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ABSTRACT 

The determination of the concrete compressive strength remains a challenging task in the concrete industry. 
Machine learning (ML) algorithms offer an alternative and this study presents a comparative analysis of five 

ML regression models; Gradient Boosting (GB), Random Forest (RF), Decision Tree (DT), K-Nearest 

Neighbors (KNN), and Linear Regression (LR) on a dataset of 1030 concrete samples. The findings indicate 
that the GB model achieved the best performance. The developed GB model achieved R-squared values of 

91.60%, 91.43%, and 90.18% for the 10-fold, 5-fold, and 3-fold cross-validations, respectively, with mean 

absolute error, root mean squared error, and mean absolute percentage error values of 2.6776, 4.3523, and 
9.19%, respectively. The GB model trained and evaluated was deployed to a web application using Streamlit 

for real-time prediction of the concrete compressive strength. The results of this research offer a precise and 

practical method for judging the quality of concrete constructions. 
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1. Introduction 
 

The compressive strength of concrete (CCS) is an important factor for construction experts' consideration. Concrete is 

typically made up of cement, fine aggregates, coarse aggregates, and water, with or without the addition of chemical 

admixtures. CCS at 28 days is essential for designing reinforced concrete constructions [1]. Traditionally, concrete mixture 

portions that satisfy the minimum 28-day curing period requisite have been determined using empirical prescriptive and 

performance-based mixture design techniques. However, recent literature has started to explore numerical methods for 

predicting the CCS after 28 days. Accurate prediction of the 28-day CCS is crucial because it (a) ensures concrete quality, 

(b) reduces the amount of testing that needs to be conducted on different concrete batches to achieve desired and required 

strength goals, and (c) enhances safety. 

Recent computer studies have established the potential of modern statistical modeling methods or approaches to numerically 

forecast the CCS for laboratory-mixed concrete, referred to as laboratory concrete [2]–[5]. Therefore, these approaches can 

provide a means of accurately estimating the 28-day CCS, leading to better concrete quality and improved safety. However, 

despite these efforts, various uncertainties encountered during the mixing, transport, placement, curing, and finishing of 

concrete can make it difficult to achieve accurate predictions. These uncertainties are particularly challenging in the case of 

field concrete, which refers to concrete produced and placed at the construction site. In particular, the environmental 

conditions that can fluctuate during the production and placement of field concrete, as well as the numerous factors that can 

affect the quality and performance of the final product, make it difficult to achieve consistent and reliable predictions of the 

28-day CCS.  

Concrete's 28-day compressive strength estimation is a complex issue. CCS is influenced by the intricate physical and 

chemical interactions that take place between the components of concrete. Research has shown a nonlinear relationship 

between the CCS and its air content, which is often increased to improve workability and freeze-thaw resistance [6], [7]. As 

the water-to-cement ratio is increased, the CCS tends to decrease. However, other factors can affect the CCS that are not as 

easily identified. For example, the ratio of coarse to fine aggregate, the interfacial bindings between the coarse aggregate and 

mortar influence compressive strength [8]–[10]. Likewise, field concrete exhibits far greater variability in compressive 
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strength due to the highly varied job site conditions where it is mixed and applied. Here, the final CCS can be impacted by 

temperature, humidity, and bad weather [11]. 

While traditional methods of CCS estimation rely on time-consuming and expensive laboratory tests, machine learning 

algorithms offer an option for predicting concrete strength from non-destructive testing data. There is an increasing research 

focus on the application of machine learning (ML) models for concrete mixtures [12], [13]. These models utilize the different 

mix proportions to predict the CCS, the target variable [14].  The CCS was predicted by making use of ML methods such as 

decision tree (DT), gradient boosting (GB), and bagging regressor (BR) [15]. The BR technique was the best performing 

methods achieving the highest R-squared value of 0.92. The mean absolute error (MAE) and root mean square error (RMSE) 

values for the BR model were 4.26 and 5.69 respectively, which was the lowest compared to the other models trained; MAE 

= 4.96 and RMSE = 7.05 for GB and MAE = 6.39 and RMSE = 8.95 for DT. A prediction of CCS with electrical resistivity 

included as an input variable saw the performance of the ML models increase as against the traditional proportion mix as 

input variables [16]. The models performances were increased as the R-squared values of the decision trees and Gaussian 

models increased from 0.77 to 0.79 and 0.81 to 0.82 respectively. 

Using 1030 data samples from concrete compressive strength tests obtained from the University of California, Irvine, a novel 

Hybrid Ensemble Model (HENSM) was the best predictor of the CCS in the study [17]. Furthermore, the adapted AdaBoost 

achieved an accuracy of 98% on the same dataset, outperforming the artificial neural network (ANN) and support vector 

machine (SVM) [18]. Likewise, ANN has succeeded in surpassing the performance of the LR, SVM and test ensembles of 

the models by achieving an R-value of 0.909 [19]. A proposed deep convolutional neural network (DCNN) model is trained 

using a data set consisting of 380 groups of concrete mixes. The results show that the DCNN achieves high coefficients of 

determination of 0.967 which is better than the performance of the SVM, ANN, and AdaBoost [20]. 

This paper aims to predict the concrete compressive strength using 5 ML methods and evaluate the performance of the 

models. The input variables used for predicting the Concrete Compressive Strength (CCS) are cement (C), Blast Furnace 

Slag (BFS), Fly Ash (FA), Water (W), Superplasticizer (SP), Coarse Aggregate (C_Ag), Fine Aggregate (F_Ag), all measured 

in kg/m^3, and Age (in days). The machine learning models for the regression problem used in our study are Linear 

Regression (LR), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), and Gradient Boosting Regression 

(GB). The models have been selected among the many available models to study and compare different methods or 

approaches including the linear statistical approach, tree method, ensemble methods and distance-based models. The result 

of this study is of great importance to the cost-effective method of determining the strength of concrete structures capable of 

producing quality concrete structures, improving safety, and reducing maintenance costs over the lifetime of these structures. 

Furthermore, a web application has been deployed for easy interaction and prediction of the CCS based on the various inputs 

for real-time use. 

The paper is presented as follows; the materials and methodology are presented in Section 2, section 3 contains the results 

and discussion and the conclusion is in Section 4. 
 

2. Materials and Method 
 

For this research, the following steps were followed; data collection, data preprocessing and analysis, model development, 

testing and evaluation, and model deployment. Figure 1 shows the process flow diagram for the listed steps. 

 
Figure 1. Concrete Compressive Strength Prediction Process Flow Diagram 

2.1. Data Collection and Analysis 

The Concrete Compressive Strength dataset used in this research project has been retrieved from the UCI Machine Learning 

Repository available at https://archive.ics.uci.edu/dataset/165/concrete+compressive+strength [21], [22]. The data used was 

curated by experiments from 17 different sources. Data was assembled for concrete containing Portland cement plus fly ash, 

blast furnace, and superplasticizer cured under normal conditions. The details of the experimental setup are presented in [21]. 

The dataset is acceptable as collecting and testing the data met accepted guidelines in the concrete industry. 

The data set is of the form Ɗ = (𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛) where 𝑥1 Ɛ 𝑋 is the 𝑖𝑡ℎ input and 𝑦1 Ɛ 𝑌 the corresponding 

target. 𝑋 = ℝ𝑑, in which case 𝑥𝑖 = ( 𝑥𝑖1, 𝑥𝑖2,…, 𝑥𝑖𝑑) is a d-dimensional vector called an instance. The data set includes 1030 

instances and 9 quantitative attributes including 8-input variables and 1-output or target variable. After analyzing the data 

collected, 25 instances were duplicated and the duplicate records were dropped remaining total of 1005 instances. The dataset 

also does not contain any missing values. The characteristics and summary statistics of the data collected are shown in Table 

1. 
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Table 1. Summary Statistics of Attributes 

Attribute Abbreviation Mean 
Standard 

Deviation 
Min 

25th 

Percentile 

50th 

Percentile 

75th 

Percentile 
Max 

Cement (𝑘𝑔/𝑚3) C 278.63 104.34 102 190.7 265 349 540 

Blast Furnace 

Slag (𝑘𝑔/𝑚3) 
BFS 72.04 86.17 0 0 20 142.5 359.4 

Fly Ash (𝑘𝑔/𝑚3) FA 55.54 64.21 0 0 0 118.3 200.1 

Water (𝑘𝑔/𝑚3) W 182.08 21.34 121.8 166.6 185.7 192.9 247 

Superplasticizer 

(𝑘𝑔/𝑚3) 
SP 6.03 5.92 0 0 6.1 10 32.2 

Coarse Aggregate 

(𝑘𝑔/𝑚3) 
C_Ag 974.38 77.58 801 932 968 1031 1145 

Fine Aggregate 

(𝑘𝑔/𝑚3) 
F_Ag 772.69 80.34 594 724.3 780 822.2 992.6 

Age Age 45.86 63.73 1 7 28 56 365 

Concrete 

Compressive 

Strength 

CCS 35.25 16.28 2.33 23.52 33.8 44.87 82.6 

 

There is no strong correlation between the attributes. The highest correlation exists between the cement component and the 

concrete compressive strength attributes with a value of 0.49 followed by the Age and Superplasticizer components with a 

Pearson’s correlation value of 0.34 respectively as shown in Figure 2. This tells us that no attribute is a strong estimator of 

the CCS which is the output variable. 

 
Figure 2. Pearson’s Correlation Plot of the Input and Target Variables 

2.2. Model Development 

The data set was randomly split into the train and test data in a ratio of 80:20 using a random state of 42 in Scikit-learn. The 

training dataset had 804 instances while the test dataset had 201 instances. The GridSearch cross-validation (CV) function 

and the 3-Fold, 5-Fold, and 10-Fold cross-validation methods were deployed to get the optimum model with the best 

performance and least error. There are several machine learning models used for supervised learning regression problems. 

However, the five machine learning regression models used in our analysis are Linear Regression (LR), Random Forest (RF), 

Decision Tree (DT), K-Nearest Neighbors (KNN), and Gradient Boosting Regression (GB). 
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2.2.1. Linear Regression 

The multivariate LR model is a statistical approach for the prediction of the value of a dependent or target variable using 

several independent or input variables [23]. This is achieved by fitting the line of best fit between the independent or input 

variable(s) 𝑥 and the dependent or output variable 𝑦. For this work, the independent variables are C, BFS, FA, W, SP, C_Ag, 

F_Ag, and Age while the dependent variable is the CCS. This can be represented as 

    𝑓: ℝ𝐷 →  ℝ      (1) 

where the input vector 𝑥 is D-dimensional, and the function 𝑓 then applied to it returns the 𝐶𝐶𝑆 value. In essence, we aim for 

a function 𝑓(𝑥), such that, 

    𝑓(𝑥) = 𝐶𝐶𝑆  = Ѳ𝑇𝑥 +  𝜙0     (2) 

for unknown Ѳ, ϕ. Upon training the concrete compressive dataset, the linear regression function fitted is defined in Equation 

3. 

𝐶𝐶𝑆 =  −23.3893 + (0.1167 × 𝐶) + (0.0981 × 𝐵𝐹𝑆) + (0.0846 × 𝐹𝐴) − (0.1314 × 𝑊) + (0.3315 × 𝑆𝑃) +
(0.0155 × 𝐶_𝐴𝑔) + (0.0206 × 𝐹_𝐴𝑔) + (0.1106 × 𝐴𝑔𝑒)     (3) 

 

2.2.2. Decision Tree Regression 

A DT is a tree data structure made up of several nodes and branches. The decision tree algorithm utilizes a divide-and-conquer 

method and repeatedly partitions the input variables to classify or predict the output parameter [24].  

Mathematically, a DT can be represented as a function that maps an input feature vector x to a class label y described in 

Equations 4 and 5 as: 

    𝑦 =  𝑓(𝑥)      (4) 

The decision tree function f(x) can be defined recursively as follows: 

    𝑓(𝑥)  =  
𝐶1 𝑖𝑓 𝑥𝑖 < 𝑡
𝐶2 𝑖𝑓 𝑥𝑖 > 𝑡

     (5) 

where 𝑥𝑖 is the value of the ith feature in x, t is the threshold value, and 𝐶1 and 𝐶2 are the class labels for the resulting subsets. 

The threshold value t and the class labels 𝐶1 and 𝐶2 are determined during the training process by optimizing a criterion such 

as information gain or Gini impurity. The decision tree regressor was fitted to the target variable and at each partition instance, 

the error was calculated between the predicted value and the known target value [25]. 

The decision tree's hyperparameter is tuned using cross-validation. One such hyperparameter is the depth of the tree (the 

number of splits a tree can make before coming to a prediction). This was set to 16 for the decision tree regression model 

trained on the data as presented in Table 2. Figure 3 shows the first 2 splits of the decision tree while Figure 4 shows the 

importance of the variables used in making prediction. In Figure 4, Cement and Age had the highest significance values at 

35.7% and 32.2% respectively, and were strong estimators for predicting the value of the CCS for the DT. 

 
Figure 3. Decision Tree Regression Model Decision Making showing the First Two Splits 
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Figure 4. Variable Importance of the DT Model 

2.2.3. Random Forest Regression 

An RF regression is an ensemble regression technique containing numerous decision trees to predict or forecast a target 

variable [26]. The RF uses the Bagging (that is, bootstrapping and aggregating) method where homogenous weak learners' 

models (in this case, decision trees) independently learn from one another in parallel. The final prediction is achieved by a 

model averaging approach [25], [27]. The number of estimators (decision trees) fitted for the RF regression model was 400 

while the maximum depth of each DT was 20 as shown in Table 2.  

In Figure 5, Age and Cement had the highest feature importance of 35.3% and 31.1% respectively, and were the strongest 

estimators for predicting the value of the CCS in the RF regression model. 

 
Figure 5. Variable Importance of the RF Model 

2.2.4. Gradient Boosting Regression 

The gradient boosting (GB) regression tree model is a stacked learning approach where a robust predictive model is formed 

by combining several individual weak learning regression trees (DT) [28].  

For the training set described earlier with n data points (𝑥ᵢ, 𝑦ᵢ) where xᵢ is the input features and yᵢ is the corresponding output 

or target variable. The goal of gradient boost regression is to find an ensemble of weak regression models 

ℎ₁(𝑥), ℎ₂(𝑥), . . . , ℎ𝑚(𝑥) that can approximate the true underlying function 𝑓(𝑥) that maps the inputs to the target variable. 

Each weak model ℎ𝑚(𝑥) takes the input features 𝑥 and returns a scalar prediction, which is then combined with the predictions 

of the other weak models to obtain the final prediction. The gradient boost regression algorithm iteratively adds new weak 

models to the ensemble, with each new model attempting to correct the errors of the previous models. 

At iteration m, the current prediction of the ensemble is given in Equation 6: 
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   𝑓𝑚(𝑥)  =  𝑓𝑚−1(𝑥)  + 𝛾𝑚 ℎ𝑚(𝑥)     (6) 

where 𝑓ₘ₋₁(𝑥) is the previous prediction of the ensemble, 𝛾𝑚 is the learning rate or step size that controls the contribution of 

the new weak model ℎ𝑚(𝑥), and ℎₘ(𝑥) is the new weak model that is trained to fit the negative gradient of the loss function 

with respect to the current prediction 𝑓ₘ₋₁(𝑥). The negative gradient is defined in Equation 7 as  

   𝛾𝑚𝑖 =  − [
𝜕𝐿(𝑦𝑖,𝑓𝑚−1(𝑥𝑖))

𝜕𝑓𝑚−1(𝑥𝑖)
]      (7) 

where 𝐿(𝑦, 𝑓(𝑥)) is the loss function that measures the difference between the true target value y and the predicted value 

𝑓(𝑥). 

The weak model ℎ𝑚(𝑥) is typically chosen to be a simple regression model such as a decision tree and is trained to minimize 

the loss function concerning the negative gradients 𝛾𝑚𝑖. 

Equation 8 below is the final prediction of the gradient boost regression ensemble after 𝑚 iterations: 

   𝑓(𝑥)  =  𝑓0(𝑥)  +  𝛾1ℎ1(𝑥)  + 𝛾2ℎ2(𝑥) + . . . + 𝛾𝑚ℎ𝑚(𝑥)  (8) 

where 𝑓₀(𝑥) is the initial prediction of the ensemble and γ₁, γ₂, ..., 𝛾𝑚 are the learning rates or step sizes that control the 

contribution of each weak model in the ensemble [29].  

The maximum depth for the Gradient Boosting Regression model was set to 4 and the number of estimators was 200 with a 

learning rate of 0.2 as shown in Table 2. Fig. 6 shows the feature importance of the gradient-boosting regression model where 

Age and Cement had the highest importance of 37.8% and 28.8% respectively. It is noteworthy that while Cement and Age 

features were the strongest estimators, F_Ag, C_Ag, and FA had the least feature importance for the DT, RF and GB models. 
 

Table 2. Models’ Hyperparameter Tuning 

Model Hyperparameters Value 

LR None - 

DT max_depth 16 

RF 
max_depth 

n_estimators 

20 

400 

GB 

max_depth 

n_estimators 

learning_rate 

4 

200 

0.2 

KNN n_neighbors 7 

 

 
Figure 6. Variable Importance of the GB Regression Model 
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2.2.5. K-Nearest Neighbor Regression 

K-Nearest Neighbors (KNN) is a distance-based regression algorithm [30], [31]. For the training set described earlier, the K 

nearest neighbor regression algorithm works as follows: Given a new input feature vector x*, the K nearest neighbors to x* 

are identified from the dataset based on a distance metric, such as Euclidean distance: 

   𝑑(𝑥ᵢ, 𝑥 ∗)  =  ||𝑥ᵢ −  𝑥 ∗ ||      (9) 

The predicted output y* for the new input x* is computed as the mean of the target values of the K closest neighbors: 

   𝑦 ∗ =  1/𝐾 ∑ᵢ₌₁ᴷ 𝑦ᵢ      (10) 

where K =7 is the number of nearest neighbors used.  

2.3. Model Testing and Evaluation 

Testing and evaluating the efficiency and performance of a designed ML model is a key step of the ML lifecycle to ensure 

accurate and reliable predictions. To ensure accuracy and reliability, there are key performance metrics used. Such 

performance metrics are the mean absolute error (MAE), mean absolute percentage error (MAPE), root mean squared error 

(RMSE), and the R-squared (R2) [28]. These are defined in Equations 11 – 14. 

i. MAE is the deviations between paired observations [32]. 

   MAE = 
1

𝑛
∑ |𝑦�̂� −  𝑦𝑖|𝑛

𝑖=1       (11) 

  where 𝑦�̂� is the predicted value; 𝑦𝑖  is the actual value; 𝑛 is the number of fitted observations. 

ii. MAPE is the average of the absolute percentage errors of predictions [28]. 

   𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦�̂�− 𝑦𝑖

𝑦𝑖
|𝑛

𝑖=1       (12) 

iii. RMSE is the standard deviation of the predicted errors defined in Equation 13. 

   𝑅𝑀𝑆𝐸 =  √∑
(𝑦�̂�− 𝑦𝑖)2

𝑛

𝑛
𝑖=1       (13) 

 Generally, the lower the MAE, MAPE, and RMSE values, the better the prediction ability and capacity of the 

 models. The model with the lowest values is said to have done the best fitting. 

iv. R-squared (R2) is the coefficient of determination and ranges between 0 and 1. A value of 1 means the model made 

predictions without any error. 

   𝑅2 = 1 − 
∑ (𝑦𝑖− �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖− �̅�)2𝑛
𝑖=1

      (14) 

 where �̅�𝑖is the mean of the actual value. A higher value of R2 denotes a better fit. 
 

3. Results and Discussion 
 

This section analyzes the outcomes and performances of the various regression models employed for predicting CCS, based 

on the studies done in the above sections. 

Cross-validation is a model validation method for assessing how the models generalize to an independent dataset. In Figure 

7, the 10-fold CV had the best R2 performances across all the regression models except for the LR model where the 3-fold 

and 5-fold cross-validation outperformed it. The gradient boosting regression technique had the best performance for the 3-

fold, 5-fold, and 10-fold splits with values of 0.9018, 0.9143, and 0.9160 respectively compared with the other models. The 

random forest had the second-best performance for all cross-validation splits used with values 0.8799, 0.8878, and 0.8914 

while the linear regression had the worst performance having achieved R2 values of 0.6017, 0.5935, and 0.5892 respectively 

for the 3, 5 and 10-fold CVs.  
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Figure 7. R2 Score for Cross Validation on the Regression Models 

The statistical results for the performance evaluation and testing performed on the models are presented in Table 3. It was 

observed from the results that the GB regression model had the lowest MAE, RMSE, and MAPE with values of 2.6776, 

4.3523, and 0.0919 respectively, followed by the random forest technique with values of 3.4877, 5.1773, and 0.1224 

respectively. The linear regression had the worst performance, achieving values of 8.8953, 11.1913, and 0.3469 for the MAE, 

RMSE, and MAPE, respectively. Likewise, GB, RF, and DT models achieved the highest value of the R-squared with 0.9365, 

0.9101, and 0.8784 respectively.  The KNN was the fourth-ranked performing regression model for the prediction of CCS 

while LR performed worst. 
 

Table 3. Statistical Analysis of Predictive Models 

ML 

Approaches 

Training Testing 

MAE R2 RMSE MAPE MAE R2 RMSE MAPE 

LR 7.9599 0.6099 10.0018 0.3080 8.8953 0.5802 11.1913 0.3469 

DT 0.0960 0.9964 0.9620 0.0026 3.8500 0.8784 6.0237 0.1390 

RF 1.3584 0.9839 2.0323 0.0471 3.4877 0.9101 5.1773 0.1224 

GB 0.8823 0.9912 1.5009 0.0316 2.6776 0.9365 4.3523 0.0919 

KNN 0.0944 0.9964 0.9615 0.0026 5.8132 0.7592 8.4758 0.2255 

 

For CCS prediction, innumerable works and methods have been done and applied. The comparison of our results with 

previous studies using individual traditional machine learning regressors is shown in Table 4. From the results, our approach 

had the best performance among the traditional ML approaches employed having the least errors. However, a study in [20] 

using a deep convolutional neural network had the overall best R-squared value of 0.97. This shows that deep learning has 

greater potential for more accurate prediction, albeit at a greater computational cost. 

Table 4. Result Comparison in Previous Studies 

Study Algorithm 
Performance Metrics 

MAE R2 RMSE MAPE 

Our work Best Model: GB 2.68 0.94 4.35 9.19% 

 Khan et al. [15] BR 4.26 0.92 5.69 - 

Muliauwan et al. [19] ANN - 0.91 - - 

Zeng et al. [20] DCNN - 0.97 - - 

 

For a real-time deployment of the model, streamlit, a framework for machine learning, is used to develop interactive web 

applications. The best-performing model which is the GB regression model was loaded. The developed and deployed web 
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application is available at the website https://jblideal-concrete-compressive-streng-cement-strength-app-

1i4gpn.streamlit.app/. The web application is shown in Figure 8 with the input variables set and prediction of CCS. 

The deployment is of great benefit for concrete strength determination in practice under normal conditions as it allows 

determining the concrete compressive strength with different mixture contents and ratios before mixing the different 

components. Real-time prediction allows varying all inputs or mixtures to achieve the desired target. However, caution must 

be taken in the use of the tools as it is important that the actual components match the characteristics of the input variables 

trained and deployed. Likewise, all conditions and guidelines should be adhered to avoid miscalculations or the concrete 

strength.   

 
Figure 8. Deployed Web App with Prediction 

4. Conclusion 
 

A possible alternative for forecasting concrete strength from non-destructive testing data is machine learning. However, a 

lack of consensus on which machine learning algorithms are most appropriate for this task, and a need for more comparative 

studies to evaluate the performance of different methods and identify best practices for applying them in practice. This study 

addressed this research gap by conducting a comparative analysis of ML methods for determining concrete strength. The 

study showed that the gradient-boosting regression model had the best level of accuracy for predicting the CCS, followed by 

the random forest technique. In contrast, the linear regression had the worst performance. These findings have important 

implications for improving the accuracy and cost-effectiveness of methods for assessing the quality of concrete structures, 

improving safety, and reducing maintenance costs over the lifetime of these structures. The developed and deployed web 

application for the best-performing model provides an example of how these models can be used in real-time deployment for 

practical applications. Further research could explore the effects of external factors such as temperature, humidity, and curing 

time on the accuracy of the ML models and investigate the generalizability of these findings to other types of concrete. 
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