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ABSTRACT 

This study presents the comparative performance analysis of Natural Survivor Method (NSM)-based algorithms in 

solving the IEEE CEC 2022 test suite benchmark problems and four real-world engineering design problems. Three 
different variants (Case1, Case2, Case3) of the NSM-TLABC, NSM-SFS and NSM-LSHADE-SPACMA 

algorithms were used in the study. The data obtained from the experimental studies were statistically analyzed using 

Friedman and Wilcoxon signed-rank tests. Based on the Friedman test results, NSM-LSHADE-SPACMA_Case2 
showed the best performance with an average Friedman score of 3.96. The Wilcoxon signed-rank test showed that 

NSM-LSHADE-SPACMA_Case2 outperformed its competitors in 13 out of 16 experiments, achieving a success 

rate of 81.25%. NSM-LSHADE-SPACMA_Case2, which was found to be the most powerful of the NSM-based 

algorithms, is used to solve cantilever beam design, tension/compression spring design, pressure vessel design and 

gear train design problems. The optimization results are also compared with eight state-of-the-art metaheuristics, 

including Rime Optimization Algorithm (RIME), Nonlinear Marine Predator Algorithm (NMPA), Northern 
Goshawk Optimization (NGO), Kepler Optimization Algorithm (KOA), Honey Badger Algorithm (HBA), 

Artificial Gorilla Troops Optimizer (GTO), Exponential Distribution Optimization (EDO) and Hunger Games 

Search (HGS). Given that all results are together, it is seen that NSM-LSHADE-SPACMA_Case2 algorithm 
consistently produced the best results for the global and engineering design problems studied. 

 

Keywords: Natural survivor method-based algorithms, Global optimization, IEEE CEC 2022 test suite, Real-world 

engineering design problems 

   

 

 

 

 

RESEARCH ARTICLE 

 

 

 

 

 

 

 

 

 

 
Corresponding author: 

Hüseyin Bakır, Department of Electronics  

and Automation, Vocational School, Dogus  

University, Istanbul, Türkiye 

hbakir@dogus.edu.tr 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Article History:  

Received: 28.04.2024 

Accepted: 29.05.2024 

Published Online: 26.08.2024  

 

 

1. Introduction 
 

Metaheuristic optimization algorithms (MOAs) have a great reputation for solving global and engineering problems [1, 2]. 

The ability of MOAs to solve non-convex optimization problems has encouraged researchers to conduct further research on 

metaheuristic algorithms [3, 4]. In this direction, they have been focused on two topics. The first is the development of new 

metaheuristics. The second is the performance improvement of existing MOAs [5].  

Metaheuristic algorithm design is an active area of research. To date, numerous MOAs have been developed inspired by 

events, methods, and natural processes [6]. Some examples of MOAs introduced in the last four years include Black Widow 

Optimization (BWO, 2020) [7], Mayfly Algorithm (MA, 2020) [8] ,Group Teaching Optimization Algorithm (GTOA, 2020) 

[9], Gradient-Based Optimizer (GBO, 2020) [10], Transient Search Optimization (TSO, 2020) [11], Chameleon Swarm 

Algorithm (CSA, 2021) [12], Horse herd Optimization Algorithm (HOA, 2021) [13], Capuchin Search Algorithm (CapSA, 

2021) [14], Archimedes Optimization Algorithm (AOA, 2021) [15], Dwarf Mongoose Optimization (DMO, 2022) [16], 

Gannet Optimization Algorithm (GOA, 2022) [17], Red Fox Optimization (RFO, 2021) [18], Tasmanian Devil Optimization 

(TDO, 2022) [19], War Strategy Optimization (WSO, 2022) [20], Wild Horse Optimizer (WHO, 2022) [21], Coati 

Optimization Algorithm (COA, 2023) [22], Nutcracker Optimization Algorithm (NOA, 2023) [23], Meerkat Optimization 

Algorithm(MOA, 2023) [24], Energy Valley Optimizer (EVO, 2023) [25], and Growth Optimizer (GO, 2023) [26]. In the 

above-mentioned literature works, authors usually verified the performance of the developed algorithms using global 

optimization and real-world engineering problems. Particularly, optimizing constrained engineering problems from various 

disciplines has played an important role in testing the algorithm's performance. Rolling Element Bearing Design (REBD), 

Three-Bar Truss Design (TBTD), Welded Beam Design (WBD), Cantilever Beam Design (CBD), Disc Clutch Brake Design 

(DCBD), Speed Reducer Design (SRD), Pressure Vessel Design (PVD), Gear Train Design (GTD), and 

Tension/Compression Spring Design (TCSD) are among the commonly studied real-world problems. Agushaka et al. [27] 

developed a novel optimizer named the Gazelle Optimization Algorithm (GOA) and applied it to solve WBD, TCSD, PVD, 
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and SRD problems. The findings showed that GOA can produce optimal solutions to the real-world engineering problems 

addressed in the study. In another work, Kaveh et al. [28] showed that the Orchard Algorithm (OA) found better solutions to 

PVD, WBD, TCSD, and TBTD problems compared to CapSA, ChOA, BWO, PSO, and GA methods. Han et al. [29] 

performed the optimization of GTD, CBD, TCSD, PVD, WBD and SRD problems with the Walrus Optimizer (WO). 

Numerical results showed that WO successfully converges to the global optimum in real-world engineering problems under 

study. Zhu et al. [30] successfully applied the Human Memory Optimization (HMO) algorithm to find optimal solutions to 

TBTD, TCSD, and WBD problems. Optimization results illustrated that HMO is superior to competitive optimizers about 

solution accuracy. El-kenawy et al. [31] introduced a nature-inspired Greylag Goose Optimization (GGO) method and tested 

the solution ability of the algorithm by solving constrained PVD and TCSD problems. Given that all results are together, it 

is seen that GGO achieves consistently optimal solutions to real-world problems.  

In recent years, studies on improving the performance of existing MOAs have been increasing. The reason behind this can 

be that it is possible to increase the robustness, solution accuracy, and convergence speed of metaheuristic optimizers using 

well-known strategies such as chaos maps, Levy flights, fitness-distance balance selection, opposition-based learning, etc. 

For example, Aydemir [32] applied the chaotic maps strategy to overcome getting stuck in local traps and poor convergence 

problems of the Arithmetic Optimization Algorithm (AOA). The solution ability of the Chaotic AOA (CAOA) has been 

evaluated on benchmark functions. The results showed that the CAOA effectively scanned the search space and converged 

to the best solutions. Ekinci et al. [33] developed a powerful variant of the Reptile Search Algorithm (RSA) to obtain a better 

optimization structure for solving challenging power system problems. The authors redesigned the exploration operator of 

the optimizer with the Levy flight and the exploitation operator with the Nelder–Mead simplex search approach. The results 

obtained from parameter extraction of the Power System Stabilizer (PSS), and the design of the Automatic Voltage Regulator 

(AVR) system demonstrated that the developed method could obtain better solutions compared to the original RSA. Bakir et 

al. [34] used the Fitness Distance Balance (FDB) strategy to enhance the convergence rate of the Levy Flight Distribution 

(LFD) optimizer. The proposed FDB-LFD has been tested on 39 benchmark problems as well as AVR optimization. The 

results show that the FDB approach provides a notable enhancement in the exploration ability of the original LFD. Zhong et 

al. [35] focused on enhancing the convergence rate of the Equilibrium Optimizer (EO). In this direction, the authors equipped 

the EO algorithm with evolutionary population dynamics, opposition-based learning, and Levy flight operators. Considering 

the experimental studies performed in search spaces of 100 to 5000 dimensions, it is observed that modified EO exhibits 

outstanding optimization performance. 

The search process life cycle of metaheuristic optimization algorithms is generally divided into three phases. These are 

selection, search, and update [36]. The task of the selection phase is to determine the guide solution candidate/s that will 

direct the search process. During the search phase, exploration and exploitation tasks are fulfilled. The update phase 

determines which solution candidates will survive and which will be killed. As can be seen from the above-mentioned 

literature review, many of the studies regarding improving the performance of existing algorithms have focused on the first 

two stages (selection and search). As far as the authors know, the latest study related to the design of an update strategy was 

conducted by Kahraman et al. [6] in 2023. In the reference work, the authors developed a new strategy for updating solution 

candidates called the Natural Survivor Method (NSM). The introduced update strategy was applied to the base version of the 

Teaching-Learning-Based Artificial Bee Colony (TLABC) [37], Stochastic Fractal Search (SFS) [38], and LSHADE-

SPACMA [39] algorithms, and three new algorithms named NSM-TLABC, NSM-SFS, and NSM-LSHADE-SPACMA were 

developed. Although the success of NSM-based algorithms in optimizing CEC 2017 and CEC 2020 benchmark problems 

has been investigated, their performance in the challenging CEC 2022 benchmark functions is a matter of curiosity. In this 

regard, this study has focused on the comparative performance analysis of NSM-based algorithms in optimizing the CEC 

2022 benchmark problems. In addition, the algorithm with the best performance among the NSM-based algorithms is applied 

to solve real-world engineering problems. 

The main contributions of the paper can be listed as follows: 

• Optimization of twelve benchmark functions of the CEC 2022 test suite using NSM-based metaheuristics (NSM-

TLABC, NSM-SFS, and NSM-LSHADE-SPACMA) for the first time. 

• Non-parametric statistical analysis of NSM-based algorithms. Analysis results verified that the NSM-LSHADE-

SPACMA_Case2 outperformed the compared ones. 

• Application of NSM-LSHADE-SPACMA_Case2 algorithm to the solution of cantilever beam design, 

tension/compression spring design, pressure vessel design, and gear train design problems for the first time. 

• Comparison of the results of NSM-LSHADE-SPACMA_Case2 on engineering optimization with eight optimization 

algorithms including RIME, NMPA, NGO, KOA, HBA, GTO, EDO, and HGS. 
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The remaining sections of the paper are designed in the following manner: Section 2 introduces the benchmark functions of 

the CEC 2022 test suite. Section 3 presents the optimization model of real-world engineering problems. In Section 4, the 

basics of NSM-based algorithms are presented. Section 5 evaluates the results of experimental studies. Finally, the findings 

of the present research are summarized in Section 6. 

2. Benchmark Functions of the CEC 2022 Test Suite 
 

The CEC 2022 [40] benchmark suite is an important resource for the optimization community. It provides a common platform 

to compare optimization algorithms on a set of challenging problems. The test suite consists of twelve benchmark functions 

in four categories. The summary of the CEC 2022 test suite is given in Table 1. 

Table 1. Outline of CEC 2022 Test Suite [40] 

Function Type Function Number Global Optimum Function Type Function Number Global Optimum 

Unimodal F1 300 Hybrid 

F6 1800 

F7 2000 

F8 2200 

Multimodal 

F2 400 

Composition 

F9 2300 

F3 600 F10 2400 

F4 800 F11 2600 

F5 900 F12 2700 

As can be seen in Table 1, there is only one benchmark function with the unimodal type and that is F1. This problem measures 

the exploitation capability. There are multiple local optima solutions of the multimodal type F2, F3, F4, and F5 benchmark 

functions. Convergence to the global optimum in multimodal benchmark functions is a relatively challenging task. To 

overcome this, the algorithm must have strong exploration capability. In the CEC 2022 test suite, there are three hybrid (F6, 

F7, F8) and four composition (F9, F10, F11, F12) type benchmark functions. In both problem types, the convergence accuracy 

is directly related to successfully establishing the exploration-exploitation balance. Each benchmark function of the CEC 

2022 is designed as a minimization problem. The search space boundaries for all benchmark functions are set to [-100, 100]D. 
Detailed information on the CEC 2022 test suite problems can be found in Ref. [40]. 

3. Formulation of Engineering Problems 
 

In the study, four engineering problems are optimized. The optimization model of engineering problems is introduced below. 

3.1. Gear Train Design 

In this problem, the objective is the minimization of gear ratio cost. Equation (1) gives the optimization model of the gear 

train design problem [41]. As shown in the equation there are four parameters to be optimized. These are teeth number of 

gearwheels: 𝑇𝑎, 𝑇𝑏 , 𝑇𝑑 , 𝑇𝑓. The pictorial representation of the problem is given in Figure 1 [41]. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝐹𝑜𝑏𝑗,1(�⃗�) = (
1

6.931
−

𝑇𝑏 × 𝑇𝑑

𝑇𝑎 ×  𝑇𝑓

)

2

 

(1) 
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑒𝑐𝑡𝑜𝑟  �⃗�  = [𝑇𝑎, 𝑇𝑏 , 𝑇𝑑 , 𝑇𝑓] 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒:  0.01 ≤ 𝑇𝑎, 𝑇𝑏 , 𝑇𝑑 , 𝑇𝑓 ≤ 60 

 

Figure 1. Gear Train Design [41] 
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3.2. Tension/Compression Spring Design 

The primary task is to minimize the weight of the coil while satisfying various inequality constraints. As can be seen in the 

schematic diagram given in Figure 2, the problem includes three parameters to be optimized. These are the number of spring's 

active coils (𝑁), the diameter of the winding (𝐷), and the diameter of the wire (𝑑). The optimization model of the problem 

can be written as follows [41]: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝐹𝑜𝑏𝑗,2(�⃗�) = (𝑥3 + 2) 𝑥2 𝑥1
2 

(2) 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑒𝑐𝑡𝑜𝑟  �⃗�  = [𝑥1, 𝑥2, 𝑥3] = [𝑑, 𝐷, 𝑁] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  ℎ1(�⃗�) = 1 −
𝑥3 𝑥2

3

71785 𝑥1
4

≤ 0 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  ℎ2(�⃗�) =
4 𝑥2

2 − 𝑥1𝑥2

12566( 𝑥2𝑥1
3 −  𝑥1

4)
+

1

5108 𝑥1
2

− 1 ≤ 0 

ℎ3(�⃗�) = 1 −
140.45 𝑥1

  𝑥2
2 𝑥3

≤ 0,     ℎ4(�⃗�) =
 𝑥1+ 𝑥2

 1.5
− 1 ≤ 0 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒:  0.05 ≤ 𝑥1 ≤ 2, 0.25 ≤ 𝑥2 ≤ 1.3, 2 ≤ 𝑥3 ≤ 15 

 

Figure 2. Tension/Compression Spring Design [41] 
 

3.3. Pressure Vessel Design 

Figure 3 illustrates the pictorial representation of the pressure vessel design. The objective of the problem is the minimization 

of fabrication cost through the optimal setting of the inner radius (𝑅), the thickness of the head (𝑇ℎ), length of the shell (𝐿), 

and the thickness of the shell (𝑇𝑠). The mathematical representation of the problem is given in Eq. (3) [41]. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑜𝑏𝑗,3(�⃗�) = 0.6224 𝑥1𝑥3𝑥4+1.7781𝑥2𝑥3
2 + 3.1661 𝑥1

2𝑥4 + 19.84 𝑥1
2𝑥3 

(3) 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑒𝑐𝑡𝑜𝑟  �⃗�  = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑇𝑠, 𝑇ℎ , 𝑅, 𝐿] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  ℎ1(�⃗�) = −𝑥1 + 0.0193𝑥3 ≤ 0 

ℎ2(�⃗�) = −𝑥2 + 0.00954𝑥3 ≤ 0 

ℎ3(�⃗�) = −𝜋 𝑥3
2𝑥4 −

4

3
𝜋 𝑥3

3 + 1296000 ≤ 0 

ℎ4(�⃗�) = 𝑥4 − 240 ≤ 0 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒:  0 ≤ 𝑥1, 𝑥2 ≤ 99, 10 ≤ 𝑥3, 𝑥4 ≤ 200 
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Figure 3. Pressure Vessel Design [41] 
 

3.4. Cantilever Beam Design 

This problem minimizes cantilever beam weight by optimizing five different block lengths. Figure (4) and Equation (4) give 

the schematic representation and mathematical model of the problem, respectively [41]. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑜𝑏𝑗,4(�⃗�) = 0.0624 (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5) 

(4) 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑒𝑐𝑡𝑜𝑟  �⃗�  = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ℎ1(�⃗�) =
61

 𝑥1
3

+
37

 𝑥2
3

+
19

 𝑥3
3

+
7

 𝑥4
3

+
1

 𝑥5
3

− 1 ≤ 0 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒:  0.01 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≤ 100 

 

Figure 4. Cantilever Beam Design [41] 
 

4. Natural Survivor Method-Based Metaheuristics 
 

This section introduces the optimization framework of NSM-based algorithms. In this context, three subsections have been 

prepared. The following subsections provide detailed information about the NSM-TLABC, NSM-SFS and NSM-LSHADE-

SPACMA algorithms, respectively. 

4.1. NSM-TLABC 

NSM-TLABC [6] is a powerful variant of the TLABC algorithm. The algorithm was created by redesigning the survivor 

selection of the original TLABC [37] using the NSM. NSM-TLABC initiates optimization by generating a random initial 

population. Then, it applies exploration and exploitation operators to find the global optimum solution. The pseudo-code of 

the NSM-TLABC algorithm is given in Algorithm 1. 
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Algorithm 1. NSM-TLABC Algorithm 

1 Initialization 

2 

Create initial population with defaults (population size 𝑁 and number of design variables 𝐷) 

𝑃 ≡ [

𝑝11 ⋯ 𝑝1𝐷

⋮ ⋱ ⋮
𝑝𝑁1 ⋯ 𝑝𝑁𝐷

]

𝑁×𝐷

 

3 for i=1: 𝑁 do 

4 

Calculate objective function 𝑓(𝑝𝑖) and fitness value 𝐹𝑖𝑡(𝑝𝑖) for i-th individual 

𝐹𝑖𝑡(𝑝𝑖) = {

1

1 + 𝑓(𝑝𝑖)
      𝑖𝑓 𝑓(𝑝𝑖) ≥ 0

1 + |𝑓(𝑝𝑖)|      𝑖𝑓 𝑓(𝑝𝑖) < 0

 

5 Assign trial(i)=0 for each individual 

6 end 

7 repeat the following steps 

8 // Teaching-based employed bee // 

9 for i=1: 𝑁 do 

10 

Create new solution using hybrid TLBO teaching strategy 

𝑧𝑖,𝑑 = {
𝑝𝑖,𝑑

𝑜𝑙𝑑 + 𝑟2(𝑝𝑡𝑒𝑎𝑐ℎ𝑒𝑟,𝑑 − 𝑇𝐹 × 𝑝𝑚𝑒𝑎𝑛,𝑑)      𝑖𝑓 𝑟1 < 0.5

𝑝𝑅1,𝑑 + 𝐹(𝑝𝑅2,𝑑 − 𝑝𝑅3,𝑑)      𝑒𝑙𝑠𝑒
 

11 Calculate objective function 𝑓(𝑧𝑖) and fitness value 𝐹𝑖𝑡(𝑧𝑖) 

12 

Apply NSM-score based survivor selection (NSM-TLABC_Case1) & (NSM-TLABC_Case3) 

𝑖𝑓 𝑧𝑖_𝑁𝑆𝑀_𝑆𝑐𝑜𝑟𝑒 > 𝑝𝑖_𝑁𝑆𝑀_𝑆𝑐𝑜𝑟𝑒  

survivor is 𝑧𝑖 

else 

survivor is 𝑝𝑖  

end 

13 if 𝑝𝑖  does not enhance trial(i)= trial(i)+1, otherwise trial(i)=0 

14 end  

15 // Learning-based onlooker bee // 

16 

Calculate selection probability 

𝑠𝑝𝑖 =
𝑓𝑖𝑡(𝑝𝑖)

∑ 𝑓𝑖𝑡(𝑝𝑖)𝑆𝑁
𝑖=1

 

17 for i=1: 𝑁 do 

18 Apply the roulette selection approach and select 𝑝𝑘 based on 𝑠𝑝𝑖  

19 

Generate new solution using TLBO learning strategy 

𝑧𝑘 = {
𝑝𝑘 + 𝑟𝑎𝑛𝑑 (𝑝𝑘 − 𝑝𝑗)      𝑖𝑓 𝑓(𝑝𝑘) ≤ 𝑓(𝑝𝑗)

𝑝𝑘 + 𝑟𝑎𝑛𝑑 (𝑝𝑗 − 𝑝𝑘)      𝑖𝑓 𝑓(𝑝𝑗) > 𝑓(𝑝𝑘)
 

20 Calculate objective function 𝑓(𝑧𝑘) and fitness value 𝐹𝑖𝑡(𝑧𝑘) 

21 

Apply NSM-score based survivor selection-method (NSM-TLABC_Case2) 

𝐢𝐟 𝑧𝑘_𝑁𝑆𝑀_𝑆𝑐𝑜𝑟𝑒 > 𝑝𝑘_𝑁𝑆𝑀_𝑆𝑐𝑜𝑟𝑒  

survivor is 𝑧𝑘 

else 

survivor is 𝑝𝑘 

end 

22 if 𝑝𝑘 does not enhance trial(k)= trial(k)+1, otherwise trial(k)=0 end 

23 end 

24 // Generalized oppositional scout bee // 

25 if max (trial (i)) ≥ limit 

26 Generate new solution 𝑝𝑖  (randomly) and its generalized oppositional solution 𝑝𝑖
𝑜𝑝

 

27 

Choose better one between 𝑝𝑖  and 𝑝𝑖
𝑜𝑝

 

𝑝𝑖 = {
𝑝𝑖      𝑖𝑓 𝑓(𝑝𝑖) ≤ 𝑓(𝑝𝑖

𝑜𝑝
)

𝑝𝑖
𝑜𝑝

                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

28 end 

29 until the termination criterion is met 

30 Display best solution (𝑝𝑏𝑒𝑠𝑡) achieved so far 
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4.2. NSM-SFS 

NSM-SFS [6] is a nature-inspired metaheuristic optimization technique developed by configuring of the original SFS [38] 

using the NSM update mechanism. The algorithm derives its power from updating the solutions in the population according 

to the NSM score. The NSM score is a more accurate measure of the fitness of a solution than the traditional fitness value. 

This allows the algorithm to focus on finding solutions that are both good and diverse, which can help to prevent premature 

convergence. NSM-SFS generates a random initial population and enhances the quality of existing solutions in the population 

with the diffusing and updating processes during the search process lifecycle. Algorithm 2 presents the pseudocode of the 

NSM-SFS algorithm. 

Algorithm 2. NSM-SFS Algorithm 

1 Initialization 

2 

Create an initial population and calculate the fitness value of each point 

𝑃 ≡ [

𝑝11 ⋯ 𝑝1𝐷

⋮ ⋱ ⋮
𝑝𝑁1 ⋯ 𝑝𝑁𝐷

]

𝑁×𝐷

, 𝑓 = [
𝑓1

⋮
𝑓𝑁

]

𝑁×1

 

3 Sort the population based on the fitness value and determine the best point in 𝑃 (𝑝𝑏𝑒𝑠𝑡) 

4 repeat the following steps 

5 // Diffusion process // 

6 for i=1: 𝑁 do 

7 Select two points from P randomly and select the i-th point with the ordinal-based method 

8 for j=1: m (maximum diffusion number) 

9 Create a new point using the Gaussian Walk 

10 if rand < (walk=1) 

11 𝑝𝑖𝑛𝑒𝑤,1 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝜇𝑝𝑏𝑒𝑠𝑡
 , 𝜎) + (𝜀 × 𝑝𝑏𝑒𝑠𝑡 − 𝜀′𝑝𝑖) 

12 else 

13 𝑝𝑖𝑛𝑒𝑤,2 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝜇𝑝 , 𝜎),  𝑤ℎ𝑒𝑟𝑒 𝜇𝑝 = |𝑝𝑖| 

14 end 

15 end 

16 end 

17 // First updating process // 

18 

Rank all points in P based on fitness function value 

𝑃𝐵𝑎𝑖 =
𝑟𝑎𝑛𝑘 (𝑝𝑖)

𝑁
,   𝑖 = 1, … , 𝑁 

19 for i=1: 𝑁 do 

20 for j=1: D do 

21 if 𝑟𝑎𝑛𝑑 [0,1] ≥ 𝑃𝐵𝑎𝑖 

22 𝑝𝑖
′(𝑗) = 𝑝𝑟(𝑗) − 𝜀 (𝑝𝑡(𝑗) − 𝑝𝑖(𝑗))   

23 end 

24 end 

25 end 

26 

Apply NSM-score based survivor selection (NSM-SFS_Case1, NSM-SFS_Case2, NSM-SFS_Case3 

𝐢𝐟 𝑝𝑖
′
𝑁𝑆𝑀_𝑆𝑐𝑜𝑟𝑒

> 𝑝𝑖 𝑁𝑆𝑀_𝑆𝑐𝑜𝑟𝑒  

survivor is 𝑝𝑖
′ 

else 

survivor is 𝑝𝑖  

end 

27 // Second updating process // 

28 

Rank all points obtained from first update process based on the fitness value 

𝑃𝐵𝑎𝑖
′ =

𝑟𝑎𝑛𝑘 (𝑝𝑖)

𝑁
,   𝑖 = 1, … , 𝑁 

29 for i=1: 𝑁 do 

30 if 𝑟𝑎𝑛𝑑 [0,1] ≥ 𝑃𝐵𝑎𝑖 

31 𝑝𝑖
′′ = 𝑝𝑖

′ − 𝜀̂ × (𝑝𝑡
′ − 𝑝𝑏𝑒𝑠𝑡)   𝑖𝑓 𝜀′ ≤ 0.5 

32 𝑝𝑖
′′ = 𝑝𝑖

′ + 𝜀̂ × (𝑝𝑡
′ − 𝑝𝑟

′)      𝑖𝑓 𝜀′ > 0.5 

33 end 

34 end 

35 until the termination criterion is met 

36 Display best solution (𝑝𝑏𝑒𝑠𝑡) achieved so far 
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4.3. NSM-LSHADE-SPACMA 

NSM-LSHADE-SPACMA [6] is an effective and powerful algorithm developed to increase the optimization performance of 

LSHADE-SPACMA [39]. The optimizer uses the NSM approach to perform population management. In other words, NSM-

LSHADE-SPACMA determines which individuals in the population will survive and which will be killed with an NSM score 

value. Algorithm 3 presents the steps followed by the NSM-LSHADE-SPACMA algorithm in the optimization process. 

Algorithm 3. NSM-LSHADE-SPACMA Algorithm 

1 Set function evaluation counter (FEs=0), generation counter (g=1), MCR=0.5, MF=0.5, and MFCP=0.5 

2 Archive A=Ø, Ng=Ninit 

3 Initialize population Pg= (x1,g, ..., xN,g) and covariance matrix adaptation (CMA) parameters 

4 while FEs<maxFEs 

5 SCR= Ø, SF= Ø, and SFCP= Ø 

6 for i=1: 𝑁 do 

7 ri =select randomly from [1, H] 

8 CRi,g= randn1 (MCR_ri , 0.1) 

9 FCPi,g= MFCP_ri 

10 if FEs < (maxFEs/2) 

11 Fi,g= 0.45 +(0.1 × rand) 

12 else 

13 Fi,g= randc1 + (MF_ri , 0.1) 

14 end 

15 end 

16 [PLSHADE,g, PCMA,g]=Split (Pg, FCPg) 

17 Vg,LSHADE =Generate donor vectors using LSHADE 

18 Vg,CMA =Generate donor vectors using CMA 

19 Vg =Concatenate (Vg,LSHADE, Vg,CMA) 

20 Ug =Generate trial vectors (Vg, CRg) 

21 Evaluate Ug and update FEs 

22 Update Pg using NSM approach 

23 Store successful FCPg, Fg, and CRg 

24 Update archive A 

25 if (archive size)> |A| 

26 delete randomly selected archive individuals 

27 end 

28 Update memory MCR, MFCP 

29 if FEs > (maxFEs/2) 

30 update memory MF 

31 end 

32 
 Ng+1 = round [( 

Nmin − Ninit

maxFEs
 ) × FEs +   Ninit] 

33 if Ng < Ng+1 

34 sort solutions based on fitness value and delete the lowest Ng −Ng+1 members  

35 resize archive size |A| based on new |P| 

36 end 

37 Update CMA parameters 

38 g++ 

39 end 

40 Display the best solution achieved so far 
 

5. Results and Discussions 
 

This section summarizes the results of experimental studies conducted to evaluate the performance of NSM-based optimizers. 

In this direction, two subsections have been prepared. The first subsection presents the optimization results of the CEC 2022 

global optimization problems. The second subsection elaborated on the results of four engineering problems. 
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5.1. Performance Analysis of NSM-based Metaheuristics on CEC 2022 Benchmark Functions 
 

This subsection gives the optimization results of CEC 2022 benchmark functions obtained with NSM-TLABC, NSM-SFS, 

and NSM-LSHADE-SPACMA algorithms. The experimental studies used the source codes of the NSM-based algorithms, 

which were made available by the developers on the Matlab File Exchange platform (Click for source codes of NSM-based 

algorithms). Three versions of each algorithm are used and named as follows: NSM-TLABC_Case1, NSM-TLABC_Case2, 

NSM-TLABC_Case3, NSM-SFS_Case1, NSM-SFS_Case2, NSM-SFS_Case3, NSM-LSHADE-SPACMA_Case1, NSM-

LSHADE-SPACMA_Case2, and NSM-LSHADE-SPACMA_Case3. The maximum number of fitness evaluations (maxFEs) 

was adopted as a termination criterion. The value of maxFEs is 200,000 and 1,000,000 for the 10 and 20 dimensional 

optimization of IEEE CEC 2022 benchmark problems, respectively. 6,480 (9 algorithms × 12 functions × 30 runs × 2 

dimensions) data items are obtained from CEC 2022 experiments and used for statistical analysis. 

This work uses the Friedman-rank test [42] to compare the performance of more than two algorithms. Friedman test results 

of NSM-based algorithms are given in Table 2. As can be seen in the table, the overall algorithm performance was determined 

based on the “Mean rank” value. In the table, a small Friedman score indicates the superior performance of the algorithm. 

Considering the 10-dimensional experiment, the NSM-LSHADE-SPACMA_Case2 algorithm exhibits the best result with a 

Friedman score of 4.30, while NSM-TLABC_Case1 gives the worst result with a Friedman score of 6.17. In 20-dimensional 

optimization, NSM-LSHADE-SPACMA versions performed better than all other compared algorithms. Among these 

versions, the NSM-LSHADE-SPACMA_Case1 comes to the fore with a Frieman score 3.58. Given that all experiments are 

together, it is observed that the NSM-LSHADE-SPACMA_Case2 algorithm ranked first with a mean Friedman score of 3.96. 
 

Table 2. Friedman Test Results of NSM-Based Algorithms 

Algorithm Dimension=10 Dimension=20 Mean rank Overall rank 

NSM-TLABC_Case1 6.17 6.73 6.45 9 

NSM-TLABC_Case2 5.00 6.26 5.63 7 

NSM-TLABC_Case3 5.72 6.62 6.17 8 

NSM-SFS_Case1 5.34 4.57 4.95 6 

NSM-SFS_Case2 4.86 4.68 4.77 5 

NSM-SFS_Case3 4.44 5.08 4.76 4 

NSM-LSHADE-SPACMA_Case1 4.46 3.58 4.02 2 

NSM-LSHADE-SPACMA_Case2 4.30 3.62 3.96 1 

NSM-LSHADE-SPACMA_Case3 4.66 3.82 4.24 3 
 

Wilcoxon test [43] is applied for pairwise comparison between NSM-LSHADE-SPACMA_Case2 and competitive 

algorithms. Table 3 gives the Wilcoxon test results.  The reason behind selecting the NSM-LSHADE-SPACMA_Case2 

algorithm is that it is the winner of the Friedman test. As can be seen in Table 3, there are three scores in each cell. The first 

score shows the number of benchmark functions in which NSM-LSHADE-SPACMA_Case2 obtained better results than its 

rival. The second score indicates the number of problems for which the two algorithms produced similar results. The third 

score represents the number of benchmark functions where the competing algorithm is better than NSM-LSHADE-

SPACMA_Case2. For example, in the 10-dimensional experiment between NSM-LSHADE-SPACMA_Case2 vs. NSM-

TLABC_Case1, the Wilcoxon score is 8/3/1. In other words, the performance of NSM-LSHADE-SPACMA_Case2 is better 

in 8 test functions, while the result of the NSM-TLABC_Case1 algorithm is better in 1 function. In the 3 test functions, the 

algorithms could not outperform each other. In 13 out of 16 experiments, the NSM-LSHADE-SPACMA_Case2 outperformed 

the rival algorithm. The only exception is the 10-dimensional experiment between NSM-LSHADE-SPACMA_Case2 vs. 

NSM-SFS_Case3. To put it more clearly, the NSM-LSHADE-SPACMA_Case2 algorithm was only defeated by the NSM-

SFS_Case3 algorithm with a score of 3/5/4. 

Table 3. Wilcoxon Pairwise Comparison Results 

NSM-LSHADE-SPACMA_Case2 vs. Dimension=10 Dimension=20 

NSM-TLABC_Case1 8/3/1 11/1/0 

NSM-TLABC_Case2 6/4/2 11/1/0 

NSM-TLABC_Case3 8/3/1 11/1/0 

NSM-SFS_Case1 6/3/3 5/5/2 

NSM-SFS_Case2 5/4/3 6/4/2 

NSM-SFS_Case3 3/5/4 6/4/2 

NSM-LSHADE-SPACMA_Case1 1/10/1 3/7/2 

NSM-LSHADE-SPACMA_Case3 3/8/1 1/10/1 

https://www.mathworks.com/matlabcentral/fileexchange/126050-natural-survivor-method-nsm-for-metaheuristic-algorithms?s_tid=ta_fx_results.
https://www.mathworks.com/matlabcentral/fileexchange/126050-natural-survivor-method-nsm-for-metaheuristic-algorithms?s_tid=ta_fx_results.
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Box plots were prepared to observe the error statistics of the algorithms throughout 30 runs in 10- and 20-dimensional 

optimization of selected benchmark functions from CEC 2022. Figure 5 shows the box plots of F1, F4, F8, and F12 functions. 

In this figure, the algorithms NSM-TLABC_Case2, NSM-SFS_Case3 and NSM-LSHADE-SPACMA_Case2 represent the 

versions that give the best score according to the Friedman test (see Table 2). 

 
(a) F1 (Unimodal) D = 10 

 
(b) F1 (Unimodal) D = 20 

 
(c) F4 (Multimodal) D = 10 

 
(d) F4 (Multimodal) D = 20 

 
(e) F8 (Hybrid) D = 10 

 
(f) F8 (Hybrid) D = 20 
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(g) F12 (Composition) D = 10 

 
(h) F12 (Composition) D = 20 

Figure 5. Box Plots of Best Versions of NSM-Based Algorithms on CEC 2022 Benchmark Functions 
 

Upon examination of the box plots for the F1 unimodal problem, it is seen that NSM-SFS_Case3 and NSM-LSHADE-

SPACMA_Case2 successfully converged to the global optimum in both problem sizes. Although NSM-TLABC_Case2 

exhibits a remarkable search performance in 10 dimensions, the algorithm’s performance is poor in 20 dimensions. The 

underlying reason behind it is that the algorithm cannot successfully fulfill the exploitation task in high-dimensional 

optimization. The box plots of the F4 multimodal problem show that the exploration ability of the NSM-LSHADE-

SPACMA_Case2 is superior compared to the other two algorithms. On the other hand, NSM-SFS_Case3 gets stuck in local 

solution traps and converges prematurely. Upon examination of Figure 5e, it is seen that NSM-SFS_Case3 and NSM-

LSHADE-SPACMA_Case2 algorithms have an overwhelming superiority over NSM-TLABC_Case2 in the 10-dimensional 

optimization of the hybrid F8 problem. In the 20-dimensional optimization of the same problem (Fig 5f), NSM-LSHADE-

SPACMA_Case2 converges to a lower error value. From the box plots of the F12 composition problem (Figure 5g, h), it can 

be observed that NSM-TLABC_Case2 (in Dimension=10) and NSM-LSHADE-SPACMA_Case2 (in Dimension=20) 

balanced exploration and exploitation more successfully than competitors. 

In a nutshell, this section presents the comparative performance analysis of NSM-based metaheuristic algorithms (NSM-

TLABC, NSM-SFS, and NSM-LSHADE-SPACMA) in solving CEC 2022 benchmark problems. Given that the statistical 

analysis results and box plots are together, it is observed that the NSM-LSHADE-SPACMA_Case2 exhibits better 

optimization capability compared to other ones. 

5.2. Application of NSM-LSHADE-SPACMA to Engineering Design Problems 

In this subsection, NSM-LSHADE-SPACMA_Case2, which is determined as the most powerful of NSM-based algorithms, 

was applied to the solution of gear train design, tension/compression spring design, pressure vessel design, and cantilever 

beam design problems. Also, the performance of NSM-LSHADE-SPACMA_Case2 is compared with Rime Optimization 

Algorithm (RIME) [44], Nonlinear Marine Predator Algorithm (NMPA) [45], Northern Goshawk Optimization (NGO) [46], 

Kepler Optimization Algorithm (KOA) [47], Honey Badger Algorithm (HBA) [5], Artificial Gorilla Troops Optimizer (GTO) 

[48], Exponential Distribution Optimization (EDO) [49], and Hunger Games Search (HGS) [50]. The algorithms were run 

with the settings given in their original articles. The iteration number is 1000 for all algorithms. 

▪ Gear train design 

The optimized teeth numbers of gearwheels and the corresponding gear ratio cost are presented in Table 4. As per the results 

in the table, NSM-LSHADE-SPACMA_Case2, NMPA, NGO, HBA, GTO, and EDO algorithms obtained the best cost result 

with a value of 2.7009E-12. They are followed by RIME and KOA algorithms. The HGS algorithm gives the worst result 

(8.8876E-10). Figure 6 illustrates the convergence curves of optimizers in the gear train design problem. As is evident from 

the figure, NSM-LSHADE-SPACMA_Case2 reached the global optimum faster than the other algorithms. 
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Table 4. Optimization Results of Gear Train Design Problem 

Algorithms Optimized parameters Optimal cost 

 𝑇𝑎 𝑇𝑏   𝑇𝑑 𝑇𝑓 

NSM-LSHADE-SPACMA_Case2 49 19 16 43 2.7009E-12 

RIME 34 13 20 53 2.3078E-11 

NMPA 43 19 16 49 2.7009E-12 

NGO 43 16 19 49 2.7009E-12 

KOA 34 20 13 53 2.3078E-11 

HBA 43 16 19 49 2.7009E-12 

GTO 43 16 19 49 2.7009E-12 

EDO 49 19 16 43 2.7009E-12 

HGS 57 37 12 54 8.8876E-10 

 

Figure 6. Convergence Curves of Metaheuristic Optimizers in Gear Train Design Problem 
 

▪ Tension/compression spring design  

The best settings of control variables and corresponding objective function results are depicted in Table 5. As per the results 

in the table, NSM-LSHADE-SPACMA_Case2, NMPA, NGO, HBA, and GTO algorithms obtained minimum coil weight 

with a value of 0.01266602. KOA gives the highest coil weight. The convergence behaviour of the competitive optimizer is 

depicted in Figure 7. From the convergence curves, it is observed that the NSM-LSHADE-SPACMA_Case2 successfully 

converged the best solution and reduced the iteration number. On the other hand, RIME and KOA methods get caught in 

local solution traps and converge prematurely. 
 

Table 5. Optimization Results of Tension/Compression Spring Design Problem 

Algorithms Optimized parameters Optimal weight 

 𝑑 𝐷  𝑁 

NSM-LSHADE-SPACMA_Case2 0.051897 0.361748 11.135056 0.01266602 

RIME 0.051937 0.362229 11.313641 0.01270275 

NMPA 0.051897 0.361748 10.729495 0.01266602 

NGO 0.051897 0.361748 10.754378 0.01266602 

KOA 0.050000 0.311346 15.000000 0.01323221 

HBA 0.051897 0.361748 10.500000 0.01266602 

GTO 0.051897 0.361748 11.415919 0.01266602 

EDO 0.051897 0.361755 11.225818 0.01266653 

HGS 0.051204 0.345163 11.685449 0.01266962 
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Figure 7. Convergence Curves of Metaheuristic Optimizers in Tension/Compression Spring Design Problem 
 

▪ Pressure vessel design  

The optimum parameters of the pressure vessel design problem and corresponding fabrication costs are given in Table 6. 

What is clear from the simulation results is that the best cost result (5885,332773) is achieved with NSM-LSHADE-

SPACMA_Case2, HBA, and HGS algorithms. The respective decision variables are found to be 0.778168 for 𝑇𝑠, 0.384649 

for 𝑇ℎ, 40.319618 for 𝑅, and 200 for 𝐿. The numeric results of the NMPA, NGO, and GTO algorithms are remarkable and 

close to each other. Figure 8 depicts the comparative convergence curves of optimizers. The illustrated charts in the figure 

show that the HGS algorithm exhibits a better convergence speed. Admittedly, the convergence ability of the HBA, NGO, 

and NSM-LSHADE-SPACMA_Case2 algorithms was also impressive. 
 

Table 6. Optimization Results of Pressure Vessel Design Problem 

Algorithms Optimized parameters Optimal cost 

 𝑇𝑠 𝑇ℎ  𝑅 𝐿 

NSM-LSHADE-SPACMA_Case2 0.778168 0.384649 40.319618 200 5885,332773 

RIME 0.888095 0.445929 45.981860 133.819439 6131,386806 

NMPA 0.778168 0.384649 40.319618 199.999996 5885,332786 

NGO 0.778168 0.384649 40.319618 199.999999 5885,332775 

KOA 1.157765 0.573756 47.995036 145.907363 9291,834612 

HBA 0.778168 0.384649 40.319618 200 5885,332773 

GTO 0.778168 0.384649 40.319619 199.999985 5885,332808 

EDO 0.778720 0.385479 40.333025 199.893895 5891,657726 

HGS 0.778168 0.384649 40.319618 200 5885,332773 

 
 

Figure 8. Convergence Curves of Metaheuristic Optimizers in Pressure Vessel Design Problem 
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▪ Cantilever beam design 

Table 7 gives the optimized block lengths and corresponding cantilever beam weights. As per the results in the table, NSM-

LSHADE-SPACMA_Case2, NMPA, and NGO algorithms obtained the optimal weight, and then followed by HBA and GTO 

algorithms. KOA algorithm gives the worst result. The reason behind the poor performance of the KOA can be that it gets 

stuck in local solution traps and convergence prematurely. Figure 9 depicts the change in the objective function over the 

iterations. From the figure, it can be seen that NSM-LSHADE-SPACMA_Case2 rapidly converged to the optimal weight 

result after 100 iterations. 

Table 7. Optimization Results of Cantilever Beam Design Problem 

Algorithms Optimized parameters Optimal weight 

 𝑥1 𝑥2  𝑥3  𝑥4  𝑥5 

NSM-LSHADE-SPACMA_Case2 6.016015 5.309173 4.494329 3.501474 2.152665 1.339956 

RIME 6.194038 5.423264 4.313638 3.502088 2.076832 1.342215 

NMPA 6.016014 5.309174 4.494329 3.501474 2.152665 1.339956 

NGO 6.016679 5.310302 4.493161 3.502687 2.150836 1.339956 

KOA 6.990157 15.187510 5.099891 3.831937 1.850069 2.056676 

HBA 6.018072 5.305518 4.497259 3.499427 2.153394 1.339957 

GTO 6.015852 5.308207 4.494019 3.505487 2.150108 1.339957 

EDO 5.984261 5.335545 4.493889 3.450257 2.219157 1.340546 

HGS 6.028996 5.297238 4.480894 3.506450 2.160339 1.339972 

 

Figure 9. Convergence Curves of Metaheuristic Optimizers in Cantilever Beam Design Problem 
 

6. Conclusions 
 

This paper assesses the optimization ability of NSM-based metaheuristic algorithms in solving global optimization and 

constrained real-world engineering design problems. Firstly, NSM-TLABC, NSM-SFS, and NSM-LSHADE-SPACMA 

methods are applied to the optimization of CEC 2022 benchmark functions. The NSM-based algorithm that performs best in 

the global optimization is then used to find optimal solutions for the gear train design, tension/compression spring design, 

pressure vessel design and cantilever beam design problems. The results are compared with RIME, NMPA, NGO, KOA, 

HBA, GTO, EDO, and HGS algorithms. Based on the extensive experimental studies, the conclusions of the present research 

can be summarized as follows: 

• Considering the Friedman test results, it is noticed that the best-performing variants of NSM-based algorithms are 

NSM-TLABC_Case2, NSM-SFS_Case3, and NSM-LSHADE-SPACMA_Case2 in the IEEE CEC 2022 global 

optimization problems. 

• Among all NSM-based algorithms, NSM-LSHADE-SPACMA_Case2 stands out as the best optimiser with an 

average rank of 3.96 Friedman score. 

• The winner of the Wilcoxon test is NSM-LSHADE-SPACMA_Case2. The algorithm gave statistically better results 

in 13 of 16 experiments. In other words, the NSM-LSHADE-SPACMA_Case2 showed a success rate of 81.25% 

against its competitors. 
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• Box plot analysis shows that the NSM-LSHADE-SPACMA algorithm exhibits better exploration and exploitation-

exploration balance compared to other ones. 

• The best objective function results are calculated with the NSM-LSHADE-SPACMA algorithm for gear train design, 

tension/compression spring design, pressure vessel design, and cantilever beam design problems as 2.7009E-12, 

0.01266602, 5885,332773 and 1.339956, respectively. 

In conclusion, this study strongly reports that NSM-LSHADE-SPACMA_Case2 performs better for global and engineering 

design problems. The strength of the NSM-based algorithm is that it performs population management using the NSM 

strategy. Based on this, it can be said that it is possible to increase the optimisation capacity of other population-based 

metaheuristic algorithms by hybridising them with NSM. In this way, high-quality solutions can be achieved for non-convex 

real-world engineering design problems. 
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