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Abstract- Travelling salesman problem is a well-known problem in optimization algorithms. In this study, we propose a hybrid 
genetic-ant colony algorithm to solve this problem. There are no certain formulas to determine the parameters of ant colony 
algorithm. Usually, programmers use the trial and error method to find best values. We use the genetic algorithm to optimize 
best parameter values of ant colony algorithm. In this way, the success rate of ant colony algorithm is maximized. The success 
of the method has been proven by experimental studies. 
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1. Introduction 

Optimization is everywhere in the life. Not only people 
but also other living things make an optimization to make life 
easier. In airline scheduling, finance, internet routing, 
navigation, robotic path planning and etc. Optimization is 
used almost all applications in engineering and industry. We 
optimize something to minimize the cost and energy 
consumption or to maximize the efficiency, performance, and 
profit etc. Optimization is very important in applications 
because energy sources, money, time is always limited [1].  

Many of the algorithms used in optimization have been 
developed from nature. Genetic algorithm (GA) [2], particle 
swarm optimization [3], ant colony optimization (ACO) [4], 
monkey Search [5], wolf pack search algorithm [6], cuckoo 
search [7], fruit fly optimization algorithm [8], dolphin 
echolocation [9], Whale optimization algorithm [10] are some 
of the algorithms. Finding the best solution is the common 
goal of these algorithms. This can sometimes be found in an 
equation to find the most suitable parameters, to find the most 
suitable coefficients, to find the best shortest path, to make the 
least costly choice. 

Travelling salesman problem (TSP) is a well-known 
problem for optimization algorithms. TSP asks for the most 
efficient trajectory possible given a set of nodes and distances 

that must all be visited. In computer science, the problem can 
be applied to the most efficient route for data to travel between 
various nodes. The goal is to find the shortest way. Ant colony 
optimization algorithm (ACO) is used in path planning 
problems [11], [12]. Genetic algorithm (GA) is frequently 
used in all kinds of optimization problems [13]. Path planning 
is one of these problems [14]–[16].  

The ACO gives successful solving for TSP if the 
parameters are convenient. However, the efficiency of the 
ACO is closely related to the chosen parameters that include 
the information heuristic factor α, the expectation heuristic 
factor β, the pheromone evaporation factor ρ. Usually, 
programmers determine the parameters of ACO via trial-error 
method because there are no certain formulas to determine 
these values. Parameter selection differs for different types of 
optimization problems. Moreover, parameters may change 
according to the varied situations of the problem [17]. For TSP 
constant adjusted parameters may not be suitable when the 
position of the nodes in TSP problem changes. In other words, 
these parameters differ according to the node locations in the 
TSP problem. Optimization algorithms give good results for 
parameter estimation problems [18]. We propose a hybrid 
GA-ACO algorithm to overcome this problem. Firstly we 
determine the parameters of ACO via GA and then run ACO 
with these values. The efficiency of the algorithm is 
maximized. A graphical user interface is designed to run 
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proposed method. The number of nodes and location of the 
nodes of TSP are defined by the user in that software. The 
difference between manual parameter adjustment and 
optimization of parameters are compared. 

The structure of the paper is introduced as follows. 
Section II gives out the methods GA , ACO, and GA-ACO. In 
Section III, some experiments are given and the analysis of 
experimental results are done. Finally, some conclusion is 
given in Section IV. 

2. Methods 

GA and ACO methods are frequently used methods in 
optimization problems. In this section, small explanation 
about GA and ACO is given.  

2.1. Genetic Algorithm 

In programming, a genetic algorithm is a metaheuristic 
inspired by the process of natural selection that belongs to the 
larger class of evolutionary algorithms. Genetic algorithms are 
usually used to obtain high-quality solutions to optimization 
and search problems by relying on biological operators such 
as mutation, crossover, and selection [2].  

Basic process steps of the genetic algorithm are given 
below: 

Step 1: Start 

Step 2: Set genetic algorithm parameters 

Step 3: Generate initial random population 

Step 4: Evaluate fitness for each chromosome in the 
population 

Step 5: Are optimization criteria met? If yes go to step 11 if 
no go to step 6 

Step 6: Parents selection for next chromosome 

Step 7: Crossover of parents chromosome 

Step 8: Mutation of chromosome 

Step 9: New population 

Step 10: Go to step 4 

Step 11: Best chromosome 

Step 12: End [19]: 

Binary numbers are used to generate chromosomes.GA is 
implemented with small population size to allow the controller 
as fast as possible. In this study, the size of the initial 
population is adjusted to 5, crossover rate is 5%, the mutation 
rate is 5%, and the number of iterations is 5.These values can 
be adjusted according to the number of nodes in the TSP. For 
a small number of nodes, small iteration number and 
population number will be enough nevertheless it is necessary 
to increase these values as the number of nodes increases for 
better results. The initial population is set by encoding the 
ACO parameters α, β, and ρ into binary strings known as a 
chromosome. The length of the chromosome for precision is 
3 determined as following equations: 

1mj2310)ajbj(1mj2 −≤⋅−<−  (1) 
where mj is the number of bits, and bj and aj are upper and 
lower bounds of ACO parameters. For example, if α ϵ [0,5] β 
ϵ [0,2], and ρ ϵ [0,1], the required bits calculated according to 
Eq. (1) are equal to 13,11,10 respectively. The length od the 
chromosome is 34. The fitness of each chromosome is 
evaluated by converting the binary string into real value. The 
converting process is done according to Eq. (2) [17].  

1mj2

ajbj)jsubsitring(decimalajxj
−

−
⋅+=  (2) 

A single crossover point on both parents' strings is selected. 
Elitism method is used in the selection step. This method first 
copies the best chromosome (or a few best chromosomes) to 
newly generated population. The rest is done in a classical 
way. Elitism can very rapidly increase the performance of GA 
because it prevents losing the best-found solution.  

2.2. Ant Colony Algorithm 

Ant colony optimization algorithm is introduced by 
Dorigo [4]. This algorithm is inspired by ants. While the ant 
colony is looking for the food source, they will leave 
pheromone to attract and guide other ants on the path that they 
have passed, the intensity of pheromone is in inverse 
proportion to the length of the path. Ants can sense the 
pheromone and they chose the path which has the maximum 
pheromone intensity. Basic process steps of the ACO are 
given below: 

Step 1: Start 

Step 2: Create ants 

Step 3: Put ants on an entry state 

Step 4: Create empty path lists for each ant 

Step 5: Select next state for each ant 

Step 6: Are the path lists full if no go to step 5 if yes go to step 
7 

Step 7: Update local pheromone 

Step 8: Update global pheromone 

Step 9: Evaporate pheromone  

Step 10: Is termination criteria met? If no go to step 3 if yes 
go to step 11 

Step 11: End 

At time t, the transition probability of moving from node 
i to j for ant k is given in Eq. (3). 
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In this equation, jk(i) is the set of accessible neighbour 
nodes of node i, ƞ is the local visibility, τ is the pheromone 
intensity and β are the constant parameters that determine the 
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relative of ant. After the ants in the algorithm ended their 
tours, the pheromone trail amount will update according to the 
following formula: 

)1t(
ij
k

τ)t(τ)ρ1()1t(τ
m

1k
ijij +∆+−=+ ∑

=

 (4) 

 

ρ ( 10 ≤ρ≤ ) is the pheromone evaporation rate in Eq.(4)., 

and ( )ij tτ  is the amount of pheromone accumulated until 

iteration t, ( 1)k
ij tτ +∆  is the pheromone amount at iteration t. 

The local pheromone amount ( 1)k
ij tτ +∆  is estimated 

according to Eq. 5. 
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In Eq. (5). Lk(t+1) is the total distance of path for kth ant. 
Local pheromone updating makes the transition paths 
attractive by dynamically changing tours. The ants also 
change their tours at every iteration depending on the 
changing pheromone amounts. Thus, it is always aimed to find 
shorter tours. The global pheromone update is calculated using 
a formula similar to the local pheromone update: After all ants 
finish their tours the best path's pheromone amount is updated 
according to Eq. (6). Lbest is the distance of shortest path in 
tour t. 
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2.3. Hybrid GA-ACO Algorithm 

The block diagram of GA-ACO is given in Fig. 1. The 
genetic algorithm optimizes the parameters of ACO according 
to the output of ACO. ACO is also the fitness function of GA. 
ACO operates with optimized parameters and for TSP 
problem a path plan and the distance of the path is obtained. 
The distance parameter in the input value of GA. With this 
method, It is not necessary for the user to find the correct 
values by trial and error method. Basic process steps of the 
GA-ACO are given below: 

Step 1: Start 

Step 2: Set genetic algorithm parameters 

Step 3: Generate initial random population 

Step 4: Evaluate fitness for each chromosome in the 
population 

Step 5: Start ACO 

Step 6: Create ants 

Step 7: Put ants on an entry state 

Step 8: Create empty path lists for each ant 

Step 9: Select next state for each ant 

Step 10: Are the path lists full if no go to step 9 if yes go to 
step 11 

Step 11: Update local pheromone 

Step 12: Update global pheromone 

Step 13: Evaporate pheromone  

Step 14: Is termination criteria met? If no go to step 7 if yes 
go to step 15 

Step 15: End ACO 

Step 16: Are optimization criteria met? If yes go to step 22 if 
no go to step 17 

Step 17: Parents selection for next chromosome 

Step 18: Crossover of parents chromosome 

Step 19: Mutation of chromosome 

Step 20: New population 

Step 21: Go to step 4 

Step 22: Best chromosome 

Step 23: End  

 

β Genetic 
Algorithm

Ant Colony 
Algorithm

α 

ρ 

Fitness 
Function

Distance of best path
 

Fig. 1. Block diagram of the proposed method. 

3. Experimental Study 

Several experiments were performed for different 
numbers of nodes positioned in different places in the 
simulation. For each experiment different ACO parameters 
are obtained via GA. A few of simulations are given below. 

For simulation given in Fig. 2 the path map is obtained as 
4, 5, 15, 3, 12, 10, 18, 8, 8, 14, 13, 9, 2, 11, 1, 0, 17, 16, 6. The 
distance is 4088. The parameters of α ϵ [0,2] β ϵ [0,2], and ρ ϵ 
[0,1] are obtained as 0.594, 1.119, 0.094 respectively. The 
population size is 20, iteration number is 10, crossover rate is 
5%, the mutation rate is 5%. The coordinates of the 
simulations are given in Table 1. 

For simulation given in Fig. 3. the path map is obtained as 
4, 5, 14, 10, 11, 9, 13, 8, 7, 12, 6, 3, 2, 1. The distance is 1583. 
The parameters of α ϵ [0,1] β ϵ [0,1], and ρ ϵ [0,1] are obtained 
as 0.032, 0.541, 0.024 respectively. The population size is 30, 
iteration number is 5, crossover rate is 5%, the mutation rate 
is 5%. The coordinates of the simulations are given in Table 
2. 
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Table 1. Coordinates of nodes for Fig. 2. 

Order X Y Order X Y Order X Y 

0 123 157 7 40 455 14 541 305 

1 136 82 8 584 19 15 205 243 

2 297 131 9 638 475 16 66 235 

3 263 256 10 426 207 17 43 83 

4 358 350 11 221 18 18 485 170 

5 239 378 12 376 270    
6 124 335 13 489 413    

 

 
Figure 2. Simulation 1. 

 

Table 2. Coordinates of nodes for Fig. 3. 

Order X Y Order X Y 

0 41 107 8 407 99 

1 62 46 9 413 259 

2 164 45 10 304 366 

3 169 135 11 418 404 

4 117 227 12 320 219 

5 188 307 13 446 172 

6 240 261 14 221 385 

7 277 112    
 

 
Figure 3. Simulation 2. 

For simulation given in Fig. 4. the path map is obtained as 
4, 3, 2, 1, 0, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 12, 11, 17, 18, 19, 
20, 21, 22, 23, 24. The distance is 4241. The parameters of α 
ϵ [0,2] β ϵ [0,2], and ρ ϵ [0,1] are obtained as 0.521, 1.238, 
0.693 respectively. The population size is 30, iteration number 

is 10, crossover rate is 5%, the mutation rate is 5%. The 
coordinates of the simulations are given in Table 3. 

Table 3. Coordinates of nodes for Fig. 4. 

Order X Y Order X Y Order X Y 

0 109 436 9 196 235 18 340 449 

1 64 380 10 240 253 19 455 426 

2 62 316 11 285 318 20 477 312 

3 95 280 12 324 299 21 435 127 

4 136 308 13 307 243 22 299 85 

5 161 367 14 293 186 23 134 114 

6 198 380 15 343 178 24 104 190 

7 215 339 16 398 251    

8 194 290 17 367 381    

 

 
Figure 4. Simulation 3. 

4. Conclusion 

The performance of ACO is related to suitable 
parameters. Nevertheless, it is difficult to determine the 
parameters via trial and error method. In this study, we used a 
hybrid GA-ACO algorithm to find the best path for TSP. The 
parameters of ACO are determined via GA. GA-ACO can be 
used in problems where it is difficult to determine ACO 
parameters. Several experiments were done with developed 
software. Three of them are presented in the paper. It has seen 
that the parameters of ACO change for each experiment. The 
experimental studies showed the superiority of the method. 
The shortest route is found every time. This study will help the 
researchers who are making parameter optimization. 
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