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ABSTRACT 
Musical instrument identification (MII) research has been studied as a subfield of the Music Information 

Retrieval (MIR) field. Conventional MII models are developed based on hierarchical models representing 
musical instrument families. However, for MII models to be used in the field of music production, they should 

be developed based on the arrangement-based functions of instruments in musical styles rather than these 

hierarchical models. This study investigates how the performance of machine learning based classification 

algorithms for Guitar, Bass guitar and Drum classes changes with different feature selection algorithms, 

considering a popular music production scenario. To determine the effect of feature statistics on model 

performance, Minimum Redundancy Maximum Relevance (mRMR), Chi-sqaure (Chi2), ReliefF, Analysis of 
Variance (ANOVA) and Kruskal Wallis feature selection algorithms were used. In the end, the neural network 

algorithm with wide hyperparameters (WNN) achieved the best classification accuracy (91.4%) when using 

the first 20 statistics suggested by the mRMR and ReliefF feature selection algorithms. 
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1. Introduction 
 

MII studies emerged as a combination of Audio Content Analysis (ACA) and machine learning methodologies. ACA is an 

essential part of the MIR research field and uses many approaches to attain useful audio signal information. Interpretations 

of the acquired information allow higher-level descriptions for the audio by machine learning algorithms. Besides its 

various uses, from speech recognition to medical signal analysis, ACA has a higher potential in music creation and 

production, using a combination of machine learning techniques. In that manner, the Intelligent Music Production (IMP) 

research field is a special implementation of ACA, MIR, and Digital Signal Processing (DSP) techniques for developing 

automatic or assistive solutions for any specific tasks in music production. This study aims to investigate the most effective 

audio features for musical instrument identification in the context of music production by supervised machine learning 

algorithms. 
 

MII studies also known as musical instrument recognition studies back in the 90s. Instrument identification from audio is 

described as the biggest challenge in the MIR field [1], and even today, this challenge stays current due to the potential 

benefits of MII in streaming services [2]. The identification scenario depends on the source types whether they consist of 

single (monophonic) or multiple performances (polyphonic) in the same recording. Early works started with the 

investigation of single-source identification problems and their solutions [3], [4], [5], [6], [7], [8]. On the other hand, MII of 

polyphonic audio is a more difficult task than single-sourced audio. During the last decade, many studies have focused on 

identifying instruments from mixed audio sources [9]. Kitahara et al. pointed out three problems (feature variations in 

sound mixtures, pitch dependency, and musical context) of MII when polyphonic music [10].  
 

Having diverse audio data is a requirement in polyphonic MII tasks. Commercial expectations and technological 

improvements from multimedia systems projected by the MPEG group and ISO/IEC 15938 became the standard in which 

content descriptions for audio and other multimedia formats take place [11]. The perceptual features in this standard were 

also used to create descriptions of instrumental sounds [17]. Peeters [18] listed the audio features categories as temporal 

shape, temporal feature, energy features, spectral shape features, harmonic features, and perceptual features. Audio features 
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have been tested in different instrument recognition scenarios [19]. There are some data sets available. Humphrey et al. 

compared some available datasets for instrument identification [20]. Yücel and Özdemir [21] proposed an audio loop-based 

dataset regarding the music production perspective. To attain larger datasets, data augmentation may also be another 

alternative, which Kratimenos et al. [22] referred to for polyphonic MII tasks. Blaszke and Kostek [23] provided a 

comprehensive literature summary of ML methods and their results in MII.  
 

Audio features are computational processes to attain temporal and timbral information from raw audio signals. Feature 

extraction refers to acquiring information by mathematical calculations in a short time window. The time window is 

typically between 2-10 msec durations, and computational results in that specific time duration are described as low-level 

features (LLF) or descriptors. Temporal, spectral, and statistical features are the three main audio feature categories [12]. 

Temporal features are calculated directly from the time-domain, spectral features require Fourier transform (STFT) of the 

signal and statistical features are derived from LLF in longer time frames. Temporal features also known as time-domain 

features are zero crossing rate (ZCR), root mean square (RMS), energy, envelope related calculations (attack, decay). 

Spectral features are also described as frequency domain features, and some of them are centroid, bandwidth, contrast, 

flatness, roll-off, and MFCC (Mel-frequency cepstrum coefficients) [13]. Detailed literature about audio features has been 

investigated in many studies[14], [15]. Mid-level and high-level descriptors are statistical features derived from LLF and 

extensively used to attain musical information, such as tempo, rhythm, genre, and mood [16]. 
 

Since extensive audio features are the basis for traditional ML applications in music, the dimensionality of feature vectors 

gets bigger. The bigger dimension causes an over-fitting problem for model predictions. This is mentioned as the curse of 

dimensionality in literature [17]. Audio features are fundamental components of ML-based solutions for musical 

applications. Performance of combined audio features in musical similarity studies [18], most effective feature 

combinations for musical classification [19], efficiency dependence of different audio features in music emotion 

recognition tasks [20], feature combinations for emotion (considering arousal and valence) recognition in music recordings 

[21] and feature selection in music genre classification tasks [22] are some examples for investigation of features 

effectiveness in different MIR sub fields. In musical instrument classification, Liu and Wan [23] investigated 58 features of 

data extracted from various audio recordings, achieving %93 of classification accuracy after 19 features. Gulhane et al. 

stated that MFCC 1, spectral roll-off and spectral centroid can be enough for instrument identification [24]. A higher 

accuracy rate was obtained with MFCC for K-NN classifiers and timbral descriptors (features) when the classification 

algorithm is Binary Tree [25]. Although some studies focus on deep learning methods directly from raw audio [26] [27], 

performance estimation of temporal and spectral audio features is worth investigating.  
 

2. Methodology 
 

2.1. Audio Dataset 
 

Audio loops and single-hit samples are frequently used in musical materials during music creation in various mainstream 

genres such as Electronic/Dance, Pop, Rock etc. The loops are short musical sound recordings categorized by metadata such 

as tempo, musical tone, and source type. Musicians often use audio loops when developing and refining their musical ideas 

from scratch. It is therefore useful to use audio loops to create the audio datasets needed to develop AI-based models to solve 

various problems in music production scenarios. Modern DAWs (Digital audio workstations) provide music creators with 

many audio loops and sample libraries. The dataset for this study was created with repetitive and single beat audio files that 

come with Logic Pro, a popular DAW.  

In this study, machine learning models are developed considering the monaural source classification approach. The recordings 

were organized into three instrument family groups as Drums, Basses, and Guitars considering the basic production elements 

in popular music, thus presenting class names for the dataset. All audio files were checked one by one to ensure that they 

were appropriate to the instrument family wherein each was placed. The Drums, Basses, and Guitars classes have 731, 406, 

985 audio files respectively. The duration of these files varies from 1 second to several seconds. 
 

2.2. Audio Preprocessing 
 

Even though audio loops and samples generally consist of well-edited files, preprocessing is required to prepare them before 

the execution of audio feature extraction code. The preprocessing may contain one or more tasks including shorten longer 

files, DC removal, filtering (low-pass, high-pass, band-pass), pre-emphasis, sampling rate conversion, mono-to-stereo 

conversion, normalization. In this work, some audio files having longer sustaining parts are redundant, therefore they had 

been shortened where the points that their signal levels drop drastically. Another preprocessing implementation was stereo-

to-mono conversion.  
 

2.3. Audio Features and Extraction  
 

For LLF extraction, in this study the preferred time window time and step duration are 4 msec and 2 msec, respectively. The 

calculated audio features are ZCR, RMS, spectral centroid, spectral bandwidth, spectral contrast, spectral flatness, spectral 

roll-off, and MFCC (20 bins) (Table 1). Due to diverse file durations, the mean, standard deviation (std), median, and variance 
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(var) of the features were calculated for each audio. As a result, a 2122x108 dataset emerged. Since maximum and minimum 

value ranges differ for different features, data were normalized between 0-1. 
 

Table 1. The Calculated Audio Features and Statistics. 

Audio Features Statistics 

Zero crossing rate 

Root mean square 

Spectral centroid 

Spectral bandwidth 

Spectral contrast 

Spectral flatness 

Spectral roll-off 

MFCC (20 bins) 

Mean 

Standard deviation (std) 

Median 

Variance (var) 

 

Zero crossing rate (ZCR): This feature calculates how often a signal polarity changes from positive to negative or vice 

versa. In general, for a signal with simple harmonic content, such as a sine, ZCR increases as the frequency increases. On the 

other hand, audio signals with higher harmonic content or noise-like audio signals show higher ZCR values. 
 

Root mean square (RMS): This feature allows the overall energy level of the audio signal to be observed by measuring the 

average intensity of the sound in each time window. 
 

Spectral centroid: Spectral centroid is a measure that represents the center of mass of the frequency distribution of a sound 

signal. This feature helps to determine which frequencies the spectral components of a sound concentrate around. The spectral 

centroid provides information about the overall tonal characteristics of the sound. For example, if the spectral centroid of a 

music piece is close to higher frequencies, it indicates that the piece has brighter content. 
 

Spectral bandwidth: Spectral bandwidth is a crucial feature in audio processing that describes the range of frequencies 

present in a sound signal. Specifically, it refers to the width of a frequency range within which most of the signal's energy is 

concentrated. A sound with a narrow bandwidth would have most of its energy concentrated within a small range of 

frequencies, like a pure tone. On the other hand, a sound with a wide bandwidth would have energy spread across a broader 

range of frequencies, like white noise. 
 

Spectral Contrast: Spectral contrast computes the energy difference between adjacent frequency bands. The computation is 

basically a comparison of higher energy regions (peaks) to that of lower energy regions (valleys) within the spectrum. This 

feature is used in audio signal processing to characterize the difference in energy levels between different frequency bands 

within an audio signal's spectrum. It measures how pronounced the peaks and valleys are within the frequency spectrum. 
 

Spectral Flatness: This audio feature (known as Wiener entropy) is a metric employed in audio signal analysis to quantify 

the relative distribution of energy across the frequency spectrum of a signal. It serves as an indicator of the signal's tonal 

versus noisy characteristics. Spectral flatness is calculated as the ratio between the geometric mean and the arithmetic 

mean of the power spectrum. A spectral flatness value closer to 1 indicates a relatively even energy distribution across the 

frequency spectrum, indicative of tonal or harmonic sounds. Conversely, values closer to 0 signify a more peaked distribution, 

suggesting a dominance of noise or non-harmonic components in the signal. 

 

Spectral roll-off: This feature is defined as the frequency below which a specified percentage of the total spectral energy of 

a signal is contained. Typically, this percentage is set to 85%, but other values can be used depending on the application. The 

spectral roll-off point effectively separates the lower energy part of the spectrum from the higher energy part, providing 

insights into the signal's frequency distribution. It is particularly useful for distinguishing between harmonic and non-

harmonic content in audio signals. 
 

MFCC: Mel-Frequency Cepstral Coefficient (MFCC) is extensively utilized in speech recognition and musical classification. 

The frequency components derived from the STFT calculation are transformed using a non-linear Mel frequency scale and 

filtered into triangular frequency bands (bins), typically around 20. This process yields a concise representation of the spectral 

features of an audio signal, which closely resembles the human auditory system compared to raw spectral features. 
 

2.4. ML Algorithms 
 

This research was conducted using the Classification Learner App from Matlab version 2022a. Thus, this study was restricted 

to the ML algorithms provided by the software. Those algorithms are Decision Tree, Discriminant Analysis, Naïve Bayes, 

Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Ensemble and Neural Network with predefined kernel settings. 
 

2.4.1. Decision Tree 
 

The Decision Tree is a tree-like model where nodes represent tests on features (attributes), edges represent outcomes of these 

tests, and leaves represent the final decision or prediction. The root node is the top node representing the entire dataset, which 

is split into subsets based on the most significant feature. Splitting is the process of dividing a node into two or more sub-
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nodes to improve the homogeneity of the target variable within the sub-nodes. Decision nodes split into further sub-nodes, 

while leaf or terminal nodes do not split further and represent the final output. Each branch or sub-tree is a subsection of the 

entire tree. Decision trees offer several advantages, including interpretability, ease of visualization, and being non-parametric, 

making no assumptions about the data distribution. They also provide insights into feature importance. However, they have 

disadvantages, such as being prone to overfitting, especially with noisy data, and instability, where small changes in the data 

can result in different trees. Despite these drawbacks, decision trees are widely used in medical diagnosis, spam detection, 

customer segmentation, financial forecasting, pricing models, and risk assessment. They also serve as the foundation for more 

complex ensemble methods like Random Forests and Gradient Boosting Machines, which enhance predictive performance 

and mitigate some of the algorithm's limitations [28] [29]. 
 

2.4.2. Discriminant Analysis 
 

Discriminant Analysis is a supervised machine learning technique primarily used for classification tasks. Its goal is to model 

the differences between classes by identifying the best combination of features that separates them. The algorithm prioritizes 

the probabilities of each class based on the training data. The algorithm then calculates these mean and covariance matrices 

according to two main types of approaches: Linear Discriminant Analysis (LDA), where these matrices are distributed across 

all classes, or Quadratic Discriminant Analysis (QDA), where these matrices are calculated separately for each class. Finally, 

for a given input, the algorithm calculates the value of the discriminant function for each class and identifies the class with 

the highest discriminant score [30]. 
 

2.4.3. Support Vector Machine 
 

SVM is a prevalent supervised ML model. The model's reputation comes from its robustness and versatility, particularly its 

capability to discriminate high-dimensional spaces. The principle of the algorithm is to find the best boundary that separates 

different classes. This boundary tends to be a hyperplane where the dimensionality increases, especially in nonlinear 

conditions. The Support Vectors are the closest data points to hyperplanes influencing their position and orientation. The 

margin is a term that describes the distance between the hyperplane and the nearest support vectors from either class. SVM 

aims to maximize this margin to ensure the best separation between classes. This model uses different kernels to create higher 

dimensional space to separate classes. Common kernels include linear, polynomial, radial basis function (RBF), and sigmoid 

[31]. 
 

2.4.4. K-Nearest Neighbor 
 

KNN is another popular supervised ML algorithm for classification and regression tasks. This algorithm discriminates data 

by measuring the distance between the instances. Common distance metrics include Euclidean distance, Manhattan distance, 

and Minkowski distance. The “k” symbolizes the closest training examples (neighbors) in the feature space for given data. 

The smaller k may indicate higher data noise and overfitting, yet the larger one causes underfitting. The algorithm consists 

of four main steps; first, it holds the instances from training data, then calculates distances between training and testing 

instances and finds the parameter “k” for each instance [32]. This algorithm has been applied in many tasks in medical 

applications, such as tuberculosis classification using x-ray images [33], heart disease determination [34], engineering; 

localization indoors [35], agricultural studies [36], music and speech classification [37], music genre classification [38].  
 

2.4.5. Ensemble 
 

Ensemble algorithms are conceptualized by combining multiple ML models to improve overall performance. There are 

several types of ensemble methods; the most common are bagging (Random Forest), boosting (AdaBoosting, Gradient 

Boosting), and stacking (Base Learners, Meta-Learner) [39]. The bagging technique combines statistical methods called 

bootstrapping, where random sampling (equal-sized subsets) from the training data is taken, and the aggregation method 

allows the regeneration of the training result of the whole model with the results obtained from the training data. Random 

forest is a featured bagging type algorithm based on decision trees [40]. The AdaBoost algorithm was proposed by Freund 

and Schapire to enhance previous boasting algorithms [41]. This algorithm transforms weak learners into strong learners, 

even without prior accurate information on the weak hypotheses. This method improved the implementation of various 

multiclass classification and regression problems [42]. The Gradient Boosting method proposed by Friedman function 

estimation/approximation is a numerical optimization problem in function space. It generalizes boosting by using gradient 

descent techniques to optimize any fitting criterion, not just for binary classification but also for regression and multiclass 

classification problems. Specific algorithms for least-squares, least absolute deviation, Huber-M loss functions for regression, 

and multiclass logistic likelihood for classification are presented, with a special focus on using regression trees as the base 

learners. This approach enhances robustness, interpretability, and performance, especially for handling less-than-clean data 

[43]. 
 

2.4.6. Neural Network 
 

Neural networks are a category of machine learning architectures that draw inspiration from the configuration and operation 

of the human brain. Neural networks are composed of interconnected layers of neurons that analyze input data to generate an 

output. These networks provide a great degree of adaptability and can represent intricate connections within data, rendering 
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them appropriate for a diverse array of tasks including classification, regression, and pattern recognition. Neurons, the 

fundamental components of a neural network, receive input, do a weighted sum, and then transmit the outcome through an 

activation function. Neural networks consist of layers, with the input layer receiving the input data, hidden layers processing 

the inputs from the previous layer, and the output layer generating the final prediction. Activation functions such as sigmoid, 

tanh, and ReLU (Rectified Linear Unit) provide non-linear behavior in the network, allowing it to acquire knowledge of 

intricate patterns. Training refers to improving the weights and biases of a network using methods such as backpropagation 

and gradient descent [44].Different hyperparameters may be preferred during the building of neural network-based ML 

models. The version of Matlab that we used in this study provides narrow, medium, wide, bi-layered, and tri-layered 

hyperparameters. 
 

A narrow neural network has fewer neurons in its layers, making it simpler and faster to train with lower computational 

requirements. However, narrow networks may not capture complex patterns as effectively as wider networks and are suitable 

for simpler tasks or when computational resources are limited [45]. A medium neural network strikes a balance between 

complexity and computational efficiency, with a moderate number of neurons in its layers. This configuration provides a 

good trade-off between capturing patterns and avoiding overfitting, making it commonly used for a wide range of tasks, 

including classification and regression problems [46]. A bi-layered neural network features two hidden layers, allowing it to 

model more complex patterns than single-layer networks. Although the complexity of training increases, it remains 

manageable. Bi-layered networks are suitable for tasks where a single hidden layer is insufficient but additional layers do not 

significantly improve performance. In contrast, a tri-layered neural network has three hidden layers and can learn even more 

complex patterns than bi-layered networks. While this configuration incurs higher computational costs and a greater risk of 

overfitting, it is used in more complex tasks where deeper representations are needed, such as deep learning applications in 

image and speech recognition [47].  

The wide neural network (thereafter referred to as WNN) is characterized by having many neurons in each layer. This type 

of network can capture more complex patterns in the data due to its higher capacity but requires more computational resources 

and is prone to overfitting if not regularized properly. WNNs are used in scenarios where the dataset is large and complex, 

such as image recognition and natural language processing [48]. The principle of WNN has the number of neurons in each 

layer, as opposed to the depth, which refers to the number of layers in the network. In the context of wide neural networks, 

the emphasis is on increasing the number of neurons per layer rather than stacking many layers allowing for more complex 

representations of the input data. WNN uses the Tangent type kernel method for the model creation. Advantages of the model 

are dealing with more complex data structures providing better representation of the input data, consistency in classification 

stabile training phase, connections to kernel methods and effective interpolation of training data [49]. 
 

2.5. Feature Selection Algorithms 
 

Generally, most datasets consist of high dimensional features that do not have the same importance to create distinction about 

data. Therefore, feature selection is an approach to determining the most related features to represent data. Guyon and 

Elisseeff [27] stated the potential benefits of feature selection. In this study, five feature selection algorithms, mRMR 

(Maximum Relevance and Minimum Redundancy), Chi2, ReliefF, ANOVA, and Kruskal Wallis, were examined.  
 

2.5.1. mRMR 
 

The mRMR is considered a robust filtering method and was initially developed for the classification of DNA microarray 

data. Some implementations of the method are anomaly detection, eye movement analysis, gender classification, and analysis 

of satellite images [28]. This method aims to determine a subset of features that are highly important for a specific job while 

minimizing redundancy among them. Relevance measures the importance of each feature with respect to the target variable, 

often using mutual information. Redundancy measures the similarity among the features, again often using mutual 

information. Features are selected iteratively by adding the one that maximizes the difference between relevance and 

redundancy. Various research has emphasized the benefits of the mRMR algorithm. Tang et al. highlighted that mRMR is 

recognized for its rapid computation speed and resilience, as it automatically identifies essential characteristics by considering 

maximum correlation and lowest redundancy criteria [50]. In addition, Alshamlan et al. examined the efficacy of integrating 

mRMR with genetic algorithms and particle swarm optimization algorithms for gene selection in cancer classification [51]. 

Their study showcased the adaptability of mRMR in improving classification tasks. 
 

2.5.2. Chi-Square 
 

The Chi2 (Chi-Square) is a two phased x2 statistical method where data discretization occurs [52]. This method examines if 

there is a significant connection between category variables and the target variable.  It evaluates whether the observed 

frequency distribution of a feature differs from the expected distribution. To perform feature selection using the Chi-Square 

statistic, start by calculating the Chi-Square statistic for each feature, which measures the discrepancy between the observed 

and expected frequencies. This involves creating a contingency table for each feature with respect to the target variable and 

computing the Chi-Square value for each table. Next, rank the features based on their Chi-Square statistics in descending 

order, highlighting those with the most significant discrepancies. Finally, select the top-ranked features based on a predefined 

threshold or the desired number of features. This selection process ensures that the most informative features are retained for 

further analysis or model building. Chi2 feature selection algorithm has been widely used in various domains such as 
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computer security, sentiment analysis, malware detection, and health management. Studies have shown that the Chi2 

algorithm effectively evaluates the dependency level of feature sets on class labels [53]. It has been used with other techniques 

like TFIDF for sentiment analysis [54], and Multinomial Naïve Bayes for question classification [55]. Additionally, the 

algorithm has been applied in feature selection for audio-related tasks, such as emotion regulation music recommendation 

Gong et al. [56] and malware detection systems [57].  
 

2.5.3. ReliefF 
 

ReliefF was originally developed by Kira and Rendell [58]. This algorithm can handle multi-class problems and is robust to 

noisy and incomplete data. It estimates the quality of features by considering the difference between feature values of nearest 

neighbors from the same and different classes. This feature selection algorithm basically searches two nearest hit and miss 

neighbors in an instance. The algorithm starts the selection process by setting all the feature weights to zeros. Afterward, it 

searches for nearest neighbors from the same class (hits) and different classes (misses) of instances that random samples from 

the dataset. The algorithm updates the feature weights in each process based on the difference between the sampled instance 

and its neighbors. Consequently, the features are selected according to their weights. The ReliefF algorithm, including its 

variations like I-ReliefF and SURF, has shown efficiency in estimating feature quality, especially in scenarios with strong 

dependencies among features [59], [60], [61]. It has been successfully applied in diverse fields such as biology, medicine, 

and computer science, showcasing its versatility and effectiveness [62], [63], [64]. ReliefF has also been combined with other 

techniques like Random Forest and Support Vector Machines to enhance classification models and improve feature subset 

selection [62]. 
 

2.5.4. ANOVA 
 

The ANOVA (Analysis of Variance) is useful to check a hypothesis state whether it is null or not. The process begins by 

calculating the F-statistic for each feature, which measures the variance ratio between groups to the variance within groups. 

This helps identify features that contribute significantly to the variance in the target variable. Next, rank the features based 

on their F-statistic, prioritizing those with higher values. Finally, select the top-ranked features based on a predefined 

threshold or the desired number of features, ensuring that the most influential features are included in the model. ANOVA is 

utilized to reduce computations and time complexity while enhancing accuracy by overcoming the curse of dimensionality 

[65]. This method is widely used in many fields such as agriculture, biology [66], [67], medical research [68], [69], and 

engineering [70], [71].  
 

2.5.5. Kruskal Wallis 
 

The Kruskal Wallis is a nonparametric test that determines if all k populations are identical or if at least one of the populations 

tends to give observations different from those of other populations. The Kruskal Wallis test is a non-parametric alternative 

to ANOVA, designed to compare the medians of multiple groups without assuming data normality, making it suitable for 

ordinal or non-normal continuous data. The process begins by ranking all data points across groups. Next, calculate the H-

statistic, which measures the discrepancy between the ranks of the groups. After calculating the H-statistic for each feature, 

rank the features based on their H-statistic values. Finally, select the top-ranked features based on a predefined threshold or 

the desired number of features. The Kruskal Wallis test offers several advantages, including not assuming data normality, 

suitability for ordinal or non-normal continuous data, and robustness to outliers. However, it is less powerful than ANOVA 

when the assumptions of normality and homogeneity of variances are met and are sensitive to ties in the data [72].  
 

3. Results and Discussion 
 

Model training, using a 5-fold cross-validation method, was preferred, and then the dataset was trained by 28 supervised ML 

algorithms with their default settings. Consequently, the WNN algorithm provided the best classification result at 93.2% 

before feature selection had been applied. The detailed ML model results are given in Table 2.  
 

Table 2. The Tested Supervised ML Algorithms 

Model Hyperparameter Accuracy 

Tree 

Fine 86.1% 

Medium 83.3% 

Coarse 76.0% 

Discriminant Linear 85.2% 

Naïve Bayes 
Gaussian 74.5% 

Kernel 65.6% 

SVM 

Linear 87.3% 

Quadratic 91.9% 

Cubic 92.6% 

Fine Gaussian 89.2% 

Medium Gaussian 87.4% 

Coarse Gaussian 80.9% 
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KNN 

Fine 91.3% 

Medium 87.3% 

Coarse 79.9% 

Cosine 88.0% 

Cubic 87.1% 

Weighted 90.3% 

Ensemble 

Boosted 89.1% 

Bagged Trees 91.5% 

Subspace Discriminant 84.1% 

Subspace KNN 92.6% 

RUSBoosted Trees 87.8% 

Neural 

Network 

Narrow 91.7% 

Medium 92.2% 

Wide 93.2% 

Bi-layered 90.9% 

Tri-layered 90.7% 
 

The determined top 20 audio features by mRMR, Chi2, ReliefF, ANOVA, and Kruskal Wallis algorithms are given in 

Table 3. The roll-off median has a higher grade in the list. It is also the primary feature according to mRMR and Chi2 

algorithms in this experiment. For simplicity, the word “Spectral” is omitted in Tables 3 and 4, and the band index (bin) of 

the MFCC attribute is indicated by the number next to it. 
 

Table 3. The Top 20 Audio Features Ranged by the Feature Selection Algorithms 

 mRMR Chi2 ReliefF ANOVA Kruskal Wallis 

1 Roll-off median Roll-off median Bandwidth std Roll-off mean Flatness median 

2 Contrast var ZCR median Roll-off median Roll-off median Flatness mean 

3 MFCC 11 ZCR mean Roll-off mean Centroid mean Roll-off mean 

4 Bandwidth var Centroid median Centroid mean Centroid median Roll-off median 

5 Flatness median Flatness median Centroid median ZCR mean Centroid median 

6 MFCC 14 mean Roll-off mean Bandwidth var ZCR median Centroid mean 

7 Contrast mean Centroid mean Bandwidth median Flatness mean MFCC 7 mean 

8 ZCR median Flatness mean ZCR mean Bandwidth mean MFCC 6 mean 

9 Flatness mean MFCC 6 mean Roll-off std ZCR std MFCC 8 mean 

10 MFCC 7 mean MFCC 7 mean ZCR median Flatness std Flatness var 

11 ZCR var MFCC 8 mean Bandwidth mean 
Bandwidth 

median 
Flatness std 

12 Roll-off mean ZCR std Flatness std MFCC 4 std ZCR mean 

13 MFCC 4 var ZCR var Contrast mean Flatness var MFCC 9 mean 

14 Flatness var MFCC 6 std Contrast median MFCC 7 mean ZCR median 

15 MFCC 9 mean MFCC 6 var Roll-off var MFCC 5 std MFCC 5 mean 

16 Centroid mean MFCC 2 std ZCR std MFCC 8 mean MFCC 10 mean 

17 
Bandwidth 

median 
MFCC 2 var Flatness mean MFCC 6 mean ZCR var 

18 MFCC 18 mean MFCC 5 std RMS std MFCC 3 std ZCR std 

19 MFCC 6 mean MFCC 5 var Flatness var MFCC 6 std MFCC 7 median 

20 ZCR mean MFCC 4 std RMS mean MFCC 9 mean MFCC 8 median 

 

With the dataset and the WNN classification algorithm, it was observed that the common audio features listed by the feature 

selection algorithms are roll-off mean, roll-off median, ZCR mean, ZCR median, centroid mean, and flatness mean (in Table 

4). MFCC 7 mean, flatness var, MFCC 6 mean, centroid median, and ZCR std are mutual features listed by four selection 

algorithms. Flatness median, ZCR var, MFCC 9 mean, bandwidth median, and MFCC 8 mean are common in three selection 

algorithm lists. bandwidth var, contrast mean, MFCC 6 std, MFCC 5 std, MFCC 4 std, and flatness std take place only in two 

selection lists. Eventually, 23 features are listed by only a single selection algorithm. 
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Table 4. The Top 20 Common Features and Uncommon Features Listed by the Selection Algorithm(s) 

Common Selected 

Features by the  
Audio Features Statistics 

Number of 

features 

All algorithms 
Roll-off mean, roll-off median, ZCR mean, ZCR median, 

centroid mean, flatness mean  
6 

4 algorithms 
MFCC 7 mean, flatness var, MFCC 6 mean, centroid 

median, ZCR std 
5 

3 algorithms 
Flatness median, ZCR var, MFCC 9 mean, bandwidth 

median, MFCC 8 mean 
5 

2 algorithms 
Bandwidth var, contrast mean, MFCC 6 std, MFCC 5 std, 

MFCC 4 std, flatness std 
6 

Listed only by 1 

selection algorithm 

Contrast var, MFCC 11, MFCC 14 mean, MFCC 4 var, 

MFCC 18 mean, MFCC 6 var, MFCC 2 std, MFCC 2 var, 

MFCC 5 var, bandwidth std, roll-off std, bandwidth mean, 

flatness std, contrast median, roll-off var, RMS std, RMS 

mean, MFCC 3 std, MFCC 10 mean, ZCR var, MFCC 5 

mean, MFCC 7 median, MFCC 8 median 

23 

 

Further experiments have been performed to check ML model performances with the selected features. The best 

performance rate of WNN was 93.2% with 108 audio features, and this score degrades according to different feature lists 

by the selection algorithms. In Table 5, performance changes of the WNN model are given for each algorithm’s top 20 list. 

According to the table, mRMR and ReliefF share the same performance rates at 91.4%, even though their feature list 

contents are different. The performance results are 89.3% for ANOVA, 88.4%, for Chi2 and 88.3% for Kruskal Wallis 

(Table 5). Also, the confusion matrix of the WNN model is given for each algorithm's top 20 lists in Figure 1. Figure 2 

shows the ROC curve of the WNN model for each algorithm's top 20 lists. Additionally, it was observed that the 

performance result dropped to 84.5% rate, after the ML model was trained by common features (roll-off mean, roll-off 

median, ZCR mean, ZCR median, centroid mean, flatness mean).  
 

Table 5. Classification Success Rates of WNN Algorithm with Selected the First 20 Features 

mRMR’s top 20 Chi2’s top 20 ReliefF’s top 20 ANOVA’s top 20 Kruskal Wallis’s top 20 

91.4% 88.4% 91.4% 89.3% 88.3% 
 

WNN algorithm models were created using the first 20 features selected with different feature selection methods. The 

confusion matrices created to evaluate the performance of these models using different feature selection methods are shown 

in Figure 1. When the confusion matrices are analyzed, it is observed that high accuracy rates are obtained in general, but 

the error rates on classes vary depending on the methods used.  
 

 
(a) 

 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Figure 1. Confusion Matrixes of WNN Algorithm with Selected the First 20 Features a) mRMR b) Chi2 c) ReliefF d) 

ANOVA e) Kruskal Wallis f) No Selection 
 

Figure 2 shows the ROC curves of the WNN algorithm models created with different feature selection methods. Each ROC 

curve shows the classification performance of the model in the ‘Bass’, ‘Drums’ and ‘Guitars’ classes separately. In 

particular, high AUC values were obtained in the ‘Guitars’ class, indicating that this class can be better classified than the 

others. In general, high AUC values were obtained with all feature selection methods, indicating that the classification 

performance of the models is high. When different feature selection methods are analyzed, similar to the confusion matrix, 

it is observed that the AUC values of the models created with mRMR and ReliefF methods give similar results when 

compared with the model performance using all features. 

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2. ROC Curves of WNN Algorithm with Selected the First 20 Features a) mRMR b) Chi2 c) ReliefF d) ANOVA e) 

Kruskal Wallis f) No Selection 
 

It is worth mentioning that MFCC should be interpreted as a whole feature group even if the algorithms ranked its bins 

differently. Considering the results there is no direct relationship between selected features even though some of them are 

available in more than one selection algorithm list. In this experiment, when the model performance was analyzed after the 

feature selection process, there was no significant feature statistic that could be used to achieve good classification results. 
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At that point, further investigations are required to understand how different statistics affect the classification results. 

Timbre is the fundamental parameter of how human beings discriminate sound. Thus, the effort of estimating a sound 

source strongly depends on the timbral representation of the source, yet it is hard to model only a couple of audio features. 

Therefore, strict feature selection may not be suitable for audio classification especially in MII tasks. A specific MII 

approach exemplified in this study (single-hit and monophonic resources) may not be suitable for MII models designed 

with longer and poly-sourced audio files because those types of models will diversify the requirements of audio 

preprocessing, feature sets, ML algorithm and feature selection. Another point is that the description of a sound source from 

the perspective of audio production and music creation varies broadly. The functionality of an instrument in a musical 

arrangement cannot be explained only by its organologic root but also by the intention of the musician while creating the 

music.  
 

4. Conclusion 
 

In this study, various machine learning algorithms and feature selection methods were evaluated for their effectiveness in 

musical instrument identification (MII) using monophonic and single-hit sound sources. The experiment was constrained to 

three instrument families—Drums, Basses, and Guitars—within the context of popular music production scenarios. The 

dataset consisted of 27 audio features (with MFCCs having 20 bins) and their four statistical variations. Following the training 

of the dataset with seven machine learning algorithms and their various hyperparameters, the Wide Neural Network (WNN) 

demonstrated the highest classification accuracy at 93.2%. Upon further examination with five feature selection algorithms 

(mRMR, Chi2, ReliefF, ANOVA, and Kruskal-Wallis), it was found that common features selected by these algorithms, such 

as spectral roll-off mean and median, zero-crossing rate mean and median, spectral flatness mean, and spectral centroid mean, 

played a crucial role in classification performance. Both mRMR and ReliefF achieved a performance rate of 91.4% with the 

WNN, highlighting the importance of these common features.  

However, this study also highlights several areas for future research and acknowledges its limitations. The current study 

focused on a controlled experimental setup with specific instruments and recording conditions, which may not fully represent 

the diversity of real-world music production scenarios. Future research should explore how these algorithms perform in 

different contexts, such as polyphonic recordings or real-time music production environments, to extend the applicability of 

the findings. Additionally, the limitations of traditional feature selection methods suggest that there is room for exploring 

more sophisticated techniques or integrating feature selection directly into deep learning models. Expanding the dataset to 

include a broader range of instruments, styles, and recording conditions, potentially through data augmentation, could 

enhance the generalizability of the models developed. Moreover, investigating the usability and performance of these models 

in actual music production software would provide valuable insights into their real-world applications. Finally, future studies 

could benefit from a cross-disciplinary approach, involving collaboration between experts in music production, machine 

learning, and digital signal processing, to develop more sophisticated models that can better understand and categorize 

musical instruments. 

By addressing these areas, future research can build upon the findings of this study, leading to more robust and generalizable 

models for musical instrument identification, ultimately contributing to advancements in both music technology and artificial 

intelligence. 
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