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ABSTRACT 
Nowadays, Distributed Generators (DGs) are widely adopted in distribution networks to deliver fast, reliable, 

and clean power to the consumer maximize environmental preservation, and mitigate the impact of energy 

production on the environment. However, recurring issues like poor voltage profiling/stability and power loss 
arising from improper allocation and unsuitable sizing of the DGs have made it necessary for methods and 

approaches to be sought in order to mitigate these issues. This study proposes a method that can be used in 

optimizing the allocation and sizes of the DGs.  The study employs the IEEE 37 node test system in OpenDSS 
to carry out power flow. The DG size, node, and power factor are the coordinated control variables presented in 

this study to minimize the power loss. Genetic Algorithm, Pattern Search, Particle Swarm Optimization, and 

Grey Wolf Optimizer algorithms have been exploited in the IEEE 37 node test feeder to find the optimal 
location, sizes, and power factors of the DGs. Notable variations resulting from four different cases considering 

power loss as an objective function are also presented. Results indicate that optimally sized and placed DGs 

operated with optimal power factors have reduced power losses by enhancing the voltage profile. In addition, 
the effect of the reactive power capability of DGs on the distribution system has been shown. 
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1. Introduction 

Distributed Generation (DG) systems have a crucial role in the minimization of power losses, which occur during the 

transmission of electricity over long distances from power plants to end-users. Power losses are minimized when electricity 

travels vast distances from power plants to users using distributed generation (DG) systems. They accomplish this by 

generating power close to the site of consumption, hence lowering transmission losses and relieving system strain. Because 

DG systems are often more efficient than central power plants, they improve the overall system efficiency by lowering energy 

consumption and costs [1]. Distributed applications provide significant advantages, generate electricity for local injections, 

and interact with low-voltage transformers. Incorporating DG can reduce transmission line losses, increase grid resiliency, 

minimize additional generating costs, and reduce the need to invest in up-to-date utility generation capacity [2]. 

Electric utility systems seeking the development of energy by distributed PV allocation can reap a variety of advantages as 

well as offer backup in the worst-case scenario of disruption with correct calibration [2, 3]. The rising complexity of power 

distribution networks has fueled the demand for optimizing power systems through efficient and dependable solutions. Load 

flow studies must deal with a wide range of system configurations properly and rapidly, making them an essential analysis 

of power systems. The distribution systems are frequently unbalanced due to single-phase, two-phase, or three-phase loads 

while employing a radial system to generate power [4, 5]. 

The positioning and sizes of DGs have a significant impact on [6]: Voltage Regulation meaning at the point of use, DGs 

stabilize voltage, decreasing voltage variations' losses. Control of Reactive Power: DGs offer reactive power, which reduces 

how much electricity is needed for compensation equipment and power losses. Locating DGs in high-demand areas reduces 

transmission losses [7, 8]. Sizing DGs correctly enables effective functioning [9, 10, 11]. Various strategies, including 

heuristic algorithms, are used to solve the optimization challenge for DG systems [10]. MATLAB [12] is capable of running 

an optimization algorithm, which includes a Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf 

Optimizer (GWO), and Pattern Search (PS), to optimize the placement, sizing, and power factor of DG units in the system. 
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PSO Algorithms are a clever way to explore and improve optimization [13] within a search area. They are inspired by the 

social behavior found in regulated colonies. Using a group of people known as a "swarm," this program explores potentially 

interesting regions in the search space. We refer to these people as "particles" or "agents.". GWO algorithm optimizes 

solutions based on wolf pack behavior [14]. GAs are evolutionary algorithms that efficiently optimize DG systems, especially 

for difficult issues [15-17]. These algorithms have reduced losses by ensuring the voltage is within the defined limits. The 

results obtained from the algorithms are compared. 

Many studies have applied optimization techniques like GA, PSO, PS, and GWO to solve power system problems. Typically, 

these studies focus on transmission systems or balanced distribution networks, and they often assume that distributed 

generators (DGs) operate at a unity power factor. However, real-world distribution systems exhibit imbalances due to uneven 

loading and line characteristics. In this research, we concentrated on the optimal DGs placement in unbalanced distribution 

systems, considering both unity power factor and optimal power factor scenarios. Our simulations revealed that optimizing 

the power factor of DGs can significantly lower system losses by leveraging their reactive power capabilities. 

The paper is organized as follows Section 2, explains the objective function while satisfying all constraints, Section 3, 

describes the test system, and Section 4, there’s explanation of the algorithms used in the study. Section 5 gives the simulation 

results, and the conclusion is given. 

2. Problem Formulation  
 

For the IEEE 37 node test system, the ideal amount and size of DG units to be deployed to cut down on system power loss 

and get the proper voltage profile are four. System power loss must therefore be expressed as a function of system bus 

voltages and DG capacity. The current load is steady, and the section load is evenly distributed [17]. 

Improving power system efficiency by reducing operating costs and eliminating energy losses is one benefit of optimizing 

power flow within power systems, among other benefits. Additionally, enhancing voltage stability strengthens the power 

system's dependability and stability [17-22]. Therefore, to employ an optimization algorithm, the optimization issue, 

including the objective function and constraints, must first be established [22]. 
  

2.1. Objective Function 

Since power loss has directly affected system efficiency and economy, minimization of the power loss has been selected as 

an objective function. Minimizing the power losses enhances the power distribution system's performance and dependability, 

which lowers operating costs and improves energy efficiency [23]. 

The problem's goal function has been established as lowering the overall actual power loss. The objective function is: 

𝑚𝑖𝑛 𝑃𝑙𝑜𝑠𝑠 =  𝑚𝑖𝑛 [∑ 𝑔𝑘{𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗

𝑇

𝑘=1

cos (𝛿𝑖 − 𝛿𝑗)}] 

 

 

(1) 

where, gk is the conductance at line k between i and j nodes, Vi, Vj and δi, δj are the voltage magnitudes of the node and angles 

of nodes i and j. T is the number of the line. 
 

2.2. Constraint 

The following are the constraints of the problem in the optimization process as given below.  
 

2.2.1. Voltage Limitation 
 

The following constraint is described to ensure that the voltage of any node remains within defined limits 

[22]: 
𝑉𝑚𝑖𝑛,𝑖  ≤ 𝑉𝑖  ≤ 𝑉𝑚𝑎𝑥,𝑖;             𝑖 = 1, … , 𝑁𝐵 (2) 

2.2.2. Power Flow Equation 
 

The balance of active and reactive power must be defined as an equality constraint of the optimization 

problem [23]: 
 

𝑃𝑠𝑠 + ∑ 𝑃𝐷𝐺,𝑖

𝑁𝐷𝐺

𝑖=1

= ∑𝑃𝐷𝑗

𝑁𝐵

𝑗=1

+ ∑ 𝑃𝐿,𝐾

𝑁𝐿

𝐾=1

 
 

(3) 

 

𝑄𝑠𝑠 + ∑ 𝑄𝐷𝐺,𝑖

𝑁𝐷𝐺

𝑖=1

= ∑𝑄𝐷𝑗

𝑁𝐵

𝑗=1

+ ∑ 𝑄𝐿,𝐾

𝑁𝐿

𝐾=1

 

 

(4) 

 

where, Pss, PDG,i, PDj and PL,K are the active power drawn from the substation, active power of the DGs, active power of load 

and active power loss, respectively. Also, Qss, QDG,i, QL,K and QDj are the reactive power drawn from the substation, reactive 

power of the DGs, reactive power loss and reactive power of the load, respectively. 
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2.2.3. The Total Active Power of DGs 

The total active power output of multiple DGs installed in the test system should be less than or equal to the total real power 

of the loads. 

∑ 𝑃𝐷𝐺,𝑖

𝑁𝐷𝐺

𝑖=1

≤ ∑𝑃𝐷𝑗

𝑁𝐵

𝑗=1

 
 

(5) 

2.2.4. DG Capacity Limit 

DG capacity limit is considered within the maximum and minimum power as: [24]  

𝑃𝐷𝐺 𝑚𝑖𝑛,𝑖  ≤ 𝑃𝐷𝐺 ,𝑖  ≤  𝑃𝐷𝐺 𝑚𝑎𝑥,𝑖  ;  𝑖 = 1,… , 𝑁𝐷𝐺 (6) 

2.2.5. DG Power Factor Limit 

The DG power factor is considered an inequality constraint for DGs operating under different power factors except 1.    

𝑃𝑓𝐷𝐺 𝑚𝑖𝑛,𝑖  ≤ 𝑃𝑓𝐷𝐺 ,𝑖   ≤ 𝑃𝑓𝐷𝐺 𝑚𝑎𝑥,𝑖  ;   𝑖 = 1, … ,𝑁𝐷𝐺 (7) 

 

 

Figure 1. Single line diagram of IEEE 37 Test Feeder [30] 
 

3. Unbalanced Radial Distribution System 
 

The IEEE 37-node test system is a widely used distribution network for analyzing unbalanced radial distribution networks 

reflecting real-world complexities such as uneven loading and varied line characteristics [25, 26]. Our study used the IEEE 

37 node distribution test system to model an unbalanced radial distribution network. This system allows us to rigorously 

assess how DGs can be optimally placed within an unbalanced distribution system [27, 28]. By examining both unit power 

factor and optimal power factor operated DGs, the simulations aimed to explore the potential for reducing system losses and 

enhancing overall performance.  

This network is an unbalanced system with a medium voltage of 4.8kV, load size of 2547 KW and 1201 MVAr and consists 

of 37 nodes [29]. All data is given from [30, 31]. MATLAB [11] is employed to solve the optimization using GA, GWO, PS, 

and PSO to optimize the location, sizing, and power factor of DGs in the system. The IEEE 37 node unbalanced distribution 

system has adopted the concept. A comparison is made between the simulation results and those obtained using other 

methods. A single-line diagram of the IEEE 37-node test feeder has been displayed in Figure 1 [30]. Power flow simulations 

have been done using OpenDSS [32]. 
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4. Optimization Algorithms 
 

In our simulations, we employed several advanced optimization algorithms to enhance the distribution system's performance. 

GA, GWO, PS, and PSO have been used due to their proficiency in solving complicated problems to determine the place and 

size of DGs. [33, 34]. 
 

4.1. Genetic Algorithm  
 

Evolutionary processes and natural selection mechanisms are the basis for Genetic Algorithms (GAs). They are used to look 

for almost-optimal answers to problems with search and optimization. The first step in the method is to create a population 

of candidate solutions represented as chromosomes at random. Then, a fitness function is used to evaluate these chromosomes 

to determine how well they address the given task. Based on these fitness evaluations, chromosomes are selected for 

reproduction, with the likelihood of selection proportional to their fitness scores. The selected chromosomes then undergo 

crossover, where segments of their genetic material are exchanged to produce new offspring. The mutation is applied to some 

offspring to introduce random variations and maintain genetic diversity. The newly created offspring and some of the best 

chromosomes from the current population form the next generation. This new population is then evaluated, and the selection 

cycle, crossover, and mutation go on until a termination criterion, such as the number of iterations or convergence tolerance, 

is met [35]. The process iterates to evolve and refine solutions to converge on the optimal or near-optimal answer [36]. The 

flowchart of the GA is shown in Fig. 2. 
 

4.2. Particle Swarm Optimization 

A computational technique called Particle Swarm Optimization (PSO) has been driven by the social interactions of fish and 

birds. Allowing a swarm of potential solutions, particles, to travel over the solution space can be utilized to find the best 

answers to issues [13]. 

Each particle of the swarm symbolizes a potential solution to the optimization problem. Firstly, the position and velocity of 

each particle are randomly initialized within the defined search space. The velocity of each particle has been used to update 

its position as in Eq. 8. 
𝑥𝑖

𝑛𝑒𝑤 = 𝑥𝑖
𝑜𝑙𝑑 + 𝑣𝑖 (8) 

 

where vi is the velocity of the i.th particle. Every particle's velocity is updated by its previous velocity, the distance to its 

personal best, and the global best. 

 

𝑣𝑖
𝑛𝑒𝑤 = 𝑤 ∙ 𝑣𝑖

𝑜𝑙𝑑 + 𝑐1 ∙  𝑟1 ∙ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑜𝑙𝑑) + 𝑐2 ∙  𝑟2 ∙ (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑜𝑙𝑑) (9) 

 

w, c1 and c2 are the inertia weight, cognitive and social coefficients, respectively. Also, random numbers r1 and r2 are in 

[0,1]. 

 
 

𝑃𝑏𝑒𝑠𝑡𝑖
𝑛𝑒𝑤 = {

𝑥𝑖
𝑛𝑒𝑤 𝑖𝑓 𝑓(𝑋𝑖

𝑘+1) < 𝑓(𝑃𝑏𝑒𝑠𝑡𝑖
𝑜𝑙𝑑)

𝑃𝑏𝑒𝑠𝑡𝑖
𝑜𝑙𝑑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(10) 

 
The global best is updated if any particle’s personal best has a better fitness value [37]. 

 

𝐺𝑏𝑒𝑠𝑡𝑛𝑒𝑤 = {
𝑃𝑏𝑒𝑠𝑡𝑖

𝑛𝑒𝑤 𝑖𝑓 𝑓(𝑃𝑏𝑒𝑠𝑡𝑖
𝑛𝑒𝑤) < 𝑓(𝐺𝑏𝑒𝑠𝑡𝑜𝑙𝑑)

𝐺𝑏𝑒𝑠𝑡𝑜𝑙𝑑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(11) 

 
The algorithm goes through the flowchart until a termination criterion is met, as shown in the flowchart of PSO in Fig. 3. 
 

4.3. Pattern Search 
 

Pattern Search (PS) is an optimization algorithm that iteratively refines solutions by exploring a structured search pattern. 

The process starts with an initial solution 𝑥0 and evaluates the objective function 𝑓(𝑥) at this point. The algorithm updates the 

solution in each iteration using the following equations [38]. 
 

𝑥𝑢 = 𝑥 + ℎ𝑖�̂�𝑖 

𝑥𝑑 = 𝑥 − ℎ𝑖�̂�𝑖 

(12) 

where �̂�𝑖 is a unit vector in position i and step size is initially h=xmax-xmin. 
 

The search then updates x to be the best of the three alternatives (x, xu, and xd ) finding the  
 

𝑥 = argmin(𝑓(𝑥), 𝑓(𝑥𝑢), 𝑓(𝑥𝑑)) (13) 
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If no improvement is found, the step size is decreased, and the search pattern is adjusted. The flowchart starts with initializing 

the solution and step size, proceeds to evaluate the objective function, updates the solution, checks for improvement, adjusts 

the search pattern or step size, and iterates until a termination criterion is met as shown in Fig. 4. Fig. 4 shows the flowchart 

of the PS. This iterative refinement approaches the near-optimal or optimal solution by systematically exploring the search 

space [39]. 

 

Start
Initialize population

Evaluate fitness of each 
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Crossover

Is the stopping criteria satisfied?

Stop

Yes

No

Mutuation

 

Start
Initialize particles with random 

positions and velocities

Evaluate fitness of each particle
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Update velocities and positions 
of particles
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Stop

Yes

No

 

Figure 2. Flowchart of GA Figure 3. Flowchart of PSO 

 
4.4. Grey Wolf Optimization 

The Grey Wolf Optimization (GWO) algorithm is a nature-inspired optimization technique that simulates the hierarchical 

hunting mechanism of grey wolves [40]. The algorithm involves a population of candidate solutions, each represented as a 

grey wolf categorized into four groups: delta, beta, and alpha wolves, according to their fitness value. The position update of 

each wolf is guided by the positions of the delta, beta, and alpha wolves [40]. The GWO algorithm’s flowchart is depicted in 

Fig. 5. The mathematical update rules are given by [40]: 

�⃗⃗� = |𝐶.⃗⃗  ⃗ 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)| 

𝑋 (𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝐴 . �⃗⃗�  

(14) 

 
 

where                                                                          𝐴 = 2𝑎 . 𝑟1⃗⃗⃗  − 𝑎  

𝐶 = 2. 𝑟2⃗⃗  ⃗ 

 

where t is the iteration number, 𝑋  and 𝑋𝑝
⃗⃗ ⃗⃗   position and hunting position vector of wolves. A and C are coefficient vectors. 

𝑎  varies from 2 to 0, the random vectors 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ are in [0, 1] [41]. 
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Figure 4. Flowchart of PS Figure 5. Flowchart of GWO 

 

The position of optimal wolves can be calculated as follows [42]. 

 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1.⃗⃗⃗⃗  ⃗ 𝑋𝑎

⃗⃗ ⃗⃗  − 𝑋 |, 𝐷𝛽
⃗⃗ ⃗⃗  = |𝐶2.⃗⃗⃗⃗  ⃗ 𝑋𝛽

⃗⃗ ⃗⃗  − 𝑋 |, 𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3.⃗⃗⃗⃗  ⃗ 𝑋𝛿

⃗⃗ ⃗⃗  − 𝑋 | 

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  − 𝐴1
⃗⃗⃗⃗ . 𝐷𝛼

⃗⃗⃗⃗  ⃗ , 𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  − 𝐴1
⃗⃗⃗⃗ . 𝐷𝛽

⃗⃗ ⃗⃗   , 𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  − 𝐴1
⃗⃗⃗⃗ . 𝐷𝛿

⃗⃗ ⃗⃗   

(15) 

𝑋 (𝑡 + 1) =
𝑋1
⃗⃗⃗⃗ + 𝑋2

⃗⃗⃗⃗ + 𝑋3
⃗⃗⃗⃗ 

3
 

 

 

5. Simulation Results 

The optimization algorithms have been evaluated and simulated on a computational system running Windows 11 with a 

processor of Intel Core i7 3770, 16 GB of RAM, and NVIDIA GeForce GT 640 Graphics. Also, the parameters of the 

algorithm used in the simulations are given in Table 1. 

Table 1. The Control Parameters Used in the Simulation of Optimization Algorithms 
 

Algorithm Parameter Value 

GA Population size, Elite count, Crossover, Scaling factor,  50, 0.05, 0.8, 

0.4 

PSO Swarm size, Inertia Coefficient (w), Cognitive Coefficient (c1), social Coefficient (c2), 

Inertia Damping Weight  

50, 1, 2, 2, 0.99 

PS Mesh Contraction, Mesh expansion 0.5, 2 

GWO Search agent 50 
 

For the first case, all DGs are operated to unit power factor, four DGs produce only real power to the system, there is no 

reactive power generated by DGs, the four methods are applied such as GA, PSO, PS and GWO. The performance of GA for 

obtaining the optimal DG placement and the size are better than other algorithms in Table 2 in terms of power loss. In this 

case, two control variables are used for each DG for the optimization algorithm, so in total, we have 8 control variables for 

four DGs, which are the bus number and size of DGs. The maximum iteration was selected as 100 before the population 

number was 50. The maximum active power limit for DGs is 2547 kW. The total DG size is equal to or smaller than the total 

real load value because this is the optimization constraint it means to be satisfied for all algorithms. Before DG installation, 

In the base scenario, the lowest and highest voltages are 0.9664 pu and 1.0607 pu, respectively. For ideally sized and arranged 

DGs, the least and most voltages for the GA outcomes are 0.9915 pu and 1.0477 pu, respectively. Table 2 displays the node 
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voltages that have remained within the defined limits for all algorithms while the voltages are not within the limit before 

optimization. Also, the power losses are decreased after the optimization for all algorithms, as shown in Table 2. 
 

The four DGs are installed as follows, for GA at nodes 737,703, 701, and 707, for PSO at nodes 736, 744, 727, and 718, for 

PS 734, 701,713 and 722, and finally at 737, 730, 701, 722 for GWO method as given in Table 2. In this case, the GA gives 

better results because the minimum loss value is 19.302 kW with a maximum loss reduction value of 73.85%. Table 3 shows 

the second case's most appropriate location, size, and power factor. In this case, DGs are operating with a lagging power 

factor to use their reactive power capabilities. Then, three control variables are used for each DG for the optimization 

algorithm, so in total, we have 12 control variables for four DGs, which are the bus number, size, and power factor of DGs. 

Table 2. Various Approaches to Optimal DG Size and Position for an IEEE 37-node System Operating at a Unity Power 

Factor 

Table 3. Optimal DG Size and Location with Different Methods for IEEE 37 Node System at Optimal Power Factor 

 

The power losses also decreased with the optimization of all algorithms, as given in Table 3. The four DGs are installed as 

follows, for GA at nodes 737,703, 701, and 722, for PSO at nodes 737, 709, 701, and 720, for PS 738, 733,701 and 704, and 

finally at 738, 733, 702, 722 for GWO method as given in Table 3. In this case, the GA gives better results with a minimum 

loss value of 7.0936 kW and a maximum loss reduction value of 90.39%. 

 

When comparing the results obtained with GA for two scenarios representing DG operating at unity power factor and different 

power factors, the power loss reduction in the first scenario was 73.85%, while in the second scenario, it was 90.39%. This 

indicates that DGs with reactive power capability significantly reduced power losses more in the second scenario. Thus, 

utilizing DGs with reactive power capabilities led to a decrease in total power losses. 
 

Case Method 
Installed  

DG 
        

Total 

DG 

Power 

Ploss 

(kW) 

Loss Reduction 

(%) 
Vmin Vmax 

Base 

Case  
- Without DG Total Real Load(kW)= 2457 - 73.81 - 0.9664 1.0607 

      DG 1 DG 2 DG 3 DG 4           

4 DGs 

GA 
Node 737 703 701 707 

2426.6 19.302 73.85% 0.9915 1.0477 
Size (kW) 637.94 853.35 584.06 351.24 

PSO 
Node 736 744 727 718 

2354.4 19.693 73.32% 0.9916 1.0475 
Size (kW) 747.3 303.75 1012.7 290.64 

PS 
Node 734 701 713 722 

2457 19.94 72.98% 0.9915 1.0478 
Size (kW) 863.78 659.63 663.71 269.88 

GWO 
Node 737 730 701 722 

2455.8 19.354 73.78% 0.9903 1.0478 
Size (kW) 610.71 508.18 1052 284.91 

Case Method Installed DG     Total DG 

Power kW 

Ploss 

(kW) 

Loss 

Reduction 

(%) 

Vmin Vmax 

Base 

Case 
- Without DG Total Real Load(kW)= 2457 - 73.81 - 0.9664 1.0607 

   DG 1 DG 2 DG 3 DG 4      

4 DGs 

GA 

Node 737 703 701 722 

2447.3 7.0936 90.39% 0.9986 1.0363 Size (kW) 656.27 743.66 791.74 255.6 

Power factor 0.90521 0.906 0.85332 0.77254 

PSO 

Node 737 709 701 720 

2455.1 7.148 90.32% 0.9968 1.0353 Size (kW) 518.16 559.14 896.94 480.83 

Power factor 0.9013 0.90984 0.88098 0.88838 

PS 

Node 738 733 701 704 

2456.4 8.3903 88.63% 0.9968 1.0353 Size (kW) 341.44 631.19 772.38 711.38 

Power factor 0.6875 1 0.75 0.9375 

GWO 

Node 738 733 702 722 

2383.52 7.3664 90.02% 0.9992 1.036 Size (kW) 435.93 432.84 1267 247.75 

Power factor 0.92891 0.87854 0.91204 0.8546 
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Figure 6. Voltage Profile of Phase for the Base Case, the Cases DGs Operated at Unity and Optimal Power Factor 
 

 

The voltage profile was boosted and real power loss was significantly reduced following the insertion of DG units in the 

system as shown in Figures 6, 7 and 8. The constraints are satisfied as given; the GA gives the finding as improving power 

loss diminution outcomes in this scenario, with a 90.39% power loss reduction and the lowest voltage value of 0.99 pu and 

the highest voltage value of 1.03pu, respectively.  

 

 

 

Figure 7. Voltage Profile of Phase b for the Base Case, the Cases DGs Operated at Unity and Optimal Power Factor 

 

 

Figure 8. Voltage Profile of Phase c for the Base Case, the Cases DGs Operated at Unity and Optimal Power Factor 
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6. Conclusion 

This paper shows that DG unit integration in the distribution test system aims to minimize power loss by improving the 

voltage profile. In this study, several heuristic optimization algorithms have been utilized to resolve the DGs unit allocation 

and sizing problem. Compared to other optimization algorithms used in the study, GA yields better results for optimal 

locations and sizes in reducing power losses. The approaches drop the active power losses by ensuring the voltages are within 

the defined limits.  By improving the voltage profile of the whole network, power losses have been minimized through the 

use of optimally located and sized distributed generations, which in turn supports reducing network load. The utilization of 

DGs' reactive power capabilities demonstrates that when they perform at the ideal power factor, the power losses more than 

DGs operated under the unity power factor due to the lack of reactive power capability. 
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