝐹

2
= 𝑀𝑇𝑆𝑁0. The channel matrices 𝐇bs and 𝐇u are generated as Rayleigh fading channels with correlation 

matrices [𝐊𝑛]𝑚,𝑚′ = 𝜂|𝑚−𝑚′| and [𝐊𝑘]𝑛,𝑛′ = 𝜂|𝑛−𝑛′| respectively with correlation coefficient set to 𝜂 = 0.95  in each run. 

NMSE curves are averaged over 𝑅 = 1000 iterations for parameters 𝑀 = 𝐾 = 𝑇 = 16, 𝑆 = 32, 𝑁 ∈ {8,16} and the SNR is 

within [0,30] dB. Figure 4 gives the NMSE curves for the estimation of 𝐇u and 𝐇bs separately by the KRF and BALS 

algorithms. The performance of the LS estimator is not available in this scenario since it can only estimate the cascade 

channel. The scaling ambiguity that is inherent in both the KRF and BALS algorithms separate estimation of 𝐇u and 𝐇bs is 

dealt with normalizing the first column of 𝐇u to an all-ones vector so that the first column �̂�u gives the scaling coefficients 

[13-14]. We can see from Figure 4 that the performances of the KRF and the BALS algorithm are very close to each other 

except for 𝑁 = 16 at 0 dB SNR where the BALS is better than the KRF in estimating 𝐇u. The estimation accuracy for 𝐇bs 

is better than that of 𝐇u for both tensor-based approaches. Doubling of 𝑁 from 8 to 16 causes approximately a 2.5 dB loss in 

SNR (Figure 4) due to the increased dimension of the channel coefficient vector.  
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Figure 4 NMSE of �̂�bs and �̂�u for 𝑴 = 𝑲 = 𝑻 = 𝟏𝟔, 𝑺 = 𝟑𝟐, 𝑵 ∈ {𝟖, 𝟏𝟔}. 

 

The NMSE plots for the estimation of the cascade channel, 𝐇cascade, are shown in Figure 5. The LS estimator, computationally 

less involved, performs the worst compared to KRF or BALS. Both tensor-based channel estimation methods improve the 

LS estimator by a 10 dB SNR margin. The performances of the KRF and BALS algorithms are indistinguishable regarding 

the cascade channel NMSE. Increasing 𝑁 from 8 to 16 results in approximately 2.5 dB loss in SNR for both the LS and the 

tensor-based approaches.  

 

Figure 5 NMSE of �̂�cascade for 𝑴 = 𝑲 = 𝑻 = 𝟏𝟔, 𝑺 = 𝟑𝟐, 𝑵 ∈ {𝟖, 𝟏𝟔}. 

5. Discussion 

Since the LS estimator can be implemented using the FFT algorithm, our proposed KRF method, which takes the LS estimator 

as its input, has a computational advantage over the KRF method of [12], which requires a bilinear filtering step. While the 
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numerical results of [12] are given for only a single-user scenario, our numerical results, like those in [11,13-15], are evaluated 

for multiple users. We use the correlated Rayleigh fading model, which is a better model for the spatial correlation due to the 

RIS elements in the uplink channels. Our numerical results show its impact on the channel estimation performance unlike the 

rest of the literature on tensor modeling methods [12-15], which include only the results for the uncorrelated Rayleigh fading. 

Also, the numerical results of [13] and [15] only focus on applying the BALS algorithm and do not include the KRF method. 

[16] investigates the application of tensor-based channel estimation methods for double RIS-aided systems, unlike the single 

RIS-aided systems considered by our paper and the rest of the literature [12-15]. Compared to [14], we do not cover the 

achievable sum rates for the downlink communication using the channels estimated by the proposed methods in our paper. 

As a future work, the rate of each user can be investigated for different RIS matrix designs and precoding schemes such as 

maximum ratio transmission, zero forcing, and minimum mean square error schemes.  

6. Conclusion 

We presented applying two tensor-based channel estimation methods, KRF and BALS, to the uplink of a RIS-aided multi-

user MISO communication system. The derivations, identifiability conditions, and complexities of the algorithms are given 

in detail. The performances of the tensor-based algorithms are numerically compared against the baseline conventional LS 

estimation for the correlated Rayleigh fading channel model. Numerical results show that while the performances of both 

tensor-based are on the same level concerning each other, both improve upon the LS estimator by a 10-dB margin. It is 

observed that all estimators lose 2.5 dB in SNR when the number of RIS elements is doubled. 
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