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ABSTRACT

Zero-Shot Learning (ZSL) aims to classify images of new categories in the testing phase without
labeled images during training, using examples from categories with labeled images and some
auxiliary information. The auxiliary information includes semantic attributes, textual
descriptions, word embeddings, etc., for both labeled and unlabeled classes, utilizing Natural
Language Processing (NLP) approaches. The word embeddings created are limited by the
semantic attributes and textual descriptions where the semantics of categories are insufficient.
In this paper, introduces a study for Generalized Zero-Shot Learning (GZSL), a type of ZSL, by
integrating the rich semantics offered by ontology. Semantic attributes used for semantic
representation are supported by ontology. Variational Autoencoder (VAE) and Generative
Adversarial Network (GAN) network architectures are used together to synthesize visual
features. Our work was evaluated on the AWA2 dataset, and improvement in GZSL
performance was achieved.

Uretici Aglar ile Ontoloji Tabanl Genellestirilmis
Sifir-Atigh Ogrenme

(0 )4

Sifir-Atigh Ogrenme (Zero-Shot Learning - ZSL), egitim sirasinda, etiketli gériintiilerin
bulundugu kategorilere ait 6rneklerden ve bazi yardimei bilgilerden yararlanarak test agamasinda
etiketli gortntiileri bulunmayan yeni kategorilere ait 6rnekleri simiflandirmayr amaglamaktadir.
Buradaki yardimc bilgiler hem etiketli hem de etiketsiz simiflar i¢in semantik 6znitelikler,
metinsel agiklamalar, sozciik gomme gibi dogal dil isleme yaklagimlaridir. Olusturulan sozcitk
gommeleri, kategorilerin anlambiliminin yetersiz oldugu semantik oznitelikler ve metinsel
aciklamalar ile kisithidir. Bu yazida ontolojinin sundugu zengin semantigi iiretici aglara entegre
ederek ZSL’nin bir tiirii olan Genellegtirilmis Sifir-Atish Ogrenme (Generalized Zero-Shot
Learning - GZSL) gorevi i¢in bir ¢aligma tanitilmistir. Semantik temsil i¢in kullanilan semantik
oznitelikleri ontoloji ile desteklenmistir. Gorsel 6zellikleri sentezlemek igin VAE ve GAN aglarini
birlikte kullanidmustir. Caligmamizi AWA2 veri seti tizerinde degerlendirilmistir ve GZSL
performansinda iyilestirme saglanmigtir.
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1. Introduction

Deep learning has made significant advances in image processing, but it relies on collecting sufficient labeled
data for recognizing each category. In some cases, it may not be feasible to gather labeled training data for
every category [1]. The absence of labeled data makes the task considerably challenging for machine learning
and deep learning technologies [2] . In recent years, Zero-Shot Learning (ZSL) has gained attention for its
successful results in classifying unlabeled images [3]. ZSL consists of seen classes (with labeled image
examples), unseen classes (without labeled image examples), and semantic representations. ZSL aims to
recognize examples from unseen classes by transferring knowledge from examples in seen classes and
semantic representations[1]. During the testing phase of the ZSL task, only the performance of unseen classes
is evaluated. For a more realistic evaluation, Generalized Zero-Shot Learning (GZSL) studies have started to
replace ZSL studies. In the testing phase of the GZSL task, the performance of both seen and unseen classes is
assessed.

Due to the absence of labeled examples for new classes, GZSL encounters a data imbalance issue between seen
and unseen classes. Generative approaches, such as Generative Adversarial Networks (GAN) and Variational
Autoencoders (VAE), are highly effective in addressing this problem. Using generative networks, synthetic
visual features are produced for unseen classes by leveraging both visual and semantic features. However,
textual features are not generated for semantic relationships and contextual information of unseen classes [4].
Therefore, there is a need for structured data, such as semantic web, to address this issue [5].

The use of various Natural Language Processing (NLP) methods in deep learning tasks is quite common [6].
Extracting meaning from textual data such as web pages and documents using deep learning methods is a
challenging task. To address these challenging tasks, there is a need for rich models consisting of semantic
concepts offered by NLP tasks. Successful results have been achieved in tasks such as extracting meaning from
texts and establishing relationships between images and text using NLP-based deep learning methods [7-9].
Most words have multiple meanings. Relationships such as synonyms, antonyms, similar meanings, as well
as positive or negative connotations can exist for a word. In short, there are relationships and representations
between words. The semantic concept mentioned in NLP refers to how the meaning of a word is represented
and the information obtained from its relationship with other words[10].

Semantic Web emerges from the relationships established among semantic information. The goal of the
Semantic Web is to enable machines to make inferences. To achieve this, a structure is formed through the
collaboration of humans and computers. This structure is obtained by comprehending and linking data on
the web. Ontology is often used to create a robust structure with Semantic Web. Ontologies provide a strong
structure where machines can understand relationships between concepts. An ontology can be specific to a
domain or an advanced ontology resulting from the integration of ontologies from different domains.
Commonly, Resource Description Framework (RDF) and Web Ontology Language (OWL) are used to
describe the Semantic Web[11-13].

Fig. 1 provides an example representation for the seen class, unseen class, and ontological schema. The
semantic attributes used for images contain values for specific features in a given category. The ontological
schema, in addition to semantic attributes, presents a relational structure by utilizing class hierarchy and
descriptions. To create the ontological schema, the class hierarchy offered by RDF, such as "subClassOf," is
initially employed. Subsequently, class concepts are associated with attribute concepts like "hasTexture." As
depicted in Fig. 1, class concepts are represented by ovals, and attribute concepts are represented by rectangles.
Additionally, each class includes text-based descriptions. The created ontological schema is an RDF triple.
For example, the triple "killer_whale," "hasTexture," "spots" expresses that the killer whale has a spotted
texture. The ontological schema enhances the information transfer between seen and unseen classes more
effectively.
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Building on this, in our study, we aimed to enhance the performance of GZSL by enriching semantic
representations. For this purpose, we augmented the semantic attributes in the datasets with an ontology
created using RDF. Subsequently, we designed a VAE-GAN architecture for the learning model. We evaluated
our proposed GZSL model on the AWA?2 dataset. In the conducted experiments, our proposed method
resulted in a 1.19% improvement in GZSL performance. To the best of our knowledge, our GZSL study is the
first to incorporate RDF and semantic attributes together into a VAE-GAN-based model.

Seen Class

Ontol ogical Schema
Name S

killer whale m11asTextlu‘e
Attributes hasCol m
o hasColour

flippers
bllapgk hasBodyPart

white hasBodyPart subClassOf hasColour
spots
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tail
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gray

Figure 1. Semantic attribute and ontological schema representations
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The rest of the article is organized as follows: Section 2 provides a summary of related works in the literature.
Section 3 introduces the proposed model in detail. Section 4 presents the experimental results of the study.
Finally, Section 5 concludes with conclusions and discussion.

2. Related Work

GZSL is the recognition of an object without any instance images of that object during the training phase,
utilizing textual and image data from other examples. GZSL is categorized into embedding-based methods
and generative-based methods. Embedding-based methods find a projection function from the visual space
to the semantic space during the training phase of the GZSL method, using information from seen categories.
During the testing phase, unseen image feature data is used as input to the trained model, and a semantic
embedding is obtained. Classification is then performed based on the category corresponding to the nearest
semantic embedding. [14-15]. Generative-based methods enable unseen classes to behave like seen classes by
synthesizing synthetic features for the unseen classes. In studies using generative-based methods, GAN is first
used and then VAE is employed to learn the synthesis of visual features for unseen classes from semantic
attributes. In subsequent studies, a VAE-GAN model, combining the strengths of both VAE and GAN, was
developed. [16]. Wu et al. utilized Stacked Autoencoder (StAE) to learn the relationship between extracted
features and semantic representations [17]. Gao et al. proposed a shared generative model known as Zero-
VAE-GAN to generate high-quality visual features for unseen classes. In the model, a conditionally guided
VAE based on semantic features is combined with a GAN conditioned on both categories and features.
Additionally, a classification network and perceptual reconstruction loss are included to generate high-quality
features [18]. Narayan et al. worked on an approach for both image and video datasets by adding a feedback
module to a VAE-GAN-based model [19]. Bao et al. colleagues utilized the VAE-GAN model to create
realistic and diverse new examples from natural images of faces, birds, and flowers within a class [20]. Han et
al. suggested a comparative embedding. In the proposed method, they used a parallel inference network and
a feature generation framework to project visual features into a semantic descriptive space [21].

Semantic web technologies enhance the restructuring of information and facilitate machine readability.
Semantic web technologies have been repeatedly used in machine learning and deep learning tasks. To enable
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a structure like ontology to be utilized by a deep neural network, there is a need for a framework that can
produce multiple hierarchical outputs representing the data. Each output of the neural network corresponds
to a concept in the ontology. Thus, a taxonomic assumption relationship architecture is defined for all
concepts for which inferences can be made based on these outputs [22,23]. In Semantic Web-based
applications, formal representation languages such as RDF and OWL, as well as structures like ontologies and
knowledge graphs, are commonly used. Geng et al. proposed a new generative zero-shot learning method
called KG-GAN by incorporating rich semantics from a knowledge graph into GANs. They developed graph
neural networks to investigate the effects of class semantics on feature transfer in zero-shot learning and to
learn semantic class nodes. They utilized the original taxonomy structure of WordNet along with the class
and subclass relationships of ImageNet to create the knowledge graph [24]. Geng et al. proposed an ontology-
based GAN to create more distinctive example features for ZSL. Their approach, named Onto-ZSL,
demonstrated the effectiveness of ZSL on image classification and knowledge graph completion tasks [25]. In
addition to the image classification and knowledge graph completion tasks introduced in their previous work,
Geng et al. presented another study involving ZSL with a relation extraction task [26].

Upon examining previous studies, it is evident that the use of VAE-GAN-based generative approaches has
led to highly successful results in GZSL tasks. In GZSL classification, the synthesized image features for unseen
classes are crucial. At the same time, semantic relationships play a significant role. Therefore, we propose a
GZSL framework that enriches semantic relationships with ontology, incorporating generative approaches to
enhance GZSL classification.

3. Method

In this section, we first address the problem, and then we introduce the architecture of our approach in three
sub-sections with detailed explanations.

3.1. Problem definition

GZSL aims to classify examples from both seen class S and unseen class U, using examples from the training
dataset, which contains seen classes, and examples from the test dataset, which contains both seen and unseen
classes. During the training phase of GZSL, both the seen class S and the semantic features A are trained, and
during the testing phase, it learns examples from both the seen class S and the unseen class U. Here, the classes
S and U are disjoint, meaning S N U = @. The semantic features A are represented as A° for the semantic
features of seen classes and AV for the semantic features of unseen classes. Thus, the semantic features A are

expressed as A = {a(k)}i:. The dataset for the seen class S containing examples X* corresponding to labels
Y is denoted as S = {X5,YS}. Similarly, the dataset for the unseen class U, containing examples XY
corresponding to labels YV, is denoted U = {XY,YU}. While ZSL learns the classifier f,:X — YYI GZSL
learns the classifier fy,q: X — YSuvyy,

3.2. Visual feature extraction

In this study, visual features obtained from a pre-trained Convolutional Neural Network (CNN) with the
ResNet-101 architecture from ImageNet [27] were used. The ResNet-101 architecture is a CNN with a depth
of 101 layers. These networks have been trained on over a million images and can classify images into 1000
object categories. Using a pre-trained network with transfer learning is often faster and easier than training a
network from scratch. With this architecture, rich feature representations for a variety of images are learned,
and 2048-dimensional visual features of images are extracted through average pooling. CNN has a powerful
capability for extracting visual features. However, unlike traditional image recognition, GZSL involves
unlabeled images, which leads to a decrease in the discriminative power of visual features extracted by CNN
[28]. Therefore, for GZSL, it is not sufficient to rely solely on visual feature extraction, and semantic feature
extraction is also utilized.
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3.3. Semantic feature extraction
3.3.1. Semantic embedding

Semantic information is represented with semantic vector embeddings. A semantic vector is a representation
of a word in a multi-dimensional semantic space. Semantic embeddings provide an effective way to represent
the meaning of words and analyze the semantic aspects of language. The use of language models such as
word2vec, GloVE, and BERT is common for representing the meaning of words. In recent years, the positive
impact of word embeddings on the performance of many applications has been observed [10,29,30]. In
traditional word embedding methods, the lack of word order information leads to a lack of semantic
information for words. Therefore, there is a problem of semantic compositionality in word embeddings. To
address this issue, a Recurrent Neural Network (RNN)-based language model that represents the meaning of
words has been developed, resulting in more meaningful word embeddings [31,32].

In traditional GZSL studies, semantic attributes are used to create semantic embeddings. In our study, in
addition to semantic attributes, textual descriptions and ontology are also utilized to create semantic
embeddings.

3.3.2. Ontology

In this study, RDF (Resource Description Framework) was used to create an ontology. RDF represents web
resources using triple statements, consisting of subject, predicate, and object. Subjects and objects represent
entities, while predicates represent the relationships between these entities. When given the statement
"Ankara is the capital of Turkey," RDF should be able to infer "Ankara" and "Turkey" as entities and the
relationship "is the capital of" between them [33]. As seen, manually coding information with human input is
crucial for developing semantic web-based applications [34]. Ontologies are hierarchical representations of
elements in a domain. These hierarchical representations are used to define categories at each level [35]. In
our study, an ontology schema containing class hierarchy, semantic attributes, and textual descriptions,
created using RDF triples, was employed [25]. The statistics of the created ontological schemas are shown in
Table 1. In Table 1, concepts refer to entities such as class names and class attributes. Properties represent
relationships established between concepts, such as color, texture, subclass, etc. RDF triples consist of three
elements, two concepts, and a property.

Table 1. Ontological schema information for the AWA2 dataset

Dataset RDF Triples Concepts Properties
AWA2 1256 180 12

In GZSL applications, the input dimensions of generative networks are determined by the dimensions of
visual features and semantic attributes. The visual and semantic feature dimensions of the AWA2 dataset used
in our study are shown in Table 2. The visual features of the images are 2048-dimensional. For semantic
embeddings, 85-dimensional class-level attributes, 100-dimensional structure-based representation, and 100-
dimensional text-based representation are utilized.

Table 1. Feature dimensions for the AWA2 dataset

Dataset Visual Features Semantic Attributes RDF Textual Descriptions
AWA2 2048 85 100 100

3.4. Generative-based networks

The examples generated by VAE are often blurry. Similarly, the examples generated by GAN are not natural.
However, the combination of VAE and GAN produces much more realistic, natural images [20]. In this study,
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the VAE-GAN-based model includes Encoder, Generator, Discriminator, and Decoder networks. All
networks in the model have 4096 hidden units and are two-layer fully connected networks. The proposed
architecture is shown in Fig. 2. In the workflow, first, the real features of seen classes x and semantic
embedding a are applied to the input of the Encoder, and the parameters of a noise distribution z are
extracted. Then, the extracted z and semantic embedding a are applied to the input of the Generator, and
synthetic features X are generated. Synthetic features £ and original features x are compared using Binary
Cross-Entropy loss (Lgcg). Up to this point, it is the standard VAE approach. Encoder and Generator, which
constitute the VAE, are trained using the Lg.z and the Kullback-Leibler divergence (Ly;). The synthetic
feature X or the original feature x, along with semantic embedding a, is applied to the input of the
Discriminator, and the Discriminator learns to distinguish synthetic and original features. Here, Generator
and Discriminator follow the standard GAN approach. Generator and Discriminator are trained using the
Wasserstein GAN loss (Ly,). To improve classification performance, the synthetic feature X or the original
feature x is applied to the input of the Decoder, and the developed synthetic feature X is applied to the hidden
layer of the Generator. The enhanced synthetic feature % is again applied to the inputs of the Discriminator
and Decoder. Discriminator calculates the Ly, to determine whether the visual feature is real or fake. The
latent embeddings transformed by the decoder are combined with the corresponding visual features x and %,
and trained using a cycle-consistency loss (Lg). Finally, the losses obtained from the Discriminator and
Decoder are calculated for training and used for ZSL and GZSL classification.

A
4 amg Discriminator g R
3

Real Fake?

Ontology Decoder geRgBl

Semantic

Embedding

Figure 2. Illustration of the proposed architecture

4. Experimental Result

In this section, the evaluation of our proposed study, comparisons with other methods, and analyses of the
model are presented.

4.1. Dataset

We evaluate our method using the AWA2 (Animals with Attributes 2) [34] dataset, which is suitable for
ontology creation. The AWA2 dataset contains images from 50 classes, with 40 of these classes proposed as
seen classes and 10 as unseen classes based on the Proposed Split (PS). AWA2, comprising a total of 37,322
images, is a coarse-grained dataset suitable for ontology creation. Statistical information about the AWA2
dataset is provided in Table 3.

Table 2. Statistics for the AWA2 dataset.

Seen Unseen Total Total
Dataset Classes Classes Classes  Images
AWA2 40 10 50 37322
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4.2. Performance metrics and evaluation

In our study, we examine classification performances for both GZSL and traditional ZSL tasks. The best
accuracy rate is used for ZSL performance measurements in the experiments. For GZSL performance
measurements, the commonly used harmonic mean is selected. To calculate the harmonic mean, the accuracy
rates of seen and unseen classes are utilized, as shown in Equation 1. In the equation, the harmonic mean (H)
is defined in terms of the accuracy rates of seen classes (Accs) and unseen classes (Accy).

2 XAccg XAccy

H= (1)

AccgtAccy
Table 4 displays the experimental results of the proposed method and state-of-the-art methods for both ZSL
and GZSL on the AWA2 dataset. The table indicates the best accuracy (T1) for ZSL performance, and for
GZSL performance, it shows the results for unseen classes (U), seen classes (S), and the harmonic mean (H).
Performance measurements are calculated as percentages, and the best results are highlighted in bold.
Looking at Table 4, our proposed method achieved the best H value with a GZSL performance of 66.29%. For
ZSL tasks, it secured the third position with a performance of 69.69%. The proposed method demonstrates a
1.19% improvement for the GZSL task.

Table 3. ZSL and GZSL experimental results performed with the AWA dataset.

Methods T1 S U H

MVAAD [36]. 69.50 9340 30.70 49.20
Cramer GAN [37]. 7240 - - 65.00
T{-GCZSL [38]. - 64.89 40.23  48.33
DGEM [39]. 67.30 69.80 4340 53.40
SRSA [40]. 68.30 59.60 38.10 46.50
Niu et al. [41]. - 66.00 59.30 62.50
ZSLGC-MLO [42]. 73.10 7120 57.80 63.80
Zhang et al. [43] - 7240 59.10 65.10
Geng et al. [26] 62.65 59.59 50.58 54.71
Ours 69.69 79.05 57.08 66.29

4.3. Model analysis
4.3.1. Ablation study

Ablation experiments were conducted to investigate the impact of semantic representations in our study. We
evaluated different combinations of semantic attributes (att), ontology (onto), and textual descriptions (text).
The results obtained from the experiments are shown in Table 5, with the best results highlighted in bold.
According to the results, the best T1 and H values were achieved when using semantic attributes and ontology
together.

Table 4. Ablation experiments for the AWA dataset

Methods T1 S U H

Ours + att + onto 69.69 79.05 57.08 66.29
Ours + att + text 60.40 77.95 49.55 60.58
Ours + att + onto + text 67.43 73.79 60.10 66.25

4.3.2. Parameter analysis

In our experiments, we examined the effects of classification learning rates of 0.00001, 0.0001, and 0.0005 on
U, S, and H. The results of the classification learning rates are shown in Fig. 3. Looking at Fig. 3, the best result
was obtained with a learning rate of 0.0005. Additionally, the results indicate that different classification
learning rates have an impact on the outcomes.
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Figure 3. Results of classification learnibg rates
5. Conclusions and Discussion

In this paper, we proposed a generative-based model enriched with semantic representations for GZSL tasks.
We utilized VAE-GAN generator networks to generate synthetic images for unseen classes. We leveraged an
ontology created with RDF for the semantic representations of classes. Thus, by using both the numerical
values of semantic attributes and their meaningful relationships, we created a highly discriminative semantic
embedding. VAE establishes tight relationships between the visual and semantic domains. It is known that
GAN prevents mode collapse issues. Taking advantage of the strong features of VAE and GAN, we
synthesized image features and addressed data imbalance. We evaluated the performance of our proposed
model on both standard ZSL and generalized ZSL using the AWA2 dataset. We compared the performance
of our proposed model with the performances of the latest technology methods, achieving an additional
improvement of 1.19 points for the GZSL task.

In our future work, we aim to enhance the success achieved in this study. We plan to create an ontology using
the OWL language. We believe that incorporating the innovations brought by the OWL language into our
ontology structure will contribute to the literature by improving the performance of our model.
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