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ABSTRACT 

In this study, we present an electronic component classification system with a classification accuracy exceeding 

98%, achieved by utilizing state-of-the-art deep learning architectures. We employed EfficientNetV2B3, 
EfficientNetV2S, EfficientNetB0, InceptionV3, MobileNet, and Vision Transformer (ViT) models for the 

classification task. Our dataset comprises various electronic components, and it has been meticulously organized 

and labeled to provide high-quality training data. We conducted extensive experiments, utilizing data 
augmentation techniques and transfer learning, to fine-tune and optimize the models for the given task. The high 

classification accuracy achieved by our system indicates its readiness for real-world applications. It can be 

applied to advance automation and efficiency in the electronics industry. 
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1. Introduction

Fundamental to electronic circuitry and systems, electronic components represent indispensable units, meticulously 

engineered to fulfill precise functionalities. They are classified into two primary categories: active components, exemplified 

by transistors and diodes, and passive components, encompassing resistors and capacitors. These elements play pivotal roles 

in the processing, storage, and transmission of electrical signals [1]. Resistors, for instance, regulate the flow of electric 

current, often used to control voltage and current within a circuit. Capacitors, on the other hand, store and release electrical 

energy, proving valuable for tasks like energy storage and timing. Transistors are versatile, functioning as amplifiers or 

switches for electronic signals and serving as the backbone of modern electronics, including amplifiers and processors. LEDs 

(Light Emitting Diodes) are ubiquitous for their light emission when current flows through them, commonly applied in 

displays, indicators, and lighting. Potentiometers, or variable resistors, are useful for tasks like volume control and tuning in 

electronic devices. Buttons, which also go by the name of switches, control the electrical current's flow, often used for user 

input and control. In addition, ultrasonic sensors make use of sound waves to measure distance or detect objects. They have 

applications in robotics, automotive systems, and distance measurement. These components are deployed across various 

industries, from consumer electronics and automotive systems to industrial automation, telecommunications, medical 

devices, aerospace and defense, and renewable energy solutions. In essence, electronic components are the foundational 

elements that power the world of modern technology, enabling the development of advanced electronic devices and systems 

that have revolutionized everyday life and various industrial sectors [2]–[10]. 

Image classification is the process of assigning a specific class to an image, and within this domain, various techniques are 

employed [11]. Deep learning, particularly leveraging architectures such as Convolutional Neural Networks (CNNs), stands 

out as a robust approach [12]. Additionally, machine learning algorithms like Support Vector Machines (SVM) [13], decision 

trees [14], and random forests [15], as well as straightforward methods like K-Nearest Neighbors [16], are commonly utilized. 

Image features and descriptors, including color histograms, edge detectors, and Histogram of Oriented Gradients (HOG), 

contribute to the diverse array of methods. These techniques are often combined or customized based on factors such as 

dataset size, complexity, and specific requirements. The selection of a particular method is contingent upon the distinct usage 

scenarios and objectives. 
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Deep learning, a subfield of machine learning, involves training artificial neural networks with multiple layers to perform 

complex tasks. Its importance lies in its remarkable ability to automatically learn and extract intricate patterns and 

representations from large datasets, enabling the development of highly accurate predictive models. Deep learning has found 

diverse applications, one of which is in classification. It is used to categorize and identify objects or data, such as images, 

audio, or text, in various domains. For instance, in computer vision, deep learning is employed for image recognition, object 

detection, and facial recognition. In natural language processing, it aids in sentiment analysis, language translation, and 

chatbot development. Deep learning also has applications in healthcare for disease diagnosis, in autonomous vehicles for 

object detection and navigation, in finance for fraud detection, and in manufacturing for quality control. Its capacity to handle 

large and complex datasets makes deep learning a transformative technology with wide-ranging implications for automation, 

precision, and decision-making across industries [17]–[20]. Deep learning methods for electronic component classification 

involve the use of advanced neural networks, such as CNNs and transformers, to categorize electronic components based on 

their visual attributes and features. These methods are particularly valuable in automating the identification and sorting of 

electronic components, which can vary significantly in size and appearance. They are widely employed in quality control 

processes in electronics manufacturing, ensuring that the correct components are used in assembly. Additionally, this 

technology finds applications in inventory management, making it easier to track and manage the vast array of components 

used in various products. The importance of deep learning in this context lies in its ability to achieve high accuracy and speed 

in classification, reducing human error and increasing efficiency in the electronics industry. It also paves the way for the 

automation of tedious and time-consuming tasks, allowing human resources to be redirected to more complex and creative 

aspects of electronic design and production [21]–[28]. 

Our study focused on an extensive comparison of state-of-the-art deep learning models, including EfficientNet-V2B3 [29], 

EfficientNet-V2S [30], EfficientNet-B0 [31] , Inception-V3 [32], MobileNet [33], and Vision Transformer (ViT) [34], in the 

realm of electronic component classification. We evaluated their performance across various electronic component classes, 

such as capacitor, LED, potentiometer, button, resistor, transistor, and ultrasonic sensor. The significance of this research lies 

in its potential to bring about a significant transformation in the electronics industry by providing a robust and highly accurate 

automated solution for classifying electronic components. Such a system has the capacity to greatly enhance quality control, 

reduce errors, and expedite manufacturing processes. Furthermore, the unique value of our work is evident in its thorough 

examination of these advanced models in a practical, industrial context, highlighting their real-world applicability. By 

demonstrating the capabilities of these models in achieving exceptional accuracy in component classification, we contribute 

to the ongoing efforts aimed at advancing automation, efficiency, and precision in electronic component management, 

offering a compelling pathway to redefine modern electronics manufacturing. In the subsequent sections of this study, we 

will delve into the existing body of work within this domain, the dataset employed, the methodology employed, the 

experimental endeavors, and the outcomes obtained. We aim to provide a comprehensive overview of related research, 

illuminate the specifics of our dataset, elucidate the methods applied, chronicle our experimental investigations, and 

ultimately present the findings and results that have emerged from our efforts. 

2. Relevant Work

The recognition of electronic components has been extensively studied, with methodologies that integrate image processing, 

machine learning, and deep learning techniques. Image processing methods involve the use of edge detection algorithms to 

outline the contours and edges of electronic components, with color and intensity analysis playing a crucial role, especially 

in identifying components on printed circuit boards. Machine learning approaches such as SVM leverage component features 

for classification, and decision trees and forests are employed for effective feature extraction. Deep learning methodologies, 

particularly CNN, demonstrate effectiveness, especially in the recognition of components on printed circuit boards. Transfer 

learning, utilizing pre-trained models from extensive datasets, enhances component recognition performance, even with 

smaller datasets. Object detection methods like R-CNN and its derivatives, as well as YOLO (You Only Look Once), offer 

effective strategies for recognizing components within images [28]. Tailored methods, specific to component characteristics, 

involve geometry analysis and Optical Character Recognition (OCR) for labels or text on components. This dynamic field 

continues to evolve, holding substantial potential, particularly in applications such as industrial automation, electronic 

manufacturing, and maintenance [21]–[28]. Table 1 represents various studies in the literature, each detailing their dataset, 

task, methodology, and the achieved results. For instance, reference [21] employed the ERFAM-YOLOv3 method for object 

detection on a dataset consisting of 1000 images with 29 instrument categories, achieving a notable 95.03% average accuracy. 

Similarly, other references provide insights into different approaches and outcomes in the field of electronic component 

recognition. According to the values provided in this table, the performance rates vary within the range of 90% to 100%. 

3. Dataset

The images of various electronic components, including capacitors, LEDs, potentiometers, push buttons, resistors, transistors,

and ultrasonic sensors, were collected from publicly available datasets for the purpose of classification in a research project.

These datasets contain visual representations of these components, which are essential in electronic circuitry and various

applications [35]–[37]. The dataset also includes images that we captured ourselves and images obtained from Google image

search. Figure 1 illustrates randomly chosen samples within the dataset. Table 2 shows the number of training and testing
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samples for each component category in the study. The dataset has been partitioned with approximately 25% of the total data 

allocated for testing and 75% for training purposes. Since the dataset contains images of varying quality and from different 

perspectives, and it possesses enough data for classification, no augmentation process was performed. In Figure 2, a block 

diagram illustrating the data set preparation process is provided. 

Table 1 Relevant work 

Ref. Dataset Task Method Result 

[23] 
483 images, 5000 labeled IC 

instances 
Object detection 

VN-Siamesev2 

network containing 

the backbone of 

VGG16 architecture 

92.31% accuracy 

[21] 

1000 images, 29 instrument 

categories, 182900 electronic 

components 

Object detection ERFAM-YOLOv3 95.03%average accuracy 

[22] 8000 images Object detection ECLAD-Net 90%-100% 

[24] 60 images, 172 labeled components Object detection Image processing 91.28% 

[25] 3094 images Classification Siamese network 99% 

[26] 200340 images Classification 
Multilayer 

perceptron 
92.3% 

[27] - Classification 
Back Propagation 

Neural Network 
95.8% 

[28] 1026 images, 4 categories Object detection YOLOv2 Network 

0.27 error rate on test set 

0.8743% on evaluation set 

Figure 1 Sample images from the dataset. 

4. Method

We used transfer learning based deep learning models in our study. Transfer learning in the context of deep learning refers 

to the practice of leveraging a pre-trained neural network model for a new, related task. It's a technique where a model 

developed for a particular task is adapted for a second related task. Transfer learning can significantly speed up the training 

process and often leads to better performance compared to training a model from scratch. Transfer learning typically involves 

starting with a pre-trained model that has been trained on a large dataset for a similar or related problem. These models are 

often trained on massive datasets and have learned useful features from them. After obtaining a pre-trained model, you fine-

tune it for your specific task. Training deep neural networks from scratch can be computationally expensive and time-
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consuming, especially when dealing with large datasets and complex architectures. Transfer learning allows you to start with 

a pre-trained model, saving a significant amount of training time. 

Determination of classes

Collecting a large dataset for the 

identified classes

Folder-based data labeling

Splitting the data into training and 

testing sets

(Capacitor, LED, 

potentiometer, Push button, 

resistor, transistor, ultrasonic 

sensor)

Capacitor LED

Pot.

Push 
button

Ultrasonic 
sensor

Resistor

Transistor

Dataset

75%

25%

TRAIN TEST SPLIT

Dataset Training data Dataset Test data

Figure 2 Dataset preparation diagram 

Table 2 Component Classification Data: Training and Testing Split 

Components Train Test 

Capacitor 600 200 

Led 375 100 

Poentiometer 302 100 

Push Button 301 100 

Resistor 355 100 

Transistor 281 100 

Ultrasonic Sensor 300 100 

Total 2514 800 

We have leveraged a selection of pre-trained CNN architectures, including EfficientNet-V2B3, EfficientNet-V2S, 

EfficientNet-B0, Inception-V3, MobileNet, and Vision transformer based neural network (ViT), for the purpose of electronic 

component classification. These models can be readily accessed in Keras, an open-source neural network library written in 

Python [38]. 

Inception, also recognized as GoogleNet, represents a deep learning architecture tailored for CNNs, meticulously crafted to 

tackle the complexities of training exceptionally deep networks without compromising computational efficiency. Pioneered 

by researchers at Google, Inception introduces an ingenious 'inception module' that integrates multiple convolutional filter 
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sizes and pooling operations within a single layer. This innovative approach empowers the network to capture features across 

various scales, thereby enhancing the robustness and precision of feature extraction. Inception has exerted a profound 

influence on the domain of computer vision, particularly in tasks such as image classification and object detection. Its aptitude 

for harmonizing model depth with computational efficiency has solidified its status as a widely adopted architectural solution 

in the realm of deep learning [39]. 

EfficientNet is a family of deep learning models specifically designed to achieve state-of-the-art performance with high 

efficiency in terms of computational resources. These models use a novel scaling method that uniformly scales the network's 

depth, width, and resolution. This approach ensures that the model adapts to different computational constraints while 

maintaining excellent performance on a wide range of computer vision tasks, such as image classification and object 

detection. EfficientNet's architecture efficiently balances model size and accuracy, making it a popular choice for various 

real-world applications where computational efficiency is a priority, such as edge devices and resource-constrained 

environments [40]. 

MobileNet is a CNN architecture designed for efficient and lightweight deep learning applications, particularly optimized for 

mobile and edge computing devices. Introduced by Google researchers in 2017, MobileNet addresses the challenge of 

deploying complex neural networks on resource-constrained platforms. It achieves computational efficiency through the use 

of depth wise separable convolutions, a key architectural element that significantly reduces the number of parameters and 

computations required. The network's core idea is to factorize a standard convolution into a depth wise convolution and a 

1x1 pointwise convolution. The depth wise convolution applies a single filter per input channel, followed by a 1x1 pointwise 

convolution that combines the outputs from the depth wise convolution. This separation of spatial and channel-wise filtering 

allows MobileNet to maintain a good balance between accuracy and computational efficiency. With its lightweight design, 

MobileNet has become a popular choice for real-time image classification and object detection tasks on devices with limited 

computational resources. 

The Vision Transformer (ViT) represents a groundbreaking architecture in the realm of computer vision and image 

processing. Introduced in a seminal paper by researchers from Google in 2020, ViT diverges from conventional CNN 

structures by exclusively relying on self-attention mechanisms. The architecture leverages the Transformer model, originally 

designed for natural language processing, to capture intricate hierarchical features within images. In ViT, the input image is 

divided into fixed-size non-overlapping patches, which are linearly embedded and flattened into sequences. These sequences 

serve as input tokens for the Transformer encoder, allowing the model to attend to relationships between different image 

patches. This mechanism enables ViT to grasp both local and global contextual information, crucial for understanding 

complex visual patterns. Additionally, ViT employs positional embeddings to preserve spatial information within the 

flattened sequences. Notably, ViT has demonstrated exceptional performance on various computer vision tasks, often 

surpassing traditional CNNs. Its remarkable ability to scale to large datasets and capture long-range dependencies positions 

ViT as a versatile architecture for vision-based applications, showcasing its potential impact on the evolution of deep learning 

models for image understanding. 

The metrics employed for the comparative assessment of the performance of these architectures include Accuracy (Acc.), 

Precision, Recall, and F1 Score values. These metrics serve as quantitative indicators to evaluate the effectiveness and 

capabilities of the different models in a rigorous and systematic manner. Precision measures the model's ability to accurately 

identify positive instances among the instances it predicts as positive as given in Eq.1. Recall, also known as the true positive 

rate or sensitivity, assesses the model's ability to correctly identify all positive instances, as defined in Equation 2. The F1 

score, a harmonic mean of precision and recall, strikes a balance between precision and recall, proving valuable for 

imbalanced datasets according to Equation 3. Accuracy, measured by the formula in Equation 4, evaluates the overall 

correctness of the model's predictions. A block diagram of the deep learning-based classification system is given in Figure 3. 

𝑷 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
(1) 

𝑹 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
(2) 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 = 𝟐 ∙
𝑷∙𝑹

𝑷+𝑹
(3) 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
(4)
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Data collection Fine Tuning

Deep Learning Model
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 MobileNet
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Figure 3 Block diagram of the deep learning-based classification system 

5. Results

Table 3 presents the training performance metrics for various base models used in the first approach. The metrics include 

training accuracy, acc-loss (accuracy loss), validation accuracy, and val-loss (validation loss). The presented data illustrates 

the training accuracy, accuracy loss, validation accuracy, and validation loss for each base model after 100 epochs. Notably, 

the EfficientNet-0V2S model achieved the highest training accuracy of 99.50%, with a relatively low accuracy loss of 0.0234. 

However, each model's performance is comprehensively evaluated based on both training and validation metrics, providing 

a comprehensive overview of their effectiveness in the first approach. Table 4 presents the performance metrics of re-trained 

models for the first approach, considering various classification tasks. The metrics include accuracy (Acc.), precision, recall, 

F1 score, and overall accuracy. The provided table details the performance metrics for re-trained models in the first approach 

across various classes. For instance, the MobileNet model demonstrates high accuracy for LED classification (96.68%), while 

ViT achieves perfect accuracy (100%) across all classes, indicating excellent overall performance. Precision, recall, and F1 

score metrics offer insights into the models' ability to correctly classify instances, providing a comprehensive evaluation of 

their effectiveness in differentiating electronic components. The overall accuracy metric presents a consolidated measure of 

each model's performance across all classes, facilitating a holistic assessment of their classification capabilities. 

Table 3 Training performance table for the first approach 

Base Model Training Accuracy Acc-loss Validation accuracy Val-loss 

EfficientNet-V2B3 0.9876 0.0475  0.8044 0.1107 

EfficientNet-V2S 0.9930 0.0210 0.8523 0.6433  

EfficientNet-B0 0.9911 0.0299  0.8184 1.0668 

Inception-V3 0.9892  0.0442   0.6617 2.5616  

MobileNet 0.9958 0.0167 0.7143 2.4491 

ViT 0.9850 0.2477 0.9621 0.41 
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Table 4 Performance metrics of re-trained models for the first approach 

Method Class n truth n classified Acc. Precision Recall 
F1 

Score 
Overall Acc. 

MobileNet 

Capacitor 184 200 89.26% 0.74 0.81 0.78 

87.27% 

LED 99 100 99% 0.95 0.97 0.96 

Potentiometer 87 100 98.13% 0.86 0.99 0.92 

Button 136 100 94.01% 0.94 0.69 0.80 

Resistor 89 100 98.63% 0.89 1.0 0.94 

Transistor 113 100 97.13% 0.95 0.84 0.89 

Ultrasonic Sensor 93 100 98.38% 0.90 0.97 0.93 

Inception-V3 

Capacitor 153 200 89.39% 0.67 0.88 0.76 

84.39% 

LED 112 100 97.88% 0.97 0.88 0.92 

Potentiometer 102 100 97.5% 0.91 0.89 0.90 

Button 87 100 96.38% 0.79 0.91 0.84 

Resistor 101 100 96.63% 0.87 0.86 0.87 

Transistor 109 100 96.63% 0.91 0.83 0.87 

Ultrasonic Sensor 137 100 94.38% 0.96 0.70 0.81 

EfficientNet-B0 

Capacitor 227 200 88.13% 0.83 0.73 0.78 

85.13% 

LED 102 100 99% 0.97 0.95 0.96 

Potentiometer 85 100 97.63% 0.83 0.98 0.90 

Button 92 100 95.5% 0.78 0.85 0.81 

Resistor 78 100 97% 0.77 0.99 0.87 

Transistor 126 100 96% 0.97 0.77 0.86 

Ultrasonic Sensor 90 100 97% 0.83 0.92 0.87 

EfficientNet-

V2B3 

Capacitor 153 200 88.88% 0.66 0.86 0.75 

86.63% 

LED 96 100 99% 0.94 0.98 0.96 

Potentiometer 112 100 97.75% 0.97 0.87 0.92 

Button 110 100 97.5% 0.95 0.86 0.90 

Resistor 105 100 98.63% 0.97 0.92 0.95 

Transistor 144 100 94% 0.98 0.68 0.80 

Ultrasonic Sensor 80 100 97.5% 0.80 1.0 0.89 

EfficientNet-V2S 

Capacitor 80 200 85% 0.40 1.0 0..57 

82.5% 

LED 106 100 97.25% 0.94 0.89 0.91 

Potentiometer 117 100 97.13% 0.97 0.83 0.89 

Button 144 100 94% 0.98 0.68 0.80 

Resistor 115 100 97.88% 0.99 0.86 0.92 

Transistor 138 100 95.25% 1.0 0.72 0.84 

Ultrasonic Sensor 100 100 98% 0.92 0.92 0.92 

ViT 

Capacitor 206 200 99% 0.99 0.97 0.98 

98.5% 

LED 100 100 100% 1.0 1.0 1.0 

Potentiometer 101 100 99.88% 1.0 0.99 1.0 

Button 100 100 99.28% 0.97 0.97 0.97 

Resistor 98 100 99.75% 0.98 1.0 0.99 

Transistor 101 100 99.88% 1.0 0.99 1.0 

Ultrasonic Sensor 94 100 99.25% 0.94 1.0 0.97 
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6. Conclusions

In this study, we successfully implemented an accurate electronic component classification system using state-of-the-art deep 

learning architectures. The models, including EfficientNet-V2B3, EfficientNet-V2S, EfficientNet-B0, Inception-V3, 

MobileNet, and Vision Transformer (ViT), achieved a classification accuracy of over 98%. The comprehensive evaluation 

across various electronic component classes demonstrated the models' effectiveness in complex visual recognition tasks 

within the electronic components’ domain. Training metrics further confirmed the models' efficiency, displaying high 

accuracy and minimal loss during both training and validation phases. Given the achieved high classification accuracy, we 

recommend considering the real-world deployment of the developed electronic component classification system. This system 

has the potential to significantly improve automation and efficiency in the electronics industry, particularly in tasks related 

to quality control, manufacturing, and inventory management. To enhance the system's generalization capability, expanding 

the dataset to include a wider variety of electronic components and variations in environmental conditions is advised. This 

expansion ensures the model's effectiveness in recognizing a broader range of components under various circumstances. As 

technology and industry standards evolve, continuous monitoring, feedback loops, and model updates become crucial. 

Regular assessments and updates are essential to ensure the system's adaptability to changing requirements and emerging 

technologies in the electronics sector. In conclusion, the successful implementation of this electronic component classification 

system opens doors for transformative applications in the electronics industry. The combination of advanced deep learning 

models and meticulous experimental methodologies positions this system as an asset for driving innovation, precision, and 

efficiency in electronic component management and manufacturing processes. 
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