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ABSTRACT 

Electricity production in hydraulic power plants depends on the amount of water coming into the basin. This 

varies depending on precipitation such as snow and rain during the year, but when looking at the years, 

production is shaped according to the years when meteorological data are similar to each other. LSTM (Long 

Short-Term Memory) plays an important role in hydropower forecasting, as it is a special artificial neural 

network designed to model complex relationships on time series data, which is affected by various 

meteorological factors such as precipitation, temperature, and hydrological data such as water level, such as 

hydroelectric power production. Therefore, in this study, a forecast system based on the LSTM network model 

which is one of the deep learning methods was proposed for monthly hydropower-based electricity production 

forecast in Türkiye. The developed deep learning-based hydropower forecast model provides future production 

planning based on time series based on actual hydropower production data. Using real production data and 

LSTM learning models of different structures, monthly hydraulic electricity production forecasts for the next 

year were made and the models' performances were examined. As a result of this study, RMSE 32.4245 and 

MAPE 16.03% values and 200-layer LSTM model trained with 12-year data with 144 monthly data points 

containing hydroelectric generation information was obtained as the best model, and the performance values of 

the model showed that it was the correct forecasting model. The overall efficiency parameters of the found 

LSTM model were checked with NSE 0.5398 and KGE 0.8413 values. The performance of the model was found 

to be a high-accuracy model within acceptable limits and with a correlation value of R2 0.9035 to be very close 

to reality. The results obtained from this study have shown that deep learning models developed based on many 

years of production data give successful results in hydroelectric production prediction and can be used as a basis 

for electricity production planning. 
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1. Introduction 
 

Research shows that renewable energy sources have the capacity to meet two-thirds of the world's total energy demand. They 

can also contribute to the drastic reduction of greenhouse gas emissions needed to keep the average global surface temperature 

rise below 2°C by 2050 [1]. Examples of major renewable energy sources are solar, wind, hydrogen, hydroelectric, wave and 

geothermal. The biggest environmental advantages of renewable energy sources are that they are renewable due to their 

continued existence in nature, they do not harm nature by less carbon emissions, and they are clean and sustainable energy 

sources [2]. Sunlight, wind speed and precipitation parameters, which form the basis of renewable energy sources, change 

seasonally 

Discontinuous and intermittent renewable energy sources depend on meteorological weather conditions and parameters such 

as temperature and rainfall [3]. Estimating the amount of electricity to be obtained from hydroelectric power plants is of great 

importance in terms of planning production according to resources and ensuring the continuity of production [4]. The fact 

that renewable energy resources vary throughout the year and even during the day and depend on seasonal conditions from 

year to year makes it important to estimate production in the electricity grid to meet the supply. With the development of 

deep learning algorithms, it has achieved successful results in many areas, especially computer learning and prediction 

studies. In applications, deep learning models are created based on time series data, many of which are applied to real life, 

such as precipitation-flow modeling [5].  Deep learning network structures allow learning the complex relationships between 

the input and output sets of the learning structure and the complex relationships between the data [6].  Today, Long Short-

Term Memory (LSTM) networks attract widespread attention and have many practical applications for time-series-based 

forecasting systems [7]. Wang et al. examined the methods used in estimating production based on renewable energy sources 
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and the degree of accuracy in the predictions of these methods [8]. Cheng et al. focused on estimating the power demand 

needed in the network to accurately meet the demand in a network [9]. Other deep learning-based studies include predicting 

the amount of energy demanded monthly 3 days in advance [10], estimating the short-term electricity demand curve [11], 

design a new specific power demand prediction algorithm based on LSTM Deep Learning method with respect to end-user 

power demand patterns[12], using meteorological data of the last 24 hours. Methods have been developed for estimating the 

demand amount based on [13], and for predicting the next 3-day production based on meteorological data in a wind power 

plant [14]. They propose a power demand forecasting model based on a neural network. Li et al. tried improving the prediction 

performance based on deep learning by fusing different production time data components such as daily, weekly and long 

time of a hydraulic power plant [15]. Del Real et al., on the other hand, used a mixed deep learning architecture consisting of 

a convolutional neural network (CNN) combined with an artificial neural network (ANN) to perform energy demand 

estimation [16]. 

Hydroelectric generation is one of Türkiye's leading renewable energy sources [17]. The amount of electricity production 

from hydroelectric power plants depends on the amount of water coming to the dam basin. Production values change on a 

monthly basis depending on the amount of precipitation during the year, and the closer the water level is to the design values, 

the more efficiency in production increases. Accurate prediction of electricity supply based on data on generation resources 

connected to an electricity system provides a solution to meet the demanded power [18]. However, methods other than 

resource-based prediction can be used by using historical electrical load flow data in the electrical system [19, 20]. To create 

a prediction model with Türkiye’s monthly electricity generation dataset, methods such as LSTM based on a deep learning 

algorithm were used using time series [21]. Renewable energy sources such as solar, wind and hydroelectricity mainly depend 

on local environmental and meteorological conditions such as temperature and precipitation-runoff rates. In many studies in 

the literature, local environmental and meteorological conditions such as temperature and precipitation-flow are used in the 

medium-term monthly forecasting of the amount of energy to be produced by Hydroelectric Power Plants (HPP). In this 

article, a deep learning model is applied/trained using time series to create a forecasting model using Turkey's monthly 

hydroelectric power plant production data set. Monthly Hydroelectric Generation Forecasting System was developed for 

forecasting hydroelectric production based on the LSTM Network-Based Deep Learning Model. Besides, as a result of global 

warming, increasing droughts and decreasing precipitation directly affect hydroelectric production, creating a decreasing 

effect on the generation of electricity. Hydroelectric energy production is based on converting the potential energy of water 

into kinetic energy, and the decrease in water resources due to drought will reduce the amount of energy produced by 

decreasing the water level in dams. Also, droughts make the flow regimes of rivers irregular, then Seasonal flow differences 

increase and water levels may drop unexpectedly. This negatively affects the efficiency of hydroelectric power plants [22].  

In order to use water more effectively in drought conditions, water management strategies come to the fore, and it is necessary 

to ensure the sustainability of hydroelectric energy [23]. In this sense, the estimation studies of electricity production in the 

country's hydroelectric power plants play an important role in determining plans and strategies.  

In the study, LSTM algorithm from artificial neural networks was used to predict the hydraulic electricity production of 

Türkiye. Compared to other artificial neural networks, LSTM's ability to hold data in memory increases its predictive power. 

By using this advantage, it is aimed to predict with high accuracy. As a result of the study, the amount of electricity that 

Türkiye will produce from hydraulic power plants is forecasted on a monthly basis annually, one year in advance, and 

production planning can be done more consistently in line with these estimated production values. When we look at the setup 

of this study, firstly, information about Turkey's hydroelectric production to be used in the study is given in the second 

section. Then, information about the creation of the model to be used in the model and the methods to be used to measure the 

performance of the models are shared. In the third section, the estimation results obtained from the models are given and the 

results are evaluated. 

2. Material and Methods 
 

2.1. Hydroelectricity Generation in Türkiye 

Electricity generation from renewable energy sources in Türkiye shows an increasing trend every year in terms of 

hydroelectric and geothermal resources, especially wind and solar. Türkiye's installed electricity capacity reached 96,270 

MW at the end of 2020. Türkiye's installed capacity has increased 3.5 times in 20 years. Renewable energy sources make up 

51% of this total installed power, and the total installed power capacity of the plants based on renewable energy sources has 

reached 49,111 MW. By the end of 2020, a total of 305.4 billion kWh electricity was produced in Türkiye. As the share of 

resources in electricity generation, 45.90 billion kWh, which corresponds to 15%, was obtained from solar, wind and 

geothermal power plants, and 78.12 billion kWh, which corresponds to 25.6%, was obtained from hydraulic power plants. In 

2020, the share of renewable energy sources in electricity generation was 42.4% [24, 25]. For Türkiye the hydraulic energy 

installed power as shown in Figure 1. 
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Figure 1. Electricity Generation from Various Renewable Sources Including Dam Type Hydro 

 

Türkiye's hydroelectric production varies in some years, showing a continuous upward trend in installation and generation, 

consistent with total electricity generation [24].  Dataset used in this study for forecasting of hydro electrical generation is 

taken from the statistics section of the publicly available Load Dispatch Information System (YTBS) web portal [26]. 

Considering the 12-year production covering the hydroelectric production data of Türkiye in between 2007–2018, the 

minimum, maximum and average production values of the productions corresponding to the months between January and 

December are given in Figure 2. It is seen that the highest production are realized in May, and the lowest production was in 

October. 
 

 
Figure 2. Monthly Maximum, Minimum and Average Generation Values of Hydroelectric Power Plants on a Long-Term 

Basis 
 

2.2. Structure of Long Short-Term Memory (LSTM) Networks 

Artificial Neural Networks (ANNs) represent learning algorithms developed based on the structure and functioning of human 

neural networks based machine learning. Deep learning (DL) networks, on the other hand, have been presented as a solution 

to many complex artificial intelligence (AI) problems that have existed for many years. In fact, DL models are described as 

deeper variants of linear or nonlinear multilayer artificial neural networks (ANNs).   

 
Figure 3. Difference Between Machine Learning and Deep Learning Approximation 

 

Difference between machine learning and deep learning approximation is shown Figure 3. The ability of DL models to learn 
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hierarchical properties from various data types makes them powerful in recognizing, regressing and solving semi-supervised 

and unsupervised problems [27]. ANNs can predict whether the image is a square or an equilateral rectangle. However, due 

to the fact that ANNs do not carry memory, they are insufficient in many cases where prior data information is important due 

to the nature of some problems. LSTMs can remember information for a long time. Many variations have been developed to 

solve the problem posed in a deep Recursive Neural Network (RNN). To solve this problem, LSTM uses gate units to decide 

what information to keep or remove from the previous state [28, 29]. A LSTM Network consists of three different Gates, 

they are Forget gate, Input gate and Output gate. Gates control the flow of information from memory to memory [30].  

 

 
Figure 4. Gate Connections of an LSTM Cell [30] 

 

The core component of LSTMs is a memory cell that can hold information over time controlled by gates. It can maintain its 

state over time, consisting of an open memory (also called a cell state vector) and gate units. Gate units regulate the flow of 

information entering and leaving the memory [31, 32].  The input gate is used to check whether the state in the current cell 

allows it to be overridden by external information as shown in Figure 4. The entrance gate in the LSTM cell structure used 

in the study is shown in Equation 1. 

𝑖𝑡 = 𝜎𝑘(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 +  𝑏𝑖)                    (1) 

Here; 

 it : inlet gate vector, 

σk : sigmoid function, 

xt: input vector, 

Wi and Ui : matrices to parameter 

bi: bias vector. 

 
The output vector decides whether to keep the state in the current cell, which will affect other cells, and is defined as in the 

Equation 2. 

𝑜𝑡 = 𝜎𝑘(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)      (2) 

 

Another cell gate defined in the LSTM memory cell is the forgotten container, which enables the state of the LSTM to be 

reset and is defined as follows. 

 𝑓𝑡 = 𝜎𝑘(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)       (3) 

 

As a result, Equations 4 and 5 shows how the cell state and the output vector is revealed from the input gate, forget gate and 

output gate. 

𝑐𝑡 = 𝑓𝑡 ⨀ 𝑐𝑡−1 + 𝑖𝑡⨀𝑡𝑎𝑛ℎ(𝑊𝑓𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)      (4) 

ℎ𝑡 = 𝑜𝑡 ⨀ 𝜎ℎ(𝑐𝑡) or ℎ𝑡 = 𝑜𝑡 ⨀𝑡𝑎𝑛ℎ(𝑐𝑡)       (5) 

 

Here, ⨀ represents the Hadamart product,  σc  and  σh  represents the hyperbolic tangent functions. 
 

2.3. Forecasting Time Series of Hydroelectric Generation Model 

The hydroelectric generation estimation study consists of the following steps. In this section, the hydroelectric generation 

estimation framework made with LSTM is given in Figure 5. 
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Figure 5. LSTM Hydropower Generation Forecasting Framework 

 

It can be express the definition of the hydroelectric production estimation problem considered in this study as follows: 

1- Obtaining a hydroelectric generation time series by using the monthly total electricity generation values realized in 

hydroelectric power plants for many years.      

2- Using this obtained time series, forecasting annual hydroelectric generation monthly in the future.      

3- Extract the internal feature to help better predict hydropower generation: Using the 12-year hydropower generation, the 

monthly correction coefficient is obtained by obtaining the average hydropower generation for each month of the year during 

January-December and standardizing them in a max-min range.      

4- Historical observations of previous t - 1 time steps Xt − 1 = {X 1 , X 2 , ⋯ , X t − 1 } and internal features D(y): 

January;...;December, considering the hydroelectric generation forecast, is to learn a model that predicts electricity generation 

value. Time t, that is, in time step t of the electricity generation value X t {Xt | Estimating Xt <1, Ft}.  

 
Xn(t)=Xn(1), X n(2),…., Xn(t-1),…, X n+1(1), X n+1(2),….,X n+1(t-1),…XN(1), XN(2),...,XN(t-1)      (5)           

 Here; 

         n=1..N, N=12 (January,…,December) 

         t = number of past years, 

        X(n+1)(t)=n in year t. hydroelectric production of the month. 

 
The production of a dam hydroelectric power station is affected by keeping the water level too high or too low due to the 

change in water flow. Similarly, the generation of river or canal hydroelectric power plants depends on the water regime 

affected by precipitation. The most important parameter showing the generation characteristics of hydroelectric power plants 

is the capacity factor. The capacity factor shows how many hours the hydraulic plant produces in 8765 hours of the year and 

is used for performance comparison. Net plant capacity factor (CF) is referred to as full capacity plant can produce energy 

part of the total energy generated in a given period. 

CF = ANP / ( IP *365 days*24 hours/day )            (6)  

Here, ANP is annual electricity production and IP is installed capacity. 
 

In hydroelectric power plants, the average capacity factor is around 40%. In other words, when the annual maximum operating 

time is taken into account as 8760 hours, hydroelectric power plants can only produce for 3500-4000 hours per year because 

the water coming to the reservoir is not always continuous. This means that hydroelectric power plants can only produce for 

40% of the annual time period. 
 

In this situation; Since the hydroelectric production data used in this study covers a period of 13 years, the installed capacity 

value that provides the production for each year is not the same due to each hydraulic installed capacity increase. To save the 

hydroelectric generation time data from this installed capacity value change, the time series based on monthly generation 

performance are obtained using the following formula (Figure 6. a, b). 

  

GP = MEP/IP         (7) 
 

Here, GP is generation performance and MEP is monthly electricity production. Two separate data inputs explained below 

are fed into the LSTM Based hydroelectric system. 

 

     

Data set

•Montly hydroelectric generatin data (2007 Feb-2019 Dec)

•Annually hydro installed capacity (2007-2018)

Data Setting

•Preparing data set as time series

•Data weighting coefficient ( generation / capacity)

LSTM Model

•Forecasting by LSTM

•Using coefficient for standartization
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(a)       (b) 

 

Figure 6. a) Monthly Hydroelectric Production B) Data Set Standardization as Monthly Hydro Generation Time 
 

One is monthly hydroelectric generation covering a 12-year time interval (Figure 6-a) and second is hydroelectric installed 

capacity value for these years as shown in Figure 7-a.  The monthly estimated standardized hydroelectricity production values 

as generation duration (Figure 6b) are combined with the annual hydroelectricity estimation data, using the installed power 

values obtained from the regression estimation model in Figure 7-b. 

 

 
(a)       (b) 

 

Figure 7. a) Graphic of Hydro Installed Capacity Data Set, B) Regression Model for Hydro Installed Capacity Data Set 
 

Data preparation and calculation of final forecast production value; 

 

1- Since the total installed capacity providing hydraulic electricity generation is different for each year, the annual 

hydraulic electricity production monthly per MW capacity must be standardized. To this end, monthly hydroelectric 

production (MWh) is proportioned to the total installed capacity value (MW) of the taken year. Then, monthly time curves 

are produced based on the number of hydroelectric production hours for each month. 

 

2- Since the annual hydroelectricity are standardized using the annual installed capacity value, the estimated year's values 

are multiplied by the estimated year's total installed capacity value to obtain the monthly hydroelectricity production (MWh) 

estimated values 

EMP  = EPT * IP       (8) 
      

Here, EMP is estimated monthly production as unit of MWh and EPT is estimated production time as unit of hours. 
 

2.4. Performance Measurement and Evaluation of the Prediction Models 
 

Hydroelectric production estimation is of great importance in terms of efficiency and reliability of energy systems, and the 

accuracy of these estimations allows more accurate decisions to be made in energy planning. Therefore, various criteria are 

important to evaluate the estimation performance. Since hydroelectric production estimation performance criteria are 

important for evaluating the accuracy and reliability of the model, choosing the right criterion is of great importance for 

developing the model and managing energy systems more effectively.  
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In this study, multi-criteria evaluation are performed using more than one criterion instead of a single criterion for 

performance evaluation. As Hydroelectric Production Estimation Performance Criteria in the study; Mean Absolute 

Percentage Error (MAPE), which is useful when making comparisons for data sets of different scales, Root Mean Squared 

Error (RMSE), which gives more weight to large errors and is used to evaluate the overall performance of the model, 

Coefficient of Determination (R), which shows how well the model explains the data, where the R-squared value varies 

between 0 and 1. As it approaches the value of 1, the explanatory power of the model increases. In addition, the Nash-Sutcliffe 

Efficiency Coefficient (NSE), which shows how well the model simulates the observed data, varies between -∞ and 1. The 

performance of the model increases as the value approaches 1, the KGE (Kling-Gupta Efficiency) method, which is a 

statistical measure frequently used in hydrological modeling and can evaluate how well the model fits the observed data, 

especially in time series data such as streamflow forecasting, is used to evaluate how well the model performs in terms of 

both its mean value and variance and shape. 

Average absolute Percent Error (MAPE) and Root Mean Square Error (RMSE) metrics are used to select the best prediction 

model with the smallest estimation error by using the hydroelectric monthly generation data time series.  RMSE and MAPE 

values were used to compare the prediction accuracy performances of different long short-term memory structures of models 

belonging to different time series and to measure the results obtained. RMSE is a quadratic scoring rule that also measures 

the mean magnitude of error and is defined as follows. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑣𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑣𝑟𝑒𝑎𝑙)2𝑁

𝑖=1      (9) 

 

MAPE is a widely used statistical method that measures how close the forecast result made by a forecasting system is to the 

truth. It measures accuracy as a percentage.  It is defined as follows 

 

𝑀𝐴𝑃𝐸 = (
1

𝑁
∑

|𝑣𝑟𝑒𝑎𝑙−𝑣𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

|𝑣𝑟𝑒𝑎𝑙|
) ∗ 100                (10) 

 
And, to check the overall efficiency of the LSTM models which are used for the prediction of hydro generation, Nash-

Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE) and coefficient of determination (R2) metrics are used. NSE 

coefficient is used to measure the accuracy of many hydrological predictions, determining the relative magnitude of the 

persistent variance compared to the variance of the observation data. NSE is calculated by Equation 11, 

 

𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑖=1

𝑜𝑏𝑠−𝑋𝑖=1
𝑐𝑎𝑙)

2
𝑁
𝑖=1

∑ (𝑋𝑖=1
𝑜𝑏𝑠−𝑋𝑎𝑣𝑔)

2𝑁
𝑖=1

              (11) 

     
Where; Xi

obs is the ith value of the observed monthly flows, Xi
cal is the ith value of the calculated monthly flows, Xavr is 

Average of observed monthly flows and N represents the total number of observations. NSE ranges from −∞ to 1. Here, 

NSE=1 proves that the method is physically excellent. A value between 0 and 1 for NSE generally indicates that the method 

performance is acceptable. The value is less than 0 indicates that the method performance is insufficient.  

 

KGE is originally developed to compare the modelled and observed time series.  KGE is a model evaluation criterion that 

can be differentiated in the contribution of mean, variance and correlation to model performance.  KGE range from −∞ to 1. 

KGE = 1, indicating excellent agreement between simulations and observations. The KGE score for mean flow comparison 

in hydrological models is KGE ≈−0.41. The closer the KGE value is to 1 in performance measurement, the more accurate the 

model will be. 
 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑐𝑎𝑙

𝜎𝑜𝑏𝑠
− 1)

2
+ (

𝜇𝑐𝑎𝑙

𝜇𝑜𝑏𝑠
− 1)

2
     (12) 

 

Where; 𝛼 =
𝜎𝑐𝑎𝑙

𝜎𝑜𝑏𝑠
,  𝛽 =

𝜇𝑐𝑎𝑙

𝜇𝑜𝑏𝑠
  and where (𝜇𝑐𝑎𝑙 , 𝜎𝑐𝑎𝑙) and (𝜇𝑜𝑏𝑠, 𝜎𝑜𝑏𝑠) are the mean and standard deviation of estimation and 

observation. KGE calculates the Euclidean distance (ED) of the three components from the ideal point. This ideal point avoids 

underestimation of variability and enables comparison of the term bias across monthly. Like NSE, KGE=1 indicated perfect 

connection between estimations and observations. 
 

R2 measures the strength of the linear relation between x and y pairs, and the results are expected to be between 0 and 1. The 

closer the result is to 0, the more the model diverges from reality.  The Equation 13 of R2 is given below. 
 

𝑅2 = (
(𝑛 ∑ 𝑥𝑦)− (∑ 𝑥) (∑ 𝑦) 

√𝑛 ∑ 𝑥2−(∑ 𝑥)2  √𝑛 ∑ 𝑦2−(∑ 𝑦)2
)2              (13) 



 

Mehmet Bulut                                                                                     Sakarya University Journal of Computer and Information Sciences 7 (3) 2024, 325-337 

 

332 

3. Results and Discussions 
 

In this study, a data set covering monthly hydroelectric production values of Türkiye for the period January 2007-December 

2018 was used. Using long-term monthly hydroelectric generation information, a forecasting model based on LSTM networks 

has been developed that predicts 12-month hydraulic production annually. The block diagram of the LSTM-based deep 

learning hydroelectric generation system aimed in this study is given in Figure 8. When estimating hydroelectricity 

generation, first, the generation dataset is standardized by proportioning the annual installed capacity value to the boxed 

capacity, and after training the LSTM deep network with this generation-based time series, to convert the monthly-based 

generation forecast values of the next year to the generation values in MWh, the hydroelectric generation board of that year. 

The capacity value was estimated by the regression model. To make an accurate estimation of the regression model used here 

high R2 monovalent annual capacity value of the last five years to achieve linear function it is used. 
 

 
Figure 8. Block Diagram Structure of Proposed the Forecasting System 

 

The data used in this study are taken from the public web page of Türkiye's Transmission System Operator. The results 

obtained in this study were obtained by running the LSTM algorithm under the Matlab program. Data set used in this study, 

the monthly value by Türkiye's electric transmission system operator in the country (Transmission System Operator-TSO) 

has established is provided from open sources [25-27]. This data set, starting from January 2007, includes a total of 144 

months of hydroelectric production information, covering the month of December 2018. This data set is divided into three 

parts and designed to work with three LSTM estimated models. Detailed description of the data set used in study are shown 

in Table 1. 
 

Table 1. Characteristics of the Dataset 
 

Data set Time Range/Feature Parameter 

Hydropower generation time series 

(MWh) 

01.2007 – 12.2018 

  

n*t number of months 

144 pieces 

Data time series 

72 months: 

120 months: 

144 months: 

  

01.2007 – 12.2012 

01.2007 – 12.2016 

01.2007 – 12.2018 

Xn(t), production value in t. 

month of n. year 

Installed Capacity (MW) 2007 - 2018 Annually: 12 pieces 

 

In order to find the best LSTM model, LSTM models with different number of layers were used on data with different lengths 

of time intervals. The effect of the number of layers on the estimation of the model was measured by choosing the number 

of layers starting from 25 and increasing up to 400. In the estimation system, three different data with monthly production 

values as 6 years, 10 years and 12 years were used. In the data sets used, 72 data points for 6 years, 120 data points for 10 

years data set and 144 data points for 12 years data set were used. In these data sets, 1 year of data is reserved for validation. 

In the remaining data set, the 1-year data set was used for testing and the remaining data was used for training. These data 

are given in Table 2, which shows the results for each model. Although LSTM models use the same estimation system, they 

differ from each other according to the data set used for training. Accordingly, the LSTM-1 model was trained using a 72-

month training set, the LSTM-2 model using a 10-month training set, and the LSTM-3 model using a 12-month training set. 

For all LSTM models, versions consisting of 25, 50, 100, 200 and 400 layers were used and results were obtained. In the 

study, the graphs of the estimation results with the number of layers that give the best result out of the estimation results 

obtained for the LSTM estimation models with 6, 10 and 12 year production time series in the estimation system are given. 

LSTM networks with 25, 50, 100, 200 and 400 hidden layers were used in 3 different models, each of which was operated 

with monthly production data of 72 months, 120 months and 144 months.  An LSTM layer includes an RNN layer that learns 

the long-term dependencies between the time steps in the time series and the sequence data.  
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As the first LSTM-1 Model; covering the year 2007-2012 and 72 monthly time series of hydroelectric production was 

discussed.  According to the results obtained from the LSTM-1 model and given in Table 2, the model obtained using the 

400-layer long-short-term memory structure gave the best results and is presented in Figure 9. 
 

 

 
 

Figure 9. Forecast Results, Error Graph and RMSE Values of 400 Layers Using 72-Month Production Data Series 
 

As the second LSTM-2 Model; the 120-month hydroelectric generation time series covering the years 2007-2016 

is discussed. According to the results obtained from the LSTM-2 model and given in Table 2, the model obtained using the 

400-layer long-short-term memory structure gave the best results and is presented in Figure 10. 
 

 

 
Figure 10. Forecast Results, Error Graph and RMSE Values of 400 Layers Using 120-Month Production Data Series 
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As the third LSTM-3 Model; the 144-month hydroelectric generation time series covering the years 2007-2018 is discussed. 

According to the results obtained from the LSTM-3 model and given in Table 2, the model obtained using the 200-layer long-

short-term memory structure gave the best results and is presented in Figure 11. 
 

 

 
Figure 11. Forecast Results, Error Graph and RMSE Values of 200 Layers Using 144-Month Production Data Series 

 

When the performance values and model efficiency of these models developed to estimate hydraulic production are evaluated; 

according to the results obtained in Table 2, which includes the RMSE and MAP values of the results obtained in the study; 

It is seen that the 200-layer LSTM-3 model, which includes 12 years of hydroelectric time data and 144 data points on a 

monthly basis, is the most predictive model with an annual RMSE of 32.4245 and an annual MAPE of 0.1603. Looking at 

the results in the Table 2, it is seen that the number of layers of the model with the best estimate for each LSTM model is 

close to each other. When 400 layers were used for LSTM-1 and LSTM-2, more suitable results were obtained for the 

prediction values compared to the others. However, the LSTM-3 model, which gave the best results, was found to have 200 

layers. RMSE=32.4245 and MAPE=16.03% values and 200-layer LSTM model trained with 12-year data with 144 monthly 

data points containing hydroelectric generation information was obtained as the highest model, and the performance values 

of the model showed that it was the correct forecasting model. The overall efficiency parameters of the found LSTM model 

were checked with NSE=0.5398 and KGE=0.8413 values, the performance of the method was found to be a high-accuracy 

model within acceptable limits and with the correlation value of R2=0.9035 to be very close to reality. The results showed 

that the LSTM based forecasting model can be used as an acceptable hydropower generation forecasting model. 
 

  
Figure 12. Results of K-Fold Validation for Best LSTM Model, which is 200 Layers Using 144-Month Production Data 

Series 
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The k-fold cross-validation method separates the data into equal parts according to the specified k number and 

ensures that each part is used for both training and testing, thus minimizing deviations and errors caused by 

scattering and fragmentation. The method was applied for the 200-layer LSTM model using a 144-month data 

set with the best performance and efficiency values. Statistical validation was made to analyze the predictions of 

LSTM, which was chosen as the most successful model for the results obtained, the data set was divided into 6 

parts, 5 parts for training and one set for testing. The result obtained to show the performance of the model is 

shown in Figure 12 and it is seen that the selected model produces a value suitable for the prediction. 
 

Table 2. Model Efficiency Metrics for Epoch Number=500 

Model 

No 

Time 

Interval 

(months) 

Training 

Part 

(months) 

Testing 

Part 

(months) 

Layer 

Number 

Model Evaluation 

 

Efficiency of Model 

 

RMSE 
MAPE 

(%) 
NSE KGE R2 

LSTM-1 

   25 57.7255 0.2265 0.3470 0.3350 0.7203 

   50 70.0400 0.2450 0.0387 0.3407 0.5704 

72  60  12  100 58.6001 0.2025 0.3271 0.4170 0.6689 
   200 52.3823 0.2124 0.4623 0.4041 0.7448 
   400 47.7535 0.1919 0.5531 0.5197 0.7944 

LSTM-2 

   25 72.2326 0.3422 -1.9366 0.5662 0.8679 

   50 69.2135 0.3261 -1.6963 0.6709 0.8819 

120 108  12 100 68.4791 0.3108 -1.6394 0.7124 0.8062 
   200 75.8111 0.3447 -2.2348 0.6012 0.8174 
   400 66.2808 0.3031    -1.4726     0.7141     0.8321 

LSTM-3 

   25 47.1694     0.2762     0.0260     0.7445     0.8368 

   50 43.5890     0.2669     0.1683     0.5146        0.6305 

144 132  12 100 47.0654     0.2905     0.0303     0.7782      0.8367 
   200 32.4245     0.1603     0.5398     0.8413      0.9035 
   400 36.8064     0.2298     0.4070     0.6516      0.8938 

 

RMSE) and MAPE metrics were used to analyze the performance of three learning algorithms based on 72-month, 120-

month and 144-month generation hydroelectric generation data used in the study. The best prediction was obtained in the 

200-layer LSTM model using 144 months (12 years) hydroelectric generation time data with the lowest MAPE percentage 

and lowest RMSE value. The NSE, KGE values of this model were higher than 0.5, close to the ideal 1 value, and the 

coefficient of correlation value (R2) was found to be satisfactory with a value of 0.9035 in terms of estimation efficiency.  

 

The more data available, the more accurate the predictions are, the more accurate the results are demonstrated here. However, 

if a similar study is conducted on a larger training set covering longer years, it is predicted that the algorithms used for the 

proposed estimation system will yield better results in their performance. 
 

4. Conclusions 

As a result of global warming, increasing droughts and decreasing rainfall directly affect hydroelectric production, water 

management strategies come to the fore in order to use water more effectively in dams, and it is necessary to ensure the 

sustainability of hydroelectric energy. Hydroelectric production is a process that is constantly changing over time and is 

changing with changing global warming. LSTMs are naturally designed to work with time series data, allowing them to better 

understand how data changes over time and more accurately predict future values. It was preferred in this study for 

hydropower forecasting due to its features such as capturing long-term dependencies and being robust to noise. 

 

Electricity production from renewable energy sources depends mainly on meteorological conditions such as temperature, 

humidity, wind speed and rainfall in the geography where the facility is located. Therefore, due to the intermittent nature of 

renewable resources, hydroelectricity production depends on the amount of rainfall and the amount of incoming water, and 

due to the fluctuating nature of the production, it is important to estimate the hydroelectricity production to be provided to 

the electricity grid. As in many countries in the world, electricity generation from hydroelectric sources in Turkey is among 

the important renewable energy sources, and at times approximately 30% of the country's electricity production is provided 

by hydropower plants. In this sense, it is evaluated that the deep learning-based models proposed in this article will contribute 

to the studies on production estimation of hydroelectric power plants, which have an important share in our country's 

electricity production.  
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This study aims to choose the best LSTM for energy estimation, its performance in the overall model structure of LSTM is 

analyzed. For this, LSTM models with different training data sets and different number of layers are designed. The 

performances of the LSTM based on these criteria were given comparatively on a table and the model with the best result 

was tried to be determined. This study focuses on the potential of using deep learning LSTM to forecast annual hydroelectric 

power demand on monthly basis. For this, an estimation system based on annual hydroelectricity installed capacity 

development with monthly hydroelectricity production time data has been proposed. The dataset used in this study was 

divided into three parts 6, 10, and 12 years, estimation was conducted with three different LSTM models and the effect of 

the dataset lengths on the prediction was tried to be observed. Thus, three different LSTM models were created with datasets 

with separate time intervals and predictions were made. А the acceptability level of the dataset used to train the model was 

investigated to obtain satisfactory prediction results, and it was aimed to observe the short, medium and long-term prediction 

performance of the production dataset. According to the study, the results of the research show that LSTM provides a robust 

architecture for the prediction of hydropower production in medium or long-term forecasts such as at least 120 months and 

144 months. It is observed that the LSTM network-based forecasting system was successful within the acceptance limits by 

using the time series data of hydroelectric generation and the installed power values. 
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