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ABSTRACT 

Big data analysis used by Internet of Things (IoT) objects is one of the most difficult issues to deal with today 
due to the data increase rate. Container technology is one of the many technologies available to address this 

problem. Because of its adaptability, portability, and scalability, it is particularly useful in IoT micro-services. 

The most promising lightweight virtualization method for providing cloud services has emerged owing to the 
variety of workloads and cloud resources. The scheduler component is critical in cloud container services for 

optimizing performance and lowering costs. Even though containers have gained enormous traction in cloud 

computing, very few thorough publications address container scheduling strategies. This work organizes its 
most innovative contribution around optimization scheduling techniques, which are based on three meta-

heuristic algorithms. These algorithms include the particle swarm algorithm, the genetic algorithm, and the ant 

colony algorithm. We examine the main advantages, drawbacks, and significant difficulties of the existing 
approaches based on performance indicators. In addition, we made a fair comparison of the employed algorithms 

by evaluating their performance through Quality of Service (QoS) while each algorithm proposed a contribution. 
Finally, it reveals a plethora of potential future research areas for maximizing the use of emergent container 

technology. 
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1. Introduction  
 

We envision the Internet of Things (IoT), the Internet of Everything or the Industrial Internet, as a network of globally 

interconnected instruments and devices [1]. We expect an increase in IoT devices in the coming years, which will impact 

supply chain partners' data access and supply chain operation. Gartner 2014 forecasted that the Internet of Things (IoT) will  

expand to 26 billion units by 2020, up from 0.9 billion in 2009. Similarly, Gartner 2021 projects that FinFET will generate 

semiconductor device revenue of $138.6 billion in 2025, up from $87.6 billion in 2020, from production lines and warehouses 

to retail delivery and store shelves [2]. The demand for IoT-connected devices, machine learning (ML) applications, audio 

or video streaming services, and cloud storage has increased. Therefore, as microservices gain popularity, we anticipate 

further expansion of cloud services [3]. Cloud computing is based on virtualization technology, which enables the sharing of 

resources (CPUs, memory, and networks) to execute distinct programs [4]. 
 

The Docker container is a standard software entity that encapsulates code and all its dependencies so that an application can 

operate swiftly and reliably in any computing environment. Containers allow developers to deploy applications in isolated 

environments, making them ideal for microservice architecture and modern applications[5]. There are several characteristics 

enjoyed by containers that enable them to displace traditional Virtual Machines (VMs), and among these characteristics are 

the common host operating system, fast launch, and the possibility of transfer, expansion, and rapid deployment  [6], [7]  

Containers give great flexibility to programs to create an independent runtime on the platform, and by attaching all necessary 

dependencies, such as instructions, the software runs and manages the system [8]. 
 

Due to the variety of duties and available cloud resources, container scheduling has emerged as a crucial aspect of the cost-

effective operation of modern cloud applications [9]. Figure 1 depicts a variety of cutting-edge scheduling algorithms devised 

by scientists that can yield various results. 
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Figure 1. Sample of a Figure Caption 
 

Other considerations include scalability, responsiveness, energy usage, cost and load balancing, resource availability, and 

resource efficiency, among others. Only a few studies have examined resource management in systems based on containers, 

although many have examined the scheduling of virtual machines[10], [11]. For large-scale container scheduling problems, 

no polynomial complexity algorithm exists because the problem is NP-hard. Consequently, most reported algorithms use 

heuristic techniques to achieve local solutions to the task [12]. Low-complexity, time-saving heuristic algorithms are typically 

used to generate a workable schedule. Machine learning is a hot topic regarding container scheduling that has had great 

success in many applications across a wide range of disciplines [13].  

Machine learning algorithms rely on big data for their success, and our study's focus on meta-heuristics, a prominent class of 

population-based optimization algorithms, draws inspiration from the natural development of intellectual activities and 

actions in our environment. Two essential characteristics of these algorithms are selection and adaptation to the environment 

[14]. Meta-heuristics solve optimization problems in many fields. 

According to Attaoui et al., the ability of mobile network function virtualization (NFV) to decouple network functions from 

hardware and host services on commodity hardware makes it crucial for mobile network operators. This enhances service 

deployment and management, improves flexibility, and reduces costs. However, the optimal placement of Virtualized 

Network Functions (VNFs) poses significant technical challenges, influencing network performance, reliability, and 

operating costs. This study explores optimization techniques, such as heuristic, meta-heuristic, and machine learning 

algorithms, to address VNF placement problems, focusing on both VNFs and Container Network Functions (CNFs) in 

edge/fog computing environments [15]. 

Shubha Brata Nath et al. talk about how important fog computing is for meeting the latency needs of Internet of Things (IoT) 

devices. They describe some problems and suggest a framework, PTC, that aims to improve response times by assigning 

micro-services to fog devices more efficiently. The use of Bayesian Optimization and containerization for service isolation 

and migration is highlighted, with experimental results demonstrating improved performance over baseline methods, 

providing a promising approach to enhancing fog computing architectures[16]. 

Hamza Mohammed Ridha Al-Khafaji proposed widespread device connectivity via the Internet of Things (IoT) and the 

associated challenges related to energy and cost constraints. It introduces an improved seagull optimization algorithm (ISOA) 

to enhance the quality of service (QoS) in IoT networks by effectively managing traffic and packet transmission. He has 

demonstrated that the proposed method significantly enhances QoS by outperforming previous approaches in accuracy and 

efficiency [17]. 

Satyanarayana P. et al. describe the Mobile Ad Hoc Network (MANET), a highly mobile and decentralized wireless network, 

and its integration with the Internet of Things (IoT) to form a novel MANET-IoT system aimed at reducing network 

implementation costs and enhancing user mobility. It emphasizes the need for new routing protocols and improved security 

measures, proposing a security protocol that utilizes an enhanced chaotic map and three advanced optimization algorithms. 

Performance evaluations demonstrate the superior efficiency of the proposed approach in various metrics, particularly the 

ABRR-CHIO algorithm, which outperforms other techniques significantly in convergence evaluations  [18]. 

Docker is an open-source container platform for developing, shipping, and running applications. A container is a packaging 

method that combines our application's necessary configurations and dependencies. We run applications in isolated boxes 

called containers, and by isolating these boxes, we can run different applications on multiple independent containers. Docker 

creates containers to run and store applications and uses virtualization. Although Docker and virtual machines use isolated 

virtual environments for software development, they have different structures. The most important feature distinguishing 

Docker containers from virtual machines is that Docker containers are lighter, faster, and more resource-efficient. A virtual 

machine, Docker, isolates applications using container structures on a single operating system rather than creating a separate 
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virtual operating system for each application. This not only reduces the size of the application but also brings a significant 

performance increase. A piece of hardware can have multiple containers. Containers, unlike virtual machines, are virtualized 

at the application level. As a result, the host computer shares the kernel and virtualizes the operating system. This reduces 

resource usage and provides rapid and easily configurable virtual environments. 
 

In this work includes expanded reviews and comparisons for three classical, modified, and hybrid meta-heuristic algorithms. 

The study included a narrative of the natural spirit and the behavior of the algorithms, additionally the mathematical model 

and the adaptation of container scheduling. Conversely, the comparisons concentrated on Quality of Service (QoS) metrics 

that optimization processes enhance. Despite its importance, this type of research remains relatively isolated. Unlike our 

research, which focuses on meta-heuristic algorithms, there is only a single review in the literature that provides a brief 

overview of all scheduling techniques. We organize the remaining sections of this essay as follows: Section 2 discusses 

container scheduling using optimization methods and common performance measures. Section 3 reviews and compares 

optimization scheduling meta-heuristics, presenting the author's perspective. Section 4 discusses the challenges and potential 

avenues of research and explains possible solutions. The final section presents the results and outlines the future work. 
 

2. Management Containers by Optimization Algorithms and Performance Measurements 
 

This work compiles research findings published in international magazines, conferences, and organizations such as IEEE, 

ACM, Elsevier, and Springer between January 2017 and January 2024, including the International Conference on Machine 

Learning. To gather papers, we searched for several container scheduling-related keywords. The section revolves around two 

locations: the first, a scheduling container for optimization algorithms, and the second, performance metrics. 
 

2.1. Motivation 
 

Since IoT microservices typically grow to meet user needs and be highly available, redundancy is frequently required. When 

we need additional processing power, we scale the service. When a microservice resides within a container, it scales by 

replicating it. Most services have substantial resource requirements and must adhere to strict performance criteria[19]. Lack 

of resource management might lead to rising expenses, subpar service, and energy waste [20]. Due to high service standards, 

finding an ideal location is necessary to ensure each service has enough resources without wasting any. To maximize 

consumption, cloud customers want to plan resources [20]. This project will place each microservice in its own container 

before scheduling it on a virtual machine. To reduce the number of Virtual Machines (VMs) and their overall cost, a container 

placement problem comparable to the Virtual Machine Placement (VMP) must be addressed. 
 

2.2. Scheduling Container Problem Model Discerption 
 

We formulate the Container Placement (CP) issue as follows: Given a set of containers, each with a different set of resource 

needs, such as CPU-intensive or memory-intensive containers, try to place all containers on VMs while using the fewest 

number of VMs as possible. Assume that within the specified period, between the hours of t1 and t2, a set of containers 

arrives at the data center. When using online container allocation, the overall goal is to assign container slots to existing VMs 

or newly created VMs, and then assign those VMs to physical machines (PMs) to keep the total energy consumption of all 

PMs at its lowest possible level. The resource entities share the following characteristics (containers, virtual machines, and 

physical machines). CPU and memory are the two types of resources available to each entity. This study considers a data 

center with heterogeneous VMs of different types and homogeneous PMs, all of which share the same CPU and memory 

capacity. Each type of virtual machine comes pre-configured with a tuple of resources (e.g., a small VM [825 MHz, 800 

MB]). Each VM has overheads in addition to its resource capacity. Virtual machine overheads represent the resources that a 

hypervisor uses up. A tuple of resources represents each type of VM's overhead. 
 

Each virtual machine can run a specific operating system. A cloud provider will also specify the supported operating system 

categories. In the case of containers, we contemplate a one-to-one correspondence between applications and containers, as 

opposed to the approach of Piraghaj [21] , which employs three categories of containers for all applications. The domain of 

required resources for containers is defined as a number between one and the capacity of PMs. Consequently, the container 

is defined in a much more realistic and general manner  [22]. This task necessitates the use of containers that contain virtual 

machines running the same operating system. There are four decisions to make. Our model includes the following procedures 

for the online container allocation problem: Figure 2 illustrates the selection and construction of virtual machines, represented  
by blue lines, and virtual machines, represented by red lines. 
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Figure 2. Container Placement Procedure 

 

The VM selection process selects existing VMs from which to allocate containers. Another option involves creating virtual 

machines using cloud provider-defined virtual machine types and allocating containers to the appropriate virtual machines. 

The operating system requirements of the first container determine the operating system type of the virtual machine. The PM 

selection process chooses pre-existing PMs to assign the newly created VMs. In that it produces a kind of PM and allows the 

VM to use it, PM creation functions similarly to VM creation. 

2.3. Scheduling Containers by Optimization Algorithms 

Meta-heuristic algorithms are high-level, general optimization strategies used to solve complex problems that do not have a 

known solution method. We call them "meta" because they offer a higher level of abstraction than specific algorithms. Such 

algorithms have two important characteristics: selection of the most suitable candidates and adaptation to the environment. 

Meta-heuristics frequently solve optimization problems in a variety of disciplines [13].  

Meta-heuristic algorithms have recently become a go-to method for tackling various industries' most challenging optimization 

problems. Genetic algorithms (GA) and swarm intelligence techniques like ant colony optimization, particle swarm 

optimization (PSO), and whale optimization are examples of meta-heuristic algorithms. Here, the meta-heuristic utilized to 

derive the solution has been used to categorize scheduling strategies. 

2.4. Performance Metrics 

We can use several performance metrics to evaluate the effectiveness of optimization algorithms: 

• Convergence: It measures the rate at which the algorithm approaches the optimal solution. 

• Solution Quality: It measures the algorithm's proximity to the optimal solution. The value of the objective function 

typically determines this. 

• Computational Time: It measures the time the algorithm takes to find the solution. 

• Scalability: It measures the algorithm's ability to handle larger problems. 

• Robustness: It measures the algorithm's ability to generate effective solutions regardless of alterations to the 

problem or exposure to noise. 

• Repeatability: It gauges how consistently the algorithm produces the same results for a particular problem instance 

each time it runs. 

• Accuracy: It measures how closely the algorithm's solution matches the optimal solution. We recommend readers 

review the domain-specific optimization objectives from the most recent survey[23]. Below is a list of the most 

frequently used goals in the cost function specification of the container scheduling problem. 

2.4.1. Energy 

Regarding container deployment, the computing and storage devices hosting the containers, including servers, storage 

devices, switches, and other infrastructure components, consume energy. Energy consumption is an important consideration 

in container deployment because it can have a significant impact on the system's operating costs as well as the environment. 

Factors contributing to energy consumption in container deployment include the number of containers running, the utilization 

of computing and storage resources, the efficiency of the hardware components, and the power management policies in place. 

To minimize energy consumption, organizations can employ techniques such as container orchestration, resource utilization 
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optimization, hardware selection, and power management policies. As a result, energy efficiency serves as a critical metric 

for reducing carbon emissions and improving environmental sustainability [23]. 

2.4.2. Cost 

Compute, storage, and communication costs all contribute to the overall cost of an application's execution. Compute time 

refers to the time it takes to run a program on the cluster's available cores. The cost increases when an application runs on a 

computer for a long time. Communication costs are also about how much telecommunications service providers pay to run 

the application. The need for more communication between nodes and clusters increases communication costs. 

2.4.3. Availability 

We refer to the duration of a user's access to an application as its lifetime. Users of cloud computing should have access to 

applications and services whenever they need them. Accessing applications and services whenever needed is an important 

consideration for cloud computing users. 

2.4.4. Use of resources 

This statistic measures the efficiency with which a worker node uses its network bandwidth, memory, and CPUs on a per-

worker-node basis. According to this metric, workers are most efficient and cost-effective when used to their full capacity. 

2.4.5. Load Balancing 

Distributed computing ensures that no computer overburdens other idle computers. This goal affects response time, cost, and 

throughput. This metric is critical because of the dynamic nature of the workload in container-based applications. 

2.4.6. Scalability 

Additionally, container scalability is an essential measure of how well a system can handle increased demand, whether it 

comes from one application or a variety of different ones. These metrics measure the system's ability to adapt to changing 

workloads by increasing the available resources or deploying more containers on the cluster. 

2.4.7. Scalability 

It takes time for the application to run from start to finish. Makespan is a good scheduler's primary goal. If you're operating 

a real-time application that demands minimal latency or severe deadlines, this statistic is essential. 

2.4.8. Throughput 

The productivity of an application is determined by dividing the number of tasks by the time allotted to them. At the same 

time, the transfer rate provides an overview of system performance (processor, memory, and network). 

2.4.9. Security 

The orchestra can protect both data and services against hostile attacks or software defects by leveraging encryption and 

access control techniques. Online transaction processing, centralized financial services, and productivity tools enhance the 

performance of this metric. Because of the serious security vulnerabilities they provide, containers require special care. 

2.5. The Objective Function for Performance in Algorithms  

In the context of optimization or machine learning, the objective function f(x), as shown in equation 1, is a mathematical 

expression that you aim to maximize or minimize.The form of this function depends on the specific problem you are 

addressing. Here is a general example: 

              𝑓(𝑥) = ∑ (𝑦𝑖 −  �̂�𝑖)
2𝑛

𝑖=1                                                                                                                                                                (1) 

Where: 

• 𝑦𝑖  is the observed value, 

• �̂�𝑖 is the predicted value, 

• n is the number of observations. 

This is a common objective function used in regression problems known as the mean squared error (MSE). 

2.6. Statistical Analysis for Algorithms 

To evaluate the performance of different algorithms, we typically perform a statistical analysis. The key metrics often include 

the mean, standard deviation (std), execution time, and significance values (p-values). Here's a step-by-step guide: 

1. Mean: Equation 2 displays the average performance metric (such as accuracy, error rate) over several runs or datasets. 

𝑀𝑒𝑎𝑛 =  
1

𝑛
 ∑ 𝑥.

𝑛
𝑖=1                                                                                                                                                        (2) 
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2. Standard Deviation (std): Equation 3 calculates the variability, or distribution, of the performance measurement. 

           𝑆𝑡𝑑 =  √
1

𝑛
∑ (𝑥𝑖 − 𝑀𝑒𝑎𝑛)2𝑛

𝑖=1                                                                                                                 (3) 

3. Execution Time: The time taken by the algorithm to complete its task. This can be measured using time functions 

in programming languages like Python's time module. 

4. Significant Value (p-value): Determines if the performance difference between algorithms is statistically significant. 

Typically, you perform a hypothesis test (e.g., t-test) to compute the p-value. 

• Mean and Std: Provide insights into the central tendency and variability of the algorithms' performance. 

• Execution Time: Helps assess the efficiency of the algorithms. 

• P-value: If the p-value is below a significance threshold (e.g., 0.05), you can conclude that there is a statistically 

significant difference between the performance of the two algorithms. 

3. Meta-heuristic Optimization Techniques for Scheduling 

Here, we demonstrate the optimization algorithms used to enhance the container scheduling problem. We also discuss meta-

heuristic algorithms in detail. 

3.1. Ant Colony Optimization Algorithm 

3.1.1. Natural Inspired 

Ant Colony Optimization (ACO), "Optimization, Learning, and Natural Algorithms," was proposed by Marco Dorigo in 1992 

and is the earliest and most widely used technique [24]. The ability of actual ants to locate sustenance and determine optimal 

routes inspired the development of the ACO. We use this population-based general search technique to address complex 

combinatorial optimization problems. The Ant Colony Optimization method draws inspiration from ants' ability to 

communicate with each other through a specific chemical known as pheromone. Self-organizing agents or acts can 

communicate with each other via "stigmergy," a term that refers to "indirect communication" between them. 

Real ants first travel throughout their colony in search of food. On their journey from colony to food, they leave a unique 

chemical 'pheromone.' When they return, they also leave behind a small amount of pheromone. Pheromone concentrations 

on shorter routes are higher because the ants return earlier. Because this path is the shortest, it attracts more traffic after a 

certain amount of time. There is a special rate at which the phenols dissipate. Consequently, ants eventually erase long trails 

they don't use. Pheromone trails let ants find the most efficient route between colonies and food. Therefore, the ACO 

algorithm mimics the behavior of real ants [25], [26]. 

3.1.2. ACO Algorithm 

To make the ant colony algorithm suitable for continuous problems, such as the traveling salesman problem, we must first 

program it to generate solutions using integers. Next, we initiate the pheromone update step, which entails the deposit and 

evaporation of pheromones, a crucial aspect of ACO[25]. At first, ants haphazardly begin their search for food. An ant uses 

a probabilistic equation to choose the next node to visit. Equation 4 gives the likelihood of ant k traveling to node j while ant 

k is on the node. 

Algorithm 1. Initializing the Pheromone 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

Procedure Initializing the pheromone matrix τ for all edges in G  

        For each iteration t from 1 to T:  

              For each k ant from 1 to m:  

                      Choose the next node n in ant path k based on pheromone values and inference (e.g., using probability 

rule).   

               Update ant path k with node n  

               Update the pheromone values at the edges based on the quality of the tracks found by the ants  

Determine the best path found by the ants as a result of the ACO algorithm 

end procedure 

 

              𝑷𝑱 =  [

𝝉𝑱
∝𝝁𝑱

𝜷

∑ 𝒋∈𝑵İ𝝉𝑱
∝𝝁𝑱

𝜷 𝒇𝒐𝒓 𝒋 ∈  𝑵𝒊

𝟎 𝒇𝒐𝒓 𝒋 ∈ ! 𝑵𝒊

]                                                                                                                         (4) 
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In addition, pheromone update comprises pheromone deposit and evaporation. As an ant moves from one node to the next, 

its pheromone values fluctuate. The process of pheromone evaporation involves a constant factor reducing the first pheromone 

value on each arc. 

 

Each ant adds some pheromone to each node it traverses as part of the pheromone deposit. Equation 5 for pheromone 

evaporation is as follows: 

 

                𝛕 = (𝟏 − 𝐩)𝛕                                                                                                                             (5) 

  

Where ρ is the rate of evaporation. Each ant deposits some pheromone on each node, which is known as a pheromone deposit 

and is given by Equation 6 below: 

 

                 𝛕 =  𝛕 + △ 𝛕                                                                                                                        (6) 

 

Where m is the number of ants, ∆τ is the amount of pheromone drop on the k node. It is calculated as shown in Equation  7: 

 

                △ 𝛕 = 𝐐/𝐳                                                                                          (7) 

 

The present length of the tour by k ant.  It is worth mentioning that at the end, create one diminution matrix (1, the number 

of cites) with different values according to equation 1 divided by the summation of probabilities. The production of this 

equation is processed by a roulette wheel to select a numeric value between one and the city number. This operation is 

repeated until the estimated set, which represents by its turn the probable solution. 

3.1.3. ACO for Container Adapting 

The basic ant colony algorithm organized the containers perfectly, depending on the Docker algorithm; the results revealed 

a significant 15% improvement in performance compared to the greedy herd. However, the algorithm only considered a few 

optimization goals, such as maximizing the use of available resources and ensuring an even distribution of work Burvall, 

Multi-Objective Container Placement The presentation of Ant Colony Optimization (MOCP-ACO) transformed the 

traditional Ant Colony implementation by incorporating new criteria like network utilization and cost into the decision-

making process [25]. Compared to Docker Swarm's spread scheduling method, MOCP-ACO outperformed the latter in all 

tested cases, regardless of the workload or the number of containers (16–1024) used. 

3.2. Genetic Algorithm  

3.2.1. Natural Inspired 

Natural selection and evolution processes inspire the Genetic Algorithm (GA), a type of optimization algorithm. It is a 

population-based search algorithm that employs the concept of survival of the fittest to identify the optimal solution [27]. We 

create new populations by repeatedly applying genetic operators to members of an existing population. The essential 

components of GA are chromosome representation, selection, crossover, mutation, and fitness function computation. The 

following is GA's dispute resolution procedure: With a random sample, we start a population of chromosomes (Y). We 

determine the fitness of Y chromosomes by computing their fitness values. Based on their fitness, we select C1 and C2 from 

population Y and designate them as C1 and C2, respectively. We subject C1 and C2 to a single-point crossover operator with 

crossover probability (Cp), resulting in O production. We then subject the produced progeny (O) to a uniform mutation 

operator with a mutation probability of Mp to generate O′. It is determined where the new progeny O′ will be placed in the 

new population. To finalize the new population, it will be necessary to repeat the selection, crossover, and mutation processes 

in the current population. 

3.2.2. GA Algorithm 

GAs are algorithms that mimic the process of natural selection. Genetic algorithms enhance problem solutions by gradually 

evolving a population of potential solutions as the problem's complexity increases. Each prospective solution consists of a 

set of chromosomes that can be modified and altered in many ways; traditionally, solutions are represented in binary as strings 

of 0s and 1s. We could summarize the GA by following these steps [28]: 

First: Create n by m array of population, 

          Check the fittest chromosome: Evaluate each chromosome to calculate fitness. 

          Generate a new population: 

   Selection: Select two chromosomes from the population by following the selection procedure. 

                     Crossover: Using the two chromosomes you've chosen, perform a crossover. 
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                     Mutation: On the chromosomes obtained, perform mutations. 

          Replace: Substitute the new population for the current population. 

      Test: Check to see if the end condition is met. If this is the case, stop. If not, move to Step 2 and return to the best solution 

for the current population. 

3.2.3. The GA Approach for Container Scheduling 

Guerrero et al. proposed the first container scheduling method based on the NSGA-II standard. The National Science 

Foundation created the multi-objective optimization method known as NSGA-II [27]. When creating their formulation, the 

authors took four optimization goals into account: resource utilization, failure rate, load balancing, and network 

communication overhead. The suggested method outperformed the researchers by 40–60% in the bulk of the intended 

objectives, according to the Kubernetes scheduling algorithm. Zhang et al. suggested an enhanced evolutionary algorithm 

based on a non-linear energy model to minimize energy usage [29]. e have created two new mutation operators to more 

effectively find the best answer. Conversely, Tan et al. designed the suggested plan with a single goal in mind: energy 

optimization. Tan et al. have presented an energy-saving two-level hybrid algorithm. Genetic programming is a population-

based evolutionary computer strategy, much like genetic algorithms [22]. 

In this method, VMs are initially assigned to containers before the VMs are assigned to actual computers (PMs). Compared 

to heuristic-only-based techniques like first-fit, best-fit, and so forth, the hybrid approach greatly lowered energy usage, 

according to the experimental data. Imdoukh et al. proposed the NSGA-III-based Many-Objective Genetic Algorithm. The 

NSGA-III, an improved version of the NSGA-I, can handle more objective functions. They evaluated the system's 

performance and efficiency from various angles, including load balancing, scalability, power consumption, and resource 

availability and use. An examination in comparison to an ACO-based scheduling methodology proved the strategy's 

efficiency [30]. Tan et al. built on the work they had already done to solve the two-level container allocation problem using 

a hyper-heuristic method based on cooperative Coevolution Genetic Programming (CCGP) [22]. This method concurrently 

created allocation rules for both layers (containers-virtual machines and VMs-physical machines), lowering total energy 

usage. 

Compared to the state-of-the-art algorithms, the results of the experiments revealed a significant reduction in energy 

consumption. The proposal of Dhumal and Janakiram C-Balancer proposes a scheduling framework that utilizes container 

runtime metrics to optimize container placement in a cluster environment [31]. Specifically, the suggested technique employs 

a GA-based optimizer to select the most reliable and effective container for node placement by regularly collecting container 

runtime information. The approach's fundamental idea is to rebalance containers by distributing them over several nodes 

using runtime data gathered during the migration process. The Swarm Cluster experiment demonstrated that the C-usefulness 

Balancers improved performance in terms of resource consumption and throughput [32]. 

3.3. Particle Swarm Optimization Algorithm   

3.3.1. Natural Inspired 

We devised the PSO algorithm to address the social behavior of animals such as schooling fish, swarming invertebrates, and 

avian migration. Researchers use this method to systematically search for the global optimum of numerous arbitrary 

problems. Kennedy and Everhart presented it for the first time [33]. The initial plans for this concept included simulating the 

graceful and unpredictable movements of a flock of birds to discover the patterns that govern their ability to fly synchronously 

and abruptly change directions while regrouping into an optimal formation, all with the goal of discovering new patterns. 

The correct term is stochastic, population-based evolutionary computing. Individuals' ability to maintain cognitive 

consistency depends on social influence and social learning. Therefore, the exchange of ideas and interactions between 

individuals may facilitate the resolution of problems. The particle swarm simulates this social structure. Li, Huang, and Wu 

claim that this method seeds the multidimensional search space of an objective function with a random set of particles, each 

assigned a specific position and velocity [34]. The objective function measures each particle as a potential solution to the 

problem. We characterize a collection of particles as a "swarm". During their voyage through multidimensional space, these 

particles utilize two essential reasoning skills: their memory of their optimal position and their knowledge of the optimal 

positions around the globe or in their immediate vicinity. In a minimization problem, "best" refers to the particle's (xi) position 

with the minimum objective value, min fxi. Members of a swarm exchange information about advantageous positions and 

adjust their position and velocity accordingly. Thus, a set of design variables (xi) and the corresponding velocities (vi) 

represent an optimization solution for each particle. 

3.3.2. PSO Algorithm 

First, a brief overview of the standard PSO algorithm is provided. Assume there are m particles in the colony that are being 

searched for in the D-dimensional space. D-dimensional   vectors   are used to represent the Ith particle in the search space, 

which indicates that the particle is located as shown in Equation 8: 
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𝑿𝑰 =  (𝑿İ𝟏, 𝑿İ𝟐, 𝑿İ𝟑, … , 𝑿İ𝒅) ( 𝑰 =  𝟏, 𝟐, . . . , 𝒎)                                                        (8) 

 

Positioning each particle could be a solution to this problem. We can determine particle fitness by comparing the particle's 

position to a designated objective function [34] , which is "better" when the fitness level is higher. The ith particle's "flying" 

velocity is represented by a D-dimensional vector, as shown in Equations 9, 10, and 11: 

 

𝒊 =  (𝒗𝒊𝟏, 𝒗𝒊𝟐, . . . , 𝒗𝒊𝑫)                             (9) 

99 

𝑰 =  𝟏, 𝟐, . . . , 𝒎)                             (10) 

  

𝑷𝒊 =  (𝒑𝒊𝟏, 𝒑𝒊𝟐, . . . , 𝒑𝒈𝑫)                            (11) 

 

The particle's optimal position ( ) and the colony's optimal position ( ) are indicated. The PSO algorithm can be implemented 

using the following Equations 12, 13: 

 

 

𝑿𝒊(𝒌 +  𝟏)  =  𝑿𝒊(𝒌)  +  𝑽𝒊(𝒌 +  𝟏)                                                       (12) 

 

𝑽𝒊(𝒌 +  𝟏) =  𝒘𝑽𝒊(𝒌) +  𝒄𝟏𝒓𝟏 𝑷𝒊 −  𝒙𝒊(𝒌) + 𝒄𝟐𝒓𝟐 𝑷𝒈 −  𝒙𝒊(𝒌)                                      (13) 

 

The inertia coefficient w, nonnegative constant learning rates c1 and c2, random generation of r1, and the inertia coefficient 

we are all constants in the interval [0, 1]. Pbest and fitness gbests are used to determine whether iterations should be terminated 

when they have reached their maximum generation or a predetermined value[35]. 
 

3.3.3. PSO for Container Scheduling   

Li et al. improved resource utilization and load balancing with a PSO algorithm [34]. To get around the local minimum, the 

authors implemented a simulated annealing algorithm with PSO. In a series of tests, the suggested implementation of Docker 

Swarm outscored the spread technique by 20. As a scheduling technique based on PSO, Guo and Yao suggested employing 

the neighborhood division idea to fine-tune the PSO algorithm's parameters for better-quality solutions [35]. o enhance system 

performance, the algorithm took into account load balancing as well as reaction time. In the suggested approach, non-

dependent containers were put on nearby hosts to minimize their connection [8], [36]. Compared to the existing and PSO 

algorithms, the results showed a 20–25 percent improvement. The increased power consumption associated with the 

developed solution was one of its drawbacks. With the help of a two-stage multi-type particle swarm optimization (TMPSO) 

algorithm, we were able to solve the container consolidation problem  [21]. To increase the quality of the results, the TMPSO 

algorithm employed a combination of heuristic and greedy strategies. When comparing conventional and binary PSO 

algorithms, the experimental findings revealed a significant reduction in energy consumption. Adhikari and Srirama 

proposed, to reduce energy consumption and computing time, a multi-objective particle swarm method for scheduling 

containers for Internet of Things jobs [37]. 

Additionally, the suggested method accounted for lowering CO2 emissions and calculating node temperatures. For big data 

applications, Liu et al. proposed the Kubernetes container scheduling algorithm, K-PSO, based on particle swarm 

optimization [8]. The authors added a dynamic inertia weight and learning factor to the standard PSO, allowing faster 

convergence with higher-quality solutions. The authors added a new predicate scheduling process and priority scheduling 

process to the Kubernetes native scheduler to leverage the improved PSO. 

The experiments revealed a 20 percent increase in resource utilization compared to Kubernetes' default scheduling strategy. 

Conversely, we can expand the suggested approach to include multi-criteria optimization objectives. To decide on container-

based micro-service deployment in an edge computing paradigm, Fan et al. presented an edge computing-based scheduling 

method based on PSO [38]. The algorithm knows latency, reliability, and load balancing (LRLBAS). We demonstrated the 

efficacy and efficiency of the treatment by comparing trial results with PSO versions. Edge computing has demonstrated the 

effectiveness of the LRLBAS algorithm for micro-service scheduling. In the future, the authors intend to incorporate 

additional objectives into their proposal. 

4. Discussion 

The issue is allocating container slots to existing or new VMs and assigning those VMs to PMs while simultaneously reducing 

the power consumption of all PMs. The data center contains a variety of heterogeneous virtual machines and homogeneous 

PMs. Each virtual machine includes a set of preconfigured resources and overheads. The first container's operating system 

requirements determine the virtual machine's operating system type. The situation necessitates four decisions, including VM 

selection, VM creation, PM selection, and PM generation. The section also discusses two optimization techniques for 

container adaptation: ACO and GA. MOCP-ACO outperformed the Docker Swarm deployment scheduling method in every 

scenario tested, while the NSGA-II-based method outperformed the Kubernetes scheduling algorithm by 40–60% for many 
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targets. In comparison to heuristic-only techniques, the enhanced evolutionary algorithm and the two-level hybrid algorithm 

substantially reduced energy consumption. Compared to the most recent algorithms, the multi-objective genetic algorithm 

based on NSGA-III and the collaborative genetic programming approach based on the over-exploration method yielded 

significant results. Table 1 provides a comparison of selected works from the literature. 

Table 1. Comparison of Selected Works from the Literature 
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5.  Conclusion  

With the proliferation of IoT services, the use of containers in the cloud computing community to provide cloud services has 

increased dramatically in recent years. Container scheduling has grown to become a significant component of cloud 

computing architecture to ensure proper management of cloud resources during runtime. We conduct a comprehensive 

analysis in this paper to examine the landscape of container scheduling methods. To start, we divided scheduling strategies 

into four groups depending on the optimization method that was used to create the schedule. Following that, we considered 

optimization goals to determine how well the created schedules performed. Then, based on performance indicators, we 

categorized and described current strategies for each category to understand their benefits and drawbacks. A new generation 

of resource management and scheduling systems will be required because of container technology, according to present trends 

and probable future research paths. New developments in technology, whether fuzzy or cloud computing, provide 

opportunities and new horizons for researchers in reducing the power and increasing the security and communications of 

these settings and micro-services. 
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