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ABSTRACT 

Electricity generation from renewable energy sources such as solar energy has come to the forefront in the last 
decade. The solar energy cell is an indispensable part of the solar energy ecosystem of solar panels, and defective 

cells cause financial losses in energy production. Experienced experts are needed to detect defects on solar cells. 

Autonomous systems are important to accelerate the process. Classical image processing techniques are used to 
manually detect defects on cells. To use these techniques, many parameters are need to be entered into EL 

imaging software. However, in this study, these processes were carried out automatically without the need for 

external intervention.  False detection/classification may occur during the processes performed by EL imaging 

devices due to weakness of the operator experience or EL imaging software. It is aimed to use automatic image 

processing and then deep learning techniques to achieve faster and higher performance than the results obtained 

from EL imaging devices using classic image processing techniques. AI algorithm and deep learning models 
can be an important solution. In this study, two AI algorithm and 10 different deep learning models were used 

to classify solar cells. EL images of defective and normal solar cells with 4 and 5 busbars were used in the study. 

The dataset, includes 9360 images of solar cells, 4680 of which are defective and 4680 are normal. Performance 
evaluation of the models made according to the confusion matrix. According to the results, Mobilenet-v2 and 

VGG-19 achieved the highest validation accuracy rate of 99.68%. According to F1-score, Mobilenetv2 achieved 

the highest performance of 99.73%. It has been shown that the Mobilenet-v2 is slightly more successful than 
other models in terms of validation and F1-score. The results show that trained DL models can be used as an 

inspection method in the production line of solar panels and cells. 
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1. Introduction 

 

Electricity generation from solar panels has been very popular recently, just like artificial intelligence-supported systems. 

The quality of solar cells, which is the most important element of the solar panel and determines the maximum electricity 

production capacity, power and performance, is undoubtedly very important for manufacturers and users. For this purpose, 

many defects detection and classification equipment/processes are used during solar cell/panel production and after panel 

installation on solar plants. Determination of cell defects from Electrolumnesans (EL) images is one of these methods. In EL 

imaging, it is possible to detect cell defects, especially in PV panels. Cell defects appear as dark lines on the solar cell in the 

EL image. Especially in multicrystalline solar cells, crystallographic defects typically appear as dark lines. Cell cracks are 

detected by a person trained to recognize cell cracks in PV cells and panels. A well-trained person can detect cracks by 

looking at the EL image of a solar panel. [1] 

As shown in Figure 1, the classic EL imagining test is conducted in a dark environment by applying reverse current to the 

PV solar panel and the reflected photons are captured by the CCD (Charge Coupled Device) camera; the images similar to 

radiology results as in Figure 2. The captured image can be interpreted only by experts as in radiology results. EL images are 

controlled by an expert, and if s/he detects any defects in cells, these cell strings must be replaced with non-defective cell 

strings before the lamination process. Therefore, manual classification and inspection may cause a waste of time and some 

misclassification problems. Especially during solar cell/panel production, classification of the cell defects is quite helpful for 

quality & inspection processes. 
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Figure 1. EL Imaging Technique Representation [2] 

 

Figure 2. EL Image of 60 Cells PV Solar Panel 

The Classic EL imaging software segments the image consisting of 60 or 72 cell images according to the parameters entered 

by the operators and writes the evaluation result of each cell to an XML file. In some cases, due to parameter or operator-

related reasons, false cell segmentation may occur as shown in Figure 3. 

 

Figure 3. False Segmented Solar Cell 

There are some cell defect types like micro-cracks, finger interruptions, material defects, Finger Interruptions, Cell Inter-

connection Problems shown in Figure 4. Each defect type impacts panel performance differently; even a combination of 

several may result in negligible effect. In some cases, depending on the size and number of defects may cause a panel 

performance loss of up to 60% [3] 
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Figure 4. Types of Defects and Normal Cells in the Dataset. 

a) Electrically Insulated Cell Parts b) Material Defects c) Finger Interruptions d) Cell Inter-connection Problems 

e)Microracks f)Cell without any defects(Normal) 

The images obtained from the EL device are presented to the expert using classical image processing techniques. The expert 

examines the images from the EL device and manually detects cell damage in the image. 

Using deep learning models for inspection of EL images, it will provide minimizing the faulty detections caused by the 

operator and the machine, reducing the time spent for damage detection to less than 1'min and to carry out the process in a 

healthy way without the need for an operator at the station.   

Deep learning models used in the study, the arrangement and branching of the DL(Deep Learning) layers are differ. A sample 

architecture showing the layers used in deep learning models is shown in Figure 5. 

 

 

Figure 5. Sample Layer Structure Used in DL Models for Classification Problems[4] 

A dataset consisting of defective and normal cells, the input image in Figure 5, is put as input data to a sample DL model. 

Then, feature extraction is performed via the convolutional layer. In the next layers, the image size used as input for the 

network is reduced by the polling process. Relu is used for the activation function. The probability of memorization of the 

network is reduced, and some of the random weights in the network are discarded in the dropout layer. The image data is 

standardized via the normalization layer. In a fully connected layer, every neuron makes connections to all neurons in the 

prior layer. This allows the network to integrate the local features extracted earlier, like edges and shapes, into a bigger 

picture, ultimately recognizing complex patterns across the entire image. The Softmax layer is the entropy layer and it makes 

probabilistic estimation and estimates which class the input image belongs to via the Classification layer, [5] 

This study used 10 Deep Learning CNN(Convolution Neural Network) models, which have different numbers and types of 

layers for cell classification. These models are Mobilenetv2, Darknet19, Darknet53, Alexnet, Googlenet, Vgg16, Vgg19, 

Resnet50, Resnet-101, Densenet201. In addition to these DL models we used classic AI(Artificial Intelligence) algorithms 

as SVM(support Vector Machine) and KNN(K-Nearest Neighbor). In this way, it will be possible to see which model achieve 

more successful results and this study will guide the researchers who work in this field. The dataset used in this study was 

selected and validated from a real production line and by experienced engineers.  In addition, the Confusion matrix was used 

as a measure of the success of the models and precision, accuracy, sensitivity, and F1-score parameters were used. 

In the introduction section, information about cell defect classification using classical image processing techniques is given 

and what can be done with the use of AI is briefly explained. In 2 related studies, previous studies for the detection of cell 

damage and the methods used in these studies are stated in detail. The 3 material and method sections mention the method 

we used in our study and how the study progressed. In the results section 4, the results we obtained with different deep 

learning models in our study are explained. The results and evaluation were made in 5 discussion sections. In the 6 discussion 

sections, there are discussions about the results obtained. 
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2. Related Work 
 

In 2021, we studied crack detection on the solar cell by using the Alex-Net DL model in the dataset we had created ourselves. 

According to the results we gained from the study, we achieved the detection of cracks in solar cells with an accuracy of 

79.40%. [3] 

In Table 1, related to the studies listed that were classified as defect/undefect, the common feature of all of them was that the 

number of images used in the dataset and the number of cell defects were limited, An imbalanced dataset had been used in 

some researches [6][7]to get the most accurate result we had created and used a dataset that is balanced, much larger and 

included more defect types. At the same time, it achieved the highest result in metrics such as Accuracy, Recall, Precision, 

and F-1 score. Besides, 10 different DL models and 2 traditional AI were used for training and testing. Lastly, Alaa S. Al‐

Waisy studied on two different datasets their class numbers are unbalanced. To overcome this situation, they use some data 

augmentation techniques. They also trained and tested the datasets by pre-trained and hybrid model and get highest 

performance with the hybrid model  [8]. 

Lee et all,developed a deep learning architecture called LIRNET(Local Integral Regression Network) for a dataset of 20000 

infrared images and 12 classes and performed classification in 2 phases. The dataset is unbalanced like the dataset used in 

other studies, and they achieved an 89% accuracy rate with the used architecture [9]. 

Deitsch S. et al, studied on a limited number of dataset and try to automatic segmentation in both defect and normal cell 

images and they get F1 score as 97.23%[10]. Akram Waqar et al, studied on same dataset of Deitsch S. et al, they classify 

the dataset as defect and not defect and get 92.80% Accuracy rate [11]. 

Amirul Anwar S. et al, studied with a very limited dataset and they classify the dataset as defect and not defect and get 83.89% 

Accuracy rate[12]. Bartler A. et al, studied with a relatively large dataset and classify the dataset as defect and good and get 

87.04% Recall rate [13]. Wang J. et al, studied with two different datasets and classified the dataset as defective and normal 

and get a 96.17% Accuracy rate [14] 

In Table 1, related research is listed with the researcher’s name, number of classifications, dataset size and test results in 

terms of Accuracy, Recall, Precision and F1-score.  

Table 1. Related Works 

Studies Classification Number of Total 

El Images 

Accuracy Recall Precision Highest 

F-1 

Score 

Balzategui J. et al [6] Defect vs Not Defect 542 - 0.920 0.850 0.883 

Balzategui J.et al[7] Defect vs Not Defect 542 - 0.875 0.823 0.847 

Waqar Akram M. et al [11] Defect vs Not Defect 2624 0.928 0.920 0.93 0.9249 

Amirul Anwar S. et al[12] Defect vs Not Defect 600 0.8389 0.971 - - 

Bartler A. et al [13] Defect vs Good 98280  87.04   

Wang J. et al. [14] Defective vs Normal 2223 & 5991 0.9617 0.9516 0.9603 0.9557 

 

The differences between classical image processing techniques and artificial intelligence studies are included in the related 

studies section. Here, it has been seen that studies carried out with deep learning models, one of the artificial intelligence 

techniques, have achieved successful results in damage detection. It is thought that this study, conducted to fill the gap in this 

subject, contains important findings that will contribute to the literature. 
 

3. Material and Method 

a. Requirement 

Cracked or damaged solar cells cause efficiency loss in production and, consequently an increase in production costs. Micro 

cracks and defects not only reduce cell productivity in that area but also reduce cell reliability. [1] 

A damaged cell or group of cells may cause hot-spot heating problems when the operating current in a panel exceeds the 

reduced short-circuit current of the fault cell. the cell is forced into reverse current and must dissipate this accumulated power. 

Indeed, if the dissipation force is large enough, this reverse-polar cell can overheat and melt the solder or cause the back sheet 

to deteriorate (Figure 6). Hot-spot cells show low parallel resistance when reverse current performance is limited by current, 

or high parallel resistance when reverse current performance is limited by voltage. In either case, the cell may experience 

hot-spot problems in different ways.[15]  

Each cell defects have different impacts; for instance, dark area causes reduced power output immediately, while microcracks 

may leads a reduced power output in the future. Because, many operators of solar production line wish an automated detection 

of defect cells and a further classification of defect cells into various defect categories to decide which solar modules must to 

be replaced immediately or in the future. [13] 
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Figure 6. Hotspot's Effect on Solar Panel [15] 
 

b. Method 

As shown in Figure.7 First, firstly we extracted cell images from 72- or 60-cell panel EL images manually (manually means 

that we didn’t use any AI methods for this process instead we have gathered the dataset among 200.000 cell images’ by C# 

based software which we designed and coded. The software firstly import images metadata stored in xml file to sql database 

then filter defective cells according to this data.), all images had gathered from the EL machine used in the production line, 

then experts identified and labeled the defect cells from images. Sufficient defect and normal cells were collected for the 

dataset, 9260 EL images. 80% of the images were used for training and 20% for testing. 10% of the images used for training 

were also used for validation. The training and test images selected in the study are taken randomly. The training and test 

images in the model are automatically generated from the dataset. Then, various deep learning models were trained with this 

dataset and tested. At the same time, alexnet-based feature extraction method used for SVM and KNN, then classification 

made with these classic AI algorithms. Fully connected layer named as ‘fc6’ feature extraction layer used. The results were 

compared each other and the most successful deep learning model was determined using the confusion matrix and metrics 

gathered from the matrix. 

  

Figure 7. Flow Chart for Solar Cells Classification ,*[16] 

c. Dataset 

There are 9360 EL images with high resolution of solar cells, 4680 of which are defective (Electrically Insulted cell parts, 

microcracks, material defect, finger interruption, cell interconnection problems), as shown in Figure 4, and 4680 are non-

defect. Each cell size in the panel varies between 950x960-930x850. The reason for the different cell sizes is that the panel 

images were taken in different sizes. Some panels contain 72 solar cells while some panels consist of 60 solar cells. As shown 

in Figure Figure 8, 41% of solar cell images have 5 busbars, and 59% have 4 busbars. The image resolutions were adjusted 

according to the required input size of the DL models before training. The dataset is separated randomly for training and 

testing.  80% (7488 images) of the dataset was used for training, %10 of the reserved dataset for training was used for 

validation and the remaining 20% (1872 images) for testing.  
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Figure 8. Dataset Features 

d. Data Augmentation 

Although there are enough samples in the data set, we used the data augmentation technique, as shown in Figure 9, to reduce 

the possible overfitting and to obtain more precise results. [17] 

RandRotation: Range of rotation, in degrees, applied to the input image. RandRotation value was [90,90] 

RandXReflection: Random reflection in the left-right direction, specified as a logical scalar. When RandXReflection is true 

(1), each image is reflected horizontally with a 50% probability. When RandXReflection is false (0), no images are reflected. 

RandXReflection value was true (1) 

RandYReflection: Random reflection in the top-bottom direction, specified as a logical scalar. When RandYReflection is 

true (1), each image is reflected vertically with a 50% probability. When RandYReflection is false (0), no images are reflected. 

RandYReflection value was true (1) 

   

 

Figure 9. Data Augmentation Techniques 

e. Deep Learning Models 

As can be seen in Table 2, training and tests were carried out with 10 different deep learning models, apart from SVM and 

KNN classical artificial intelligence algorithms. Feature extraction for SVM and KNN algorithms was done by Alexnet. 

Darknet19 and Darknet53 models, used as backbones in YOLOv2 and YOLOv3 algorithms, which perform real-time object 

detection, are also used for classification. Features such as layer, depth and parameter of the models are given in the table. 
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Table 2. Features of Used DL Models [5] 

Model Input 

Size 

Number 

of 

Layers 

Number of 

Connections 

Depth  Number Of 

Parameters 

Top-1 

Error 

rate 

Top-5 

Error 

rate 

AlexNet 227x227 25 - 8 61m 36.7 15.4 

VGG16 224x224 41 - 16 138m 25.6 8.1 

VGG19 224x224 47 - 19 144m 25.5 8 

GoogleNet 224x224 144 170 22 4m - 6.67 

Mobilenet-v2 224x224 154 164 53 3.47 m 28.2 9.0 

ResNet50 224x224 177 192 50 25.6m 22.8 6.71 

ResNet101 224x224 347 379 101 44.6m 21.75 6.05 

Darknet-19 256x256 64 63 19 5.58 m 22.9 6.3 

Darknet-53 256x256 184 206 53 40.5 m 22.8 6.2 

DenseNet201 224x224 708 805 201 20m 21.46 5.54 
 

Training and testing of models were done on the Matlab 2019b platform. Training options were selected as below; 

SolverName: SGDM (Stochastic Gradient Descent with Momentum), MiniBatchSize:128, MaxEpochs:20, 

InitialLearnRate:1e-3, Shuffle:Every-epoch, ValidationFrequency:50,  Verbose:False. 

f. Evaluation Performance of Deep Learning Models 

Each model was trained and tested with the same images. A confusion matrix was used for the evaluation of the performance 

of the DL models, and Accuracy, Sensitivity, Precision and F1-score metrics derived from this matrix were used for the final 

evaluation. The formulas for these metrics are below. 

 

P
re

d
ic

te
d

 V
al

u
es

 

 
Actual Values 

Positive Negative 

Positive TP FP 

Negative FN TN 

 

TP: The number of defect cells which are defect in reality, that the DL model has found,  

FP: The number of defect cells which are non-defect in reality, that the DL model has found,  

FN: The number of non-defect cells which are defect in reality, that the DL model has found,  

TN: The number of non-defect cells which are non-defect in reality, that the DL model has found,  

i. Accuracy:  

Accuracy gives the proportion of the total number of predictions that were correct as shown in Eq.1: [18] 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁)
 (1) 

ii. Sensitivity:  

Sensitivity, recall, or the TP rate (TPR) is the fraction of positive values out of the total actual positive instances (i.e., the 

proportion of actual positive cases that are correctly identified) as shown in Eq.2:: 

𝑺𝒆𝒏𝒔𝒊𝒗𝒊𝒕𝒚(𝑹𝒆𝒄𝒂𝒍𝒍) =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (2) 

iii. Precision: 

Precision or the positive predictive value, is the fraction of positive values out of the total predicted positive instances. In 

other words, precision is the proportion of positive values that were correctly identified as shown in Eq.3: 
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𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (3) 

iv. F1 score: 

The F1 score, F score, or F measure is the harmonic mean of precision and sensitivity. It gives importance to both factors as 

shown in Eq.4 [17] 

F − Score = 2 ∗
(Precision ∗ Recall)

(Precision + Recall)
 (4) 

4. Results 
 

In our study, since the training of the models was done on different computers and the features of these computers were 

different, a comparison was not made according to the working time, but the working time values are given in Table 3. As 

can be seen in the same table, the validation values obtained during the training were consistent with the test results in Table 

4. The highest Validation Accuracy value was obtained with Mobilenet-v2 and Vg-19 models.  

Table 3. Validation Accuracy and Runtime of DL models 

Name Validation Accuracy Runtime (Min.) 

Mobilenet-v2 0.9968 229.15 

Darknet19 0.9957 239.12 

Darknet53 0.9963 636.29 

Alexnet 0.9893 20.14 

Googlenet 0.9936 118.47 

Vgg16 0.9909 52.8 

Vgg19 0.9968 57.5 

Resnet50 0.9936 29.24 

Resnet101 0.9952 58.7 

Densenet201 0.9963 636.29 
 

The detailed test results of DL Models and Svm & Knn Classic AI Algorithms are listed in Table 4. There are the number of 

TP (True Positive), FP (False Positive), FN (False Negative), and TN (True Negative) predictions of the models and Precision, 

Sensitivity, Accuracy and F-score metrics which are derived from the predictions. The formula of these metrics is given under 

the “Evaluation Performance of Deep Learning Models” section.  

The graphics of the training performed by the models with the dataset are shown in Figure 10. Each model's training and 

processing process according to the epoch is given. 

  

  

Figure 10. Training Deep Learning Models 
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According to the results in Table 4, Mobilenet-v2 and VGG-19 achieved the highest validation accuracy rate of 99.68%. 

According to F1 scores, Mobilenetv2 achieved the highest performance of 99.73%. It has been shown that all DL models 

show high performance for classification of defect and non-defect solar cells especially Mobilenet-v2 is more successful than 

other models in accuracy and F1-score by a very small margin. 

Table 4. Performance of DL models & Classic AI Algorithms 

Name TP FP FN TN Precision Sensitivity Accuracy F-score 

Mobilenet-v2 934 3 2 933 0.9968 0.99786 0.99733 0.99733 

Darknet-19 931 4 5 932 0.99572 0.99466 0.99519 0.99519 

Darknet-53 930 1 6 935 0.99893 0.99359 0.99626 0.99625 

Alexnet 930 15 6 921 0.98413 0.99359 0.98878 0.98884 

Svm 910 9 26 927 0.99021 0.97222 0.9813 0.98113 

Knn 834 13 102 923 0.98465 0.89103 0.93857 0.9355 

Googlenet 926 4 10 932 0.9957 0.98932 0.99252 0.9925 

Vgg16 927 3 9 933 0.99677 0.99038 0.99359 0.99357 

Vgg19 935 7 1 929 0.99257 0.99893 0.99573 0.99574 

Resnet50 925 3 11 933 0.99677 0.98825 0.99252 0.99249 

Resnet101 931 1 5 935 0.99893 0.99466 0.99679 0.99679 

Densenet201 932 2 4 934 0.99786 0.99573 0.99679 0.99679 

 

Apart from these results, it is clearly understood that SVM and KNN algorithms perform quite well, of course, it is seen that 

SVM achieves higher scores than KNN. 

5. Conclusion  
 

In this study, for all performance parameters (Precision, Recall, F-score) we get the highest results among the previous 

studies. The reason for the higher performance than previous studies is thought to be the smaller data set sizes used in previous 

studies and the correct distinction between defect and non-defect cells. Another reason is that although the data set size is 

sufficient, high results were obtained due to data augmentation techniques. Another feature of this study compared to previous 

studies is the use of cells with different numbers of busbars in the data set. In this study both AI algorithms and deep learning 

models were tested and compared. High F-Score and Accuracy results of the DL models show defective & normal solar cells 

can be classified with deep learning successfully. For the next step defective cells in the Dataset will be separated according 

to their type then will be classified via the DL models and a new DL model which we will design and develop and compare 

its performance to pre-trained models. If the accuracy or F-score ratio is less than 90%, preprocessing methods will be 

implemented to improve the ratio. 
 

6. Discussion 
 

It is seen that deep learning models perform quite successfully in the classification of defects in solar cells. Replacing the 

classical image processing techniques used currently in EL devices with a defect classification system prepared with deep 

learning models will produce very economical results for solar energy panel manufacturers. The system to be integrated into 

EL devices will enable the process to be done automatically without requiring an expert. This once again reveals the 

importance and requirement of the study. The high performance rate obtained from the models may be due to the fact that 

the dataset consists of two classes. The results that will occur if the number of classes is large will be revealed in subsequent 

studies. Consisting of two classes containing defect and normal images constitute the boundaries of the study. In future 

studies, it is planned to work on datasets with a larger number of classes. The training process of deep learning models reveals 

their performance. However, it appears that it is not overfitting. 
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