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ABSTRACT 
Specular highlights play a pivotal role in comprehending scenes within developed visual environment. 
Nevertheless, their presence can adversely affect the efficacy of solutions in various computer vision tasks. 
Current methodologies typically use Convolutional Neural Network (CNN)-based Unet architectures for 
specular highlight detection. However, CNNs exhibit limitations in capturing global contextual information, 
despite excelling in local context analysis. To utilize global context information, it is proposed a novel 
network architecture leveraging Vision Transformers (ViTs) to jointly detect and remove specular highlights 
for a given image. Developed model incorporates a multi-scale patch-based self-attention mechanism to 
effectively capture global context, alongside a CNN-based feed-forward network for local contextual cues. 
Experimental results with both quantitative and qualitative evaluations demonstrate that the proposed approach 
achieves state-of-the-art performance. 
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1. Introduction 

Specular highlights are visual phenomena that appear on smooth and shiny surfaces. They are essential in helping the 
human visual system to interpret the environment by conveying information about light sources and surface materials. 
However, these highlights pose significant challenges in computer vision tasks such as image segmentation, text detection, 
object recognition, and scene understanding. They appear as bright and intense regions in images, as shown in Figure 1,  
and can degrade the performance of computer vision algorithms. Researchers have proposed various methods to detect and 
remove specular highlights to mitigate their impact on these tasks. Additionally, detecting these regions can be useful for 
light source detection and intrinsic image decomposition [1].  

Early methods for detecting specular highlights [2] - [8] relied on the assumption that specular highlight regions contain the 
brightest pixels. These methods defined a threshold process to identify specular highlights. However, the bright pixel 
assumption does not hold for complex cases. In the context of removing specular highlights, traditional methods [9], [10], 
[11] - [14] predominantly depend on color values derived from the Dichromatic Reflection Model [2]. While previous 
highlight removal techniques have demonstrated success, they are constrained in their ability to handle large-scale removal 
tasks due to their reliance on prior information regarding material, color, or lighting conditions. 

Learning-based highlight detection and removal methods [15] - [20] leverage the convolutional neural networks (CNNs) to 
train a highlight detection or removal model on carefully curated datasets. Recent research [18], [21] has shown that joint 
highlight detection and removal models produce more effective results than single detection or removal models. The CNN-
based methods achieved effective results by leveraging the convolution operation to model local hierarchical image 
context. However, they are not well suited to model global context, which is important to model scene illumination. 

Wu et al. [21] defined a ViT-based network to remove specular highlights, incorporating global context information into 
joint detection and removal models. However, they use a CNN-based network to detect specular highlights in this joint 
model, similar to previous methods. 
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The primary purpose of this study is to address the challenges posed by specular highlights in images, which can 
significantly degrade the performance of computer vision systems by affecting tasks like object detection, segmentation, 
and recognition. To tackle this issue, a novel network architecture is proposed that jointly detects and removes specular 
highlights in a given color image. At the core of the proposed network is a modified vision transformer, which employs a 
multi-scale patch-based self-attention mechanism to reduce scale dependency. The developed approach ensures a unified 
and efficient framework using a shared transformer-based backbone for detection and removal processes. Quantitative and 
qualitative results demonstrate that the proposed model achieves state-of-the-art performance on a standard dataset for both 
tasks. Additionally, an ablation study is conducted to analyze the multi-scale patch-based attention mechanism's 
effectiveness, further validating the developed method's robustness. 

The manuscript is constructed as follows: Section 2 reviews the literature on specular highlight detection and removal. 
Section 3 provides a detailed description of the proposed method, encompassing its architectural framework, training 
protocol, and experimental configuration. Section 4 presents and critically examines the experimental results. Finally, 
Section 5 discusses the findings and potential future directions for the conclusion. 

2. Related Works 

Table 1 provides a detailed overview of significant studies on specular highlight detection and removal. It highlights the 
methods, key contributions, and tasks each work addresses. The initial approaches to highlight detection were largely based 
on color constancy models [2] - [4], which employed thresholding techniques to identify specular pixels. Incorporating the 
dark channel prior into their optimization scheme, Kim et al. [10] employed a different approach to that of Liu et al. [12], 
who estimated specular highlight reflection ratio and tuned saturation of the input image to remove highlights. Park et al. 
[5] proposed using two images in a least-squares regression scheme. These images are captured under distinct illumination 
conditions. One image was captured with specularities to be detected, while the other served as a reference, largely devoid 
of specularities, to generate a threshold map for image pixels. Building on the dichromatic reflection model [2], Meslouhi 
et al. [6] applied a specularity condition in the CIE-XYZ color space. Despite their successes, these methods were 
constrained by their reliance on specific assumptions and inability to cope with complex illumination scenarios or images 
with textured colors. 

Learning-based approaches for specular highlight detection and removal offer more generalized solutions but necessitate 
diverse and extensive datasets. Fu et al. [17] introduced a real-world highlight dataset with annotated ground-truth masks, 
covering various material categories by providing different highlight shapes and appearances. They also trained a 
convolutional neural network that is used on this dataset for specular highlight detection. However, since this dataset lacks 
ground-truth diffuse images, it is unsuitable for training models aimed at removing specular highlights. 

 

Figure 1. Specular Highlights Detection and Removal. The Proposed Model Detects and 
Remove Specular Highlights as Shown 
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Table 1. Summary of Related Works on Specular Highlight Detection and Removal. The Table Lists the Reference, 
Authors, Title, Approach, Key Contributions, Publication, and Task Categories, Including Specular Highlight Detection, 

Removal, or Both Detection and Removal 

Ref. Authors Title Task Approach Key Contributions Publication 

[29] Shen et al. 

Chromaticity-based 
separation of reflection 
components in a single 
image 

Specular 
Highlight 
Detection 

Chromaticity-based 
method 

Separates reflection 
components in single 
images using 
chromaticity 
information. 

Pattern 
Recognit., 
2008 

[14] Yamamoto et 
al. 

Efficient improvement 
method for separation of 
reflection components 
based on an energy 
function 

Specular 
Highlight 
Detection 

Energy function-based 
optimization 

A method to separate 
reflection components 
efficiently using an 
energy function. 

IEEE ICIP, 
2017 

[8] Zhang et al. 

Improving shadow 
suppression for 
illumination robust face 
recognition 

Specular 
Highlight 
Removing 

Chromaticity-based 
method 

Enhances shadow 
suppression for better 
face recognition under 
varying illumination 
conditions. 

IEEE Trans. 
Pattern Anal. 
Mach. Intell., 
2018 

[7] Li et al. 

Specular reflection 
removal for endoscopic 
image sequences with 
adaptive-RPCA 
decomposition 

Specular 
Highlight 
Removing 

Adaptive-RPCA 
decomposition 

Removal of specular 
reflections in 
endoscopic image 
sequences using 
adaptive Robust 
Principal Component 
Analysis (RPCA). 

IEEE Trans. 
Med. Imaging, 
2019 

[30] Lin et al. 
Deep multi-class 
adversarial specularity 
removal 

Specular 
Highlight 
Removing 

Convolutional Neural 
Networks 

A deep learning model 
for multi-class 
specularity removal 
with adversarial 
training. 

SCIA 2019, 
Springer 

[16] Muhammad 
et al. 

Spec-Net and Spec-
CGAN: Deep learning 
models for specularity 
removal from faces 

Specular 
Highlight 
Removing 

Convolutional Neural 
Networks 
Generative 
Adversarial Networks 

Proposes two deep 
learning models for 
removing specularity 
from facial images. 

Image Vis. 
Comput., 2020 

[17] Fu et al. 
Learning to Detect 
Specular Highlights 
from Real-world Images 

Specular 
Highlight 
Detection 

Convolutional Neural 
Networks 

Highlights detection in 
real-world images using 
a deep learning 
approach. 

ACM 
Multimedia, 
2020 

[18] Fu et al. 

A multi-task network 
for joint specular 
highlight detection and 
removal 

Joint 
Specular 
Highlight 
Detection 
and 
Removing 

Convolutional Neural 
Networks 

Joint detection and 
removal of specular 
highlights using a multi-
task network. 

IEEE/CVF 
CVPR, 2021 

[21] Wu et al. 

Joint specular highlight 
detection and removal in 
single images via Unet-
Transformer 

Joint 
Specular 
Highlight 
Detection 
and 
Removing 

Vision Transformers 

Proposes a joint 
detection and removal 
approach using a hybrid 
Unet-Transformer 
model. 

Comput. Vis. 
Media, 2023 

 
Shi et al. [23] proposed a CNN model comprised of encoder-decoder architectures to train on a large-scale object intrinsic 
database for the intrinsic image decomposition. Funke et al. [15] proposed a Generative Adversarial network (GAN)--based 
deep learning model capable of removing specular highlights from an endoscopic image. They trained this model on a 
small image patches dataset. The small patch images are extracted from the endoscopic video. Muhammad et al. [16]      
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proposed a facial specular highlight removal dataset and presented two alternative models, Spec-Net and Spec-CGAN. A 
real-world dataset with a pair of color images and ground-truth diffuse components was collected by Wu et al. [19] to train 
the specular highlights removal model. They proposed a GAN-based approach to remove specular highlights considering 
polarization theory. [20] introduced a specular highlight removal network comprising three stages in which the image is 
first decomposed into albedo, shading, and specular components. Subsequently, refinement and tone correction networks 
are employed to obtain decent specular-free images. 

Recently, joint highlight detection and removal models [18] and [21] have been proposed using a multi-task network 
trained on a large dataset with corresponding diffuse and highlight components. Fu et al. [18] proposed the SHIQ dataset, a 
new large-scale specular highlight detection and removal dataset including ground-truth diffuse and specular highlights 
components of each image sample. They also introduced a multi-task CNN-based Unet architecture trained on the SHIQ 
dataset to detect and remove specular highlights jointly. Wu et al. [21] proposed a Swin Transformer-based [24] highlight 
removal model taking input image and specular highlight mask predicted by a CNN-based Unet detection model. They 
trained both removal and detection models jointly in an end-to-end manner. While Wu et al. demonstrate the efficacy of 
vision transformers for highlight removal tasks, it is asserted that a separate detection model is unnecessary. Hence, Fu et 
al. [18] used the same architecture backbone for detection and removal. Rather than relying solely on a CNN-based 
architecture like in Fu et al., a novel joint specular highlight detection and removal model that combines both CNN and ViT 
[25] architectures is proposed to leverage local and global context information. Moreover, while vanilla ViT employs the 
same patch scale across the different heads, the proposed MsPAT operates each scale in different heads.  

3. Method 

The Dichromatic Reflection Model (DFM) [2] defines a color image as the following composition of diffuse and specular 
highlight components: 

𝐼𝐼 = 𝐷𝐷 + 𝑆𝑆 (1) 
 

The diffuse 𝐷𝐷, represents light uniformly scattered across an object's surface. In contrast, the specular highlight component 
𝑆𝑆, accounts for the concentrated reflections of light from smooth surfaces. The model follows Fu et al. [18] to jointly detect 
and remove specular highlights for a given image. More clearly, it adopted the generalized version of DFM: 

𝐼𝐼 = 𝐷𝐷 + 𝑆𝑆 × 𝑀𝑀 (2) 
 

where 𝑀𝑀 denotes the pixel-wise binary mask indicating the location of the specular highlights. The point-wise 
multiplication of 𝑆𝑆 and 𝑀𝑀 provides to restrict the specular highlight removal in the masked regions.  

Given a dataset of input RGB images 𝐼𝐼 with ground-truth 𝐷𝐷, 𝑆𝑆, and 𝑀𝑀 for each sample. Main goal is to train the proposed 
ViT-based model 𝐺𝐺  to predict �̂�𝐷, 𝑆𝑆, and �̂�𝑀 from a given single RGB image 𝐼𝐼: 

��̂�𝐷, 𝑆𝑆, �̂�𝑀� = 𝐺𝐺(𝐼𝐼) (3) 

 
where �̂�𝐷 , 𝑆𝑆, and �̂�𝑀 are predicted diffuse, specular highlights, and binary masks, respectively. 

3.1. Network Architecture 

The proposed model's overall structure is illustrated in Figure 2. The model includes an Encoder, multiple Multi-scale 
Patch Attention Transformers (MsPAT), and a Decoder. As shown in the Figure 2, an input RGB image 𝑰𝑰 ∈ 𝑹𝑹𝑯𝑯×𝑾𝑾×𝟑𝟑 with a 
height  𝑯𝑯 and width 𝑾𝑾is first passed through three convolutional blocks that reduce its spatial dimensions by half twice. 
The first convolutional block comprises a 𝟕𝟕 × 𝟕𝟕 convolution layer, batch normalization (BN), and ReLU activation layer, 
respectively.  The next two convolutional blocks consist of 𝟑𝟑 × 𝟑𝟑 convolutions with stride 𝟐𝟐, BN, and ReLU activation 
layers. Consequently, 256-dimensional feature representation 𝒇𝒇 ∈ 𝑹𝑹𝑯𝑯 𝟒𝟒⁄ ×𝑾𝑾 𝟒𝟒⁄ ×𝟐𝟐𝟐𝟐𝟐𝟐 is obtained, where the spatial dimensions 
are a quarter of the input image's dimensions. Subsequently, the feature representation is passed on to residually connected 
to multiple MsPAT modules. The transformed features 𝒇𝒇 processed by the MsPAT modules are forwarded to the decoder 
network. The decoder network comprises two blocks, each containing two 𝟒𝟒 × 𝟒𝟒 transposed convolution layers with a 
stride of 2, followed by batch normalization (BN) and ReLU activation layers. These operations double the input feature 
maps' spatial resolution, restoring them to their original dimensions.  Subsequently, the features are directed to three 
distinct prediction heads, each composed of 𝟕𝟕 × 𝟕𝟕convolutional layers. As shown in Figure 2, the predicted specular 
highlight mask highlight mask �̂�𝑴 is concatenated with the feature maps before entering the specular highlight prediction 
head. Similarly, the predicted specular highlight mask �̂�𝑴 and the specular highlight �̂�𝑺 are concatenated with the feature 
maps before passing the residual prediction head. 
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3.2. Multi-scale Patch Attention Transformer (MsPAT) 

The proposed Multi-scale Patch Attention Transformer (MsPAT) is illustrated in Figure 3. The MsPAT employs three basic 
steps: Embedding, Matching, and Attending. 

3.2.1. Embedding 

The feature maps 𝑓𝑓 ∈ 𝑅𝑅𝐻𝐻 4⁄ ×𝑊𝑊 4⁄ ×256 gathered from the encoder or previous transformer are first embedded into query 𝑄𝑄, 
key 𝐾𝐾, and value 𝑉𝑉 features 𝑄𝑄,𝐾𝐾,𝑉𝑉 ∈ 𝑅𝑅𝐻𝐻 4⁄ ×𝑊𝑊 4⁄ ×256 using 1 × 1 convolution with a stride of 1. These features are then 
decomposed into multi-scale non-overlapping patches in parallel. As a result, it is obtained 𝑐𝑐-dimensional (𝑐𝑐 = 256 𝑠𝑠⁄ ) 
patch embeddings at different scales 𝑠𝑠, (𝑞𝑞𝑖𝑖𝑠𝑠,𝑘𝑘𝑖𝑖𝑠𝑠,𝑣𝑣𝑖𝑖𝑠𝑠) ∈ 𝑅𝑅ℎ𝑠𝑠×𝑤𝑤𝑠𝑠×𝑐𝑐, where 𝑖𝑖 denotes the index of patches of height ℎ𝑠𝑠 and  
width 𝑤𝑤𝑠𝑠 in each scale. In contrast to the vanilla Vision Transformer (ViT) [24], where patches are embedded into one-
dimensional tokens, it is maintained the patch embeddings as two-dimensional. Additionally, while the vanilla ViT 
processes the same scale across different heads, the proposed MsPAT assigns each head to operate on different scales, 
enhancing its multi-scale processing capability. 

3.2.2. Matching 

In the matching step, the patch embeddings are initially flattened to the one-dimensional vector, and then patch similarities 
between query and key patches are calculated by dot product as follows:  

𝑆𝑆𝑖𝑖,𝑗𝑗𝑠𝑠 =
𝑞𝑞𝑖𝑖𝑠𝑠.𝑘𝑘𝑗𝑗𝑠𝑠

√ℎ𝑠𝑠 × 𝑤𝑤𝑠𝑠 × 𝑐𝑐
 (4) 

 

where 𝑖𝑖 and 𝑗𝑗 are indices within the 𝑁𝑁𝑠𝑠 patches at each scale (1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁𝑠𝑠), ℎ𝑠𝑠 and 𝑤𝑤𝑠𝑠 denote the height and width of the 
patch at scale 𝑠𝑠, and 𝑐𝑐 denotes the dimension of the feature embedding. Based on this similarity, the weights in the attention 
map are calculated using the expression given below: 

𝐴𝐴𝑖𝑖,𝑗𝑗𝑠𝑠 =
𝑒𝑒𝑒𝑒𝑒𝑒�𝑆𝑆𝑖𝑖,𝑗𝑗𝑠𝑠 �
∑ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑆𝑆𝑖𝑖,𝑛𝑛𝑠𝑠 �

 (5) 

 

 

3.2.3. Attending 

After the attention map 𝐴𝐴𝑖𝑖,𝑗𝑗𝑠𝑠  is calculated for each scale 𝑠𝑠 i.e. head, the output feature is obtained as the weighted 
summation of the value patches using the 𝐴𝐴𝑖𝑖,𝑗𝑗𝑠𝑠 : 

𝑓𝑓𝑖𝑖𝑠𝑠 = �𝐴𝐴𝑖𝑖,𝑗𝑗𝑠𝑠 𝑣𝑣𝑗𝑗𝑠𝑠 (6) 

 
Figure 2. Proposed Multi-scale Patch Attention Transformer Module. This Module Applies Patch-Based Attention to 
Provide Global Connectivity. It Effectively Captures Global Dependencies by Incorporating Attention Mechanisms at 

Multiple Patch Scales 
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The output feature patches 𝑓𝑓𝑖𝑖𝑠𝑠 are reshaped to 2D and then recomposed to the input feature dimensions. Lastly, the output 
features  𝑓𝑓𝑠𝑠 ∈ 𝑅𝑅𝐻𝐻 4⁄ ×𝑊𝑊 4⁄ ×𝑐𝑐 from each head are concatenated along the feature dimension: 

𝑓𝑓 = [𝑓𝑓1,𝑓𝑓2, . . . , 𝑓𝑓𝑠𝑠] (7) 
 

Lastly, the transformed feature 𝑓𝑓 ∈ 𝑅𝑅𝐻𝐻 4⁄ ×𝑊𝑊 4⁄ ×256 is given to a feed-forward network and then passed to the subsequent 
transformer block or decoder. Note that there is a residual connection from the transformer block's input before passing to 
the feed-forward network. 

As for the feed-forward network (FFN), it adopted the LocalViT [26], [27] that consists of convolutional layers of ReLU 
activation functions and squeeze-excitation (SE) module [28] to enrich the local context information in the transformer 
block. 

3.3. Loss Function 

To jointly detect and remove specular highlights, the proposed model is trained using a hybrid loss function comprising 
binary cross-entropy (BCE) loss, dice loss, and mean squared error (MSE) loss: 

𝐿𝐿 = 𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵�𝑀𝑀, �̂�𝑀� + 𝐿𝐿𝐷𝐷𝑖𝑖𝑐𝑐𝐷𝐷�𝑀𝑀, �̂�𝑀� + 𝐿𝐿𝑀𝑀𝑀𝑀𝐵𝐵𝑀𝑀 �𝑆𝑆, 𝑆𝑆� + 𝐿𝐿𝑀𝑀𝑀𝑀𝐵𝐵𝐷𝐷 �𝐷𝐷, �̂�𝐷� (8) 

The BCE loss 𝑳𝑳𝑩𝑩𝑩𝑩𝑩𝑩 and dice loss 𝑳𝑳𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 is employed for the specular highlight detection as a binary mask segmentation. The 
BCE loss is commonly used for segmentation and mask prediction for specular highlight detection. The loss function 
between the predicted value �̂�𝑴𝒑𝒑 and the actual value 𝑴𝑴𝒑𝒑 for each pixel 𝒑𝒑 in the image is the sum of the binary cross-
entropies for all pixels: 

𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵 = −��𝑀𝑀𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙��̂�𝑀𝑝𝑝� + �1 −𝑀𝑀𝑝𝑝�𝑙𝑙𝑙𝑙𝑙𝑙�1 − �̂�𝑀𝑝𝑝�� (9) 

The regions of specular highlight are relatively small compared to the non-specular regions. To alleviate the effect of this 
imbalance, it is employed Dice loss [29], which measures the overlap between the predicted binary mask and the ground 
truth mask for each pixel 𝒑𝒑: 

𝐿𝐿𝐷𝐷𝑖𝑖𝑐𝑐𝐷𝐷 = 1 −
1 + 2 × ∑𝑀𝑀𝑝𝑝 �̂�𝑀𝑝𝑝

1 + ∑�𝑀𝑀𝑝𝑝 + �̂�𝑀𝑝𝑝�
 (10) 

To provide the model to remove specular highlight, it is defined the mean squared error (MSE) loss on the ground truth 𝑺𝑺 
and predicted �̂�𝑺 specular highlights: 

𝐿𝐿𝑀𝑀𝑀𝑀𝐵𝐵𝑀𝑀 =
1
𝑁𝑁
��𝑆𝑆𝑝𝑝 − 𝑆𝑆𝑝𝑝�

2
 (11) 

Similarly, it is employed mean squared error loss for the ground truth diffuse image 𝑫𝑫 and the predicted diffuse image �̂�𝑫 to 
predict the diffuse image as follows: 

𝐿𝐿𝑀𝑀𝑀𝑀𝐵𝐵𝐷𝐷 =
1
𝑁𝑁
��𝐷𝐷𝑝𝑝 − �̂�𝐷𝑝𝑝�

2
 (12) 

4. Experiments 

4.1. Dataset and Implementation Details 

It is trained the proposed model on the SHIQ dataset [18], which includes input images and their corresponding ground-
truth binary masks 𝑀𝑀, specular highlight components 𝑆𝑆, and diffuse images 𝐷𝐷. The SHIQ dataset consists of 9825 training 
and 1000 test samples, with 200 × 200 image dimensions. It contains challenging examples of highly reflective objects 
like metal, plastic, and glass.  
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It is implemented with the proposed model network using PyTorch. The training was conducted over 60 epochs by using 
the Adam optimizer with a learning rate of 2 × 10−5, and parameter settings of 𝛽𝛽1 = 0.5 and 𝛽𝛽2 = 0.999. During training, 
random horizontal flip data augmentation was applied. 

4.2. Evaluation Metrics 

It is used accuracy (Acc) and Balanced Error Rate (BER) metrics to evaluate the specular highlight detection results by 
following the previous works. Acc and BER can be defined as follows: 

𝐴𝐴𝑐𝑐𝑐𝑐 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁
 (13) 

 

𝐵𝐵𝐵𝐵𝑅𝑅 =
1
2
��

𝐹𝐹𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

� + �
𝐹𝐹𝑁𝑁

𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇
�� (14) 

 

where TP, FP, TN, and FN refer to pixel-wise true positives, false positives, true negatives, and false negatives, 
respectively. Better detection results are indicated by a higher accuracy value and a lower BER value. Three commonly 
used metrics are utilized to evaluate the specular highlight removal performance: mean squared error (MSE), peak signal-
to-noise ratio (PSNR), and structural similarity index (SSIM). Higher values of SSIM and PSNR, as well as lower MSE, 
imply improved performance. 

4.2. Quantitative Results 

It quantitatively compared specular highlight detection results with traditional methods NMF [7] and ATA [8], as well as 
deep learning-based methods SHDN [17], JSHDR [18], and Unet-Trans [21], using accuracy (Acc) and balanced error rate 
(BER) metrics commonly used for this task. Table 2 presents the average accuracy (Acc) and balanced error rate (BER) 
metric results obtained on the SHIQ test set. According to the results, the developed method produces the best results in 
terms of both accuracy and balanced error rate. 

 

Table 2. Quantitative Specular Highlight Detection Results with Comparisons on the SHIQ Dataset. ↑ Denotes Better 
Performance with Higher Values, while ↓ Indicates Better Performance with Lower Values 

Method Accuracy ↑ BER ↓ 
NMF [7] 0,700 18,80 
ATA [8] 0,710 24,40 
SHDN [17] 0,910 6,180 
JSHDR [18] 0,930 5,920 
Unet-Trans [21] 0,970 5,920 
Developed Model 0,980 5,260 

 

Table 3. Quantitative Specular Highlight Removal Results with Comparisons on the SHIQ Dataset. ↑ Denotes Better 
Performance with Higher Values, while ↓ Indicates Better Performance with Lower Values 

Method MSE ↓ SSIM ↑ PSNR ↑ 
Shen et al. [29] 5,44 0,4596 19,2 
Yamamoto et al. [14] 12,86 0,2945 9,15 
Multi-class GAN [30] 0,3375 0,9103 24,49 
Spec-CGAN [16] 0,6575 0,9154 23,53 
JSHDR [18] 0,2525 0,9614 28,19 
Trans-Unet [21] 0,1425 0,9669 29,85 
Developed Model 0,1353 0,9523 30,82 

 
For specular highlight removal, it is compared results with both traditional Shen et al. [29] and Yamamoto et al. [14] and 
state-of-the-art learning-based methods Multi-class GAN [30], Spec-CGAN [16], JSHDR [18], and Trans-Unet [21] as 
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shown in Table 2. The developed approach outperforms the others in mean squared error (MSE) and peak signal-to-noise 
ratio (PSNR) while delivering a highly competitive structural similarity index (SSIM) score in comparison to the latest 
methods. 
 
4.3 Visual Results 
 
Figure 4 presents the proposed method's visual specular highlight detection results and the corresponding ground truth. As 
shown, the proposed method provides highly accurate detection performance. Additionally, Figure 5 compares detection 
performance with the recent Unet-Trans method. It is worth noting that Unet-Trans employs a Unet architecture for 
specular highlight detection while utilizing a transformer architecture for specular highlight removal. In contrast, the 
method employs the proposed transformer-based approach for joint specular highlight detection and removal. As 
demonstrated in Figure 5, detection masks are more accurate than those produced by Unet-Trans.  

Visual results of specular highlight removal are presented in Figure 6, alongside the corresponding input images and 
ground truth specular highlight-free images. The developed method demonstrates a high capability in accurately removing 
specular highlights and closely approximating the ground truth images. This highlights the robustness and effectiveness of 
the approach in preserving underlying image details while eliminating unwanted specular highlights. The method of 
comparison with the Unet-Trans approach is shown in Figure 7 to evaluate it further. The comparison reveals that it 
surpassed Unet-Trans in terms of visual quality or achieved competitive performance. The accuracy and consistency of the 
removal process are evident, showcasing cleaner and more natural-looking results. This can be attributed to innovative 
transformer-based architecture for detection and removal tasks, providing a cohesive and powerful framework for handling 
specular highlights.  

 
 

 

 

 

 

 

 

 

 

 

 

 
4.4. Patch Scale Analysis on Attention 

Table 4 analyzes the impact of the multi-scale approach on patch-based self-attention, where each head processes different 
scales. It compares multi-scale attention with various single-scale patch-based multi-head self-attention methods, where 

 
Figure 3. Visual Comparison of Specular Highlight Detection Results 

with A Recent Unet-Based Method Unet-Trans 
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each head processes the same scale. The observations indicate that different scales contribute to different metrics. Overall, 
multi-scale patch attention provides a balanced compromise across metrics. A trade-off between detection metrics, 
Accuracy (Acc), and Balanced Error Rate (BER) is also found. While the smallest scale provides the best BER score, it 
deteriorates the Accuracy. In this regard, the multi-scale approach offers a compromise, balancing these metrics. For 
specular highlight removal, the multi-scale approach achieves the best scores for MSE and PSNR, slightly trailing behind 
the largest single-scale attention for SSIM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Patch Scale Analysis on Multi-Head Self-Attention. ↑ Denotes Better Performance with Higher Values, while ↓ 
Indicates Better Performance with Lower Values 

Scale Acc ↑ BER ↓ MSE ↓ SSIM ↑ PSNR ↑ 
Multi-scale 0,9825 5,26 0,1353 0,9523 30,8200 
Patch Scale: (56 ×
56) 0,9775 4,69 0,1624 0,9541 29,7693 

Patch Scale: (28 ×
28) 0,9813 5,41 0,1445 0,9513 30,5848 

Patch Scale (14 × 14) 0,9794 5,32 0,159 0,9475 30,3146 
Patch Scale: (7 × 7) 0,9725 3,55 0,2129 0,9434 28,9624 

Figure 6. Visual Specular Highlight Removal Results 

Figure 5. Visual Comparison of Specular Highlight Removal Results with A 
Recent Method Unet-Trans 
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5. Conclusion 

This study proposes a new ViT-based model architecture to jointly detect and remove specular highlights in a given image, 
defining a multi-scale patch self-attention in the transformer block. The proposed model demonstrated superior 
performance in specular highlight detection tasks, achieving the best accuracy and balanced error rate (BER) results. This 
approach enhances detection accuracy and removal quality. The experiments showed that multi-scale attention outperforms 
single-scale attention, particularly in MSE and PSNR metrics, while maintaining competitive SSIM scores. The multi-scale 
patch attention mechanism allows the model to process different scales within each attention head, leading to a 
comprehensive understanding of the image features.  

Several enhancements can be explored for future work to improve the model's performance. Incorporating overlapping 
patches could provide better coverage and finer granularity in detection and removal processes. Exploring new transformer 
models with advanced architecture might yield additional performance gains. Utilizing pre-trained models on large-scale 
datasets could offer a strong initial foundation, reduce training time, and improve generalization. These directions offer 
promising opportunities to refine and enhance the effectiveness of specular highlight detection and removal. 
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