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ABSTRACT 

The global elderly population is on the rise, leading to increased physical, sensory, and cognitive changes that 

heighten the risk of falls. Consequently, fall detection (FD) has emerged as a significant concern, attracting 

considerable attention in recent years. Utilizing 3D accelerometer sensors for FD offers advantages such as cost-

effectiveness and ease of implementation; however, traditional raw 3D accelerometer signals are inherently 

dependent on the device's orientation and placement within the device coordinate system. Misalignment between 

the device's axes and the direction of movement can lead to misinterpretation of acceleration signals, potentially 

causing misclassification of activities and resulting in false positives or missed falls. This study introduces a 

novel coordinate system called "ground-face," which is designed to be independent of the device's orientation 

and placement. In this system, the vertical axis is aligned perpendicularly to the Earth, while the device's x-axis 

is aligned with the individual's direction of movement. To assess the potential of the vertical component of 

ground-face referenced accelerometer signals for FD, it was compared with the commonly used acceleration 

magnitude signal. Detailed analysis was conducted using frequently preferred features in FD studies, and fall 

detection was performed with various classifiers. Comprehensive experiments demonstrated that the vertical 

component of the ground-face signal effectively characterizes falls, yielding approximately a 2% improvement 

in detection accuracy. Moreover, the proposed coordinate system is not limited to FD but can also be applied to 

human activity recognition (HAR) systems. By mitigating orientation-related discrepancies, it reduces the 

likelihood of misclassification and enhances the overall HAR capabilities. 
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1. Introduction 

The World Health Organization defines a fall as the involuntary change in position from a person's current location to a lower 

position, such as the ground. It is reported that each year, falls lead to 684,000 deaths, making it the second-largest cause of 

accidental death after road traffic accidents. In addition to fatal falls, there are 37.3 million severe falls requiring medical 

intervention annually, which can result in lasting injuries [1]. Furthermore, treatments after falls are among the most costly 

medical interventions [2]. Considering that the risk of falls and severe consequences is higher in elderly individuals and the 

global elderly population is increasing, falls emerge as a growing issue. 

Approximately 12% of the world's population is comprised of individuals over the age of 60, and it is projected that this 

proportion will reach 16% by the year 2030 and 22% by 2050 [3]. Aging brings about physical, sensory, and cognitive 

changes that increase the likelihood of falling. Serious injuries or fatalities due to falls are frequently observed among elderly 

individuals. For instance, in the United States, 20-30% of elderly individuals who experience falls suffer from moderate to 

severe injuries such as bruises, hip fractures, or head trauma [1]. Every year, 28% of individuals aged 65 and above, as well 

as 32% of those aged 70 and above, experience falls. Moreover, the elderly constitute the demographic most affected by fatal 

falls [4].  

To address this significant health threat, extensive efforts are being dedicated to systems equipped with automatic fall 

detection (FD) and alert functions. Automatic FD systems are capable of identifying falls and promptly alerting hospitals or 

caregivers [5]–[13]. These systems have the potential to reduce the time between a fall and medical intervention, thereby 

minimizing health complications related to falls.  

FD systems primarily use two approaches – wearable-based and environment-based – to distinguish between falls and daily 

activities. The environment-based method employs technologies such as cameras, infrared cameras, Kinect sensors, 

microphones, motion, radar, pressure, and vibration sensors. Meanwhile, the wearable-based approach incorporates sensors 
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for acceleration, pressure, orientation, magnetic fields, and heart rate monitoring [2], [14]–[22]. 

Using an inertial measurement unit (IMU), particularly a 3-axis accelerometer, for FD offers advantages such as cost-

effectiveness and ease of setup. Furthermore, it is common for human activity recognition (HAR) systems to be equipped 

with accelerometers. By combining the signals generated by the accelerometer with machine learning approaches, HAR and 

FD systems with high detection capacity have been developed [23]–[28]. An accelerometer generates signals by detecting 

the acceleration forces acting along the three axes of the device coordinate system: x, y, and z. It uses internal components 

like microstructures that respond to physical forces, converting them into electrical signals that can be interpreted as 

acceleration data. The signals in the device coordinate system make accelerometer signals sensitive to the device's placement 

and orientation. In simpler terms, when the device is attached in different positions, like on various points on the waist, or 

during actions such as falling where the device's orientation changes, variation of the acceleration can also be observed in the 

device’s axes that don't align with the direction of movement. Moreover, an accelerometer can exhibit an orientation gap 

between its package and the physical sensors [29]. This variation in acceleration data due to changes in device placement and 

orientation introduces a significant limitation for FD and HAR systems. Misalignment between the device’s axes and the 

direction of movement may lead to misinterpretation of acceleration signals, resulting in misclassification of activities, which 

can cause false positives or missed detections. This makes it critical to develop solutions that compensate for these 

orientation-induced discrepancies to ensure more accurate detection of falls and other human activities.  

A common solution to this issue is often using the norm of the 3D accelerometer signal. This signal, named the acceleration 

magnitude, is commonly utilized in FD studies and remains unaffected by device placement and orientation [30]–[35]. 

Another approach to address the aforementioned issue involves expressing accelerometer signals in different coordinate 

planes. In the global coordinate system, the x-axis becomes tangent to the Earth and points to the East; the y-axis becomes 

tangent to the Earth but points to the Earth's North Pole; and the z-axis becomes perpendicular to the Earth and points toward 

the sky. The downward signal obtained by projecting accelerometer signals onto the global coordinate system has been 

utilized in FD studies [36]–[38]. Another proposed coordinate system is the user-centric coordinate system. In this system, 

accelerometer signals are first projected onto the global coordinate system and then rotated to user directions calculated from 

the instantaneous velocity of the user [39].  

This study proposes a novel coordinate system named 'ground-face' for potential use in FD and HAR studies. In this system, 

the vertical axis becomes perpendicular to the Earth, akin to the global coordinate system, while the device's x-axis is aligned 

with the person's direction. During the study, accelerometer signals referenced to the device were mapped onto this ground-

face coordinate system. The FD potential of the resulting downward signal was evaluated by comparing it with the 

acceleration magnitude. Thorough experiments illustrated that the downward signal more accurately characterizes falls and 

holds promise for effective FD. 

Key contributions of the study: 

1. A novel coordinate system has been developed in the proposed framework, where the vertical axis is aligned with the 

ground, and the x-axis corresponds to the person's direction. This results in a coordinate system that better suits the nature 

of human movements, regardless of device orientation and placement. As a result, it is well-suited for HAR and FD. 

2. A method has been proposed to calculate the angular gap between a person's direction and the device's orientation. 

3. The appropriateness of the proposed coordinate system for FD has been affirmed through a comprehensive comparison 

between the downward signal and the acceleration magnitude. 

The subsequent sections of this article are organized as follows: Section II elaborates on the detailed introduction of the 

projection of device-referenced signals onto the proposed coordinate system and its application in FD. Section III presents a 

comprehensive performance evaluation. Section IV delves into the experimental findings and the merits and limitations of 

the suggested coordinate system. Section V concludes the article, offering insights into future work. 

2. Materials & Methods  

In this section, the calculation of the ground-referenced accelerometer signal is provided. Subsequently, the tools necessary 

to assess the suitability of the acquired signal for FD are elucidated. 

2.1. Ground-Face Coordinate System 

The signals generated by 3D accelerometer devices encompass both dynamic and static components. The dynamic component 

originates from movement, while the static component arises due to the Earth's gravitational force. These signals are produced 

by accelerometer devices with reference to device coordinate systems. Given their device-referenced nature, during scenarios 

involving orientation changes such as falls, dynamic and static accelerations manifest in different axes due to the person's 

orientation (Figure 1(a)). Additionally, the placement of the device could lead to a discrepancy between the direction of 

movement and the device's orientation. Analyzing these acceleration signals as ground-face referenced instead of device-

referenced can offer greater insights into the occurrence of a fall event. Figure 1(b) displays the suggested ground-face 

coordinate system. 
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Figure 1. Proposed Ground-Face Coordinate System. (a) Impact of Rotation (b) Various Coordinate Systems. Raw 

Acceleration Signals Are Initially in the Device Coordinate Systems. In the Ground Coordinate Systems, the x-y Plane Lies 

Parallel to the Earth's Surface. In the Suggested Ground-Face Coordinate System, the x-y Plane Also Remains Parallel to 

the Earth's Surface, But the x-axis Aligns with the Direction of the User's Face. 

Ground-face referenced signals are derived from signals referenced to the device through a transformation process. 

𝐴′ = 𝑅𝐴𝑇 (1) 

Here 𝐴 = [𝑎𝑥, 𝑎𝑦, 𝑎𝑧] holds the accelerometer readings along the device-referenced x, y, and z axes. R represents the rotation 

matrix, and 𝐴′ = [𝑎𝑥
′ , 𝑎𝑦

′ , 𝑎𝑧
′ ] denotes the transformed accelerometer values. In a three-dimensional context, the rotation 

matrix R is composed of three-axis rotations, 𝑅𝑥(𝜓), 𝑅𝑦(𝜃), 𝑅𝑧(𝛽), which are defined by Euler angles. The rotation matrix 

𝑅 is 

𝑅 = 𝑅𝑧(𝛽)𝑅𝑦(𝜃)𝑅𝑥(𝜓) (2) 

The angles 𝜓 and 𝜃 can be calculated through sensor fusion involving the accelerometer and gyroscope at each time step. On 

the other hand, the 𝛽 angle, a fixed value, is intended to align the device direction with the movement direction. To estimate 

the angle 𝛽, a calibration process is required. During this process, a person performs a straight walk. The estimation of this 

angle relies on determining the device's direction using principal component analysis (PCA). PCA identifies the axis along 

which the most significant variation occurs. During a straight walk, the direction of maximum variance calculated by PCA 

will correspond to the direction of the device, as the largest changes are expected to be in the forward (face) direction. The 

difference between the face direction and the device's direction yields the angle 𝛽 which is calculated as follow:  

𝛽 = 𝑐𝑜𝑠−1
⟨�̂�,𝑝𝑐⟩

||�̂�||
2
||𝑝𝑐||

2

 (3) 

Here, �̂� represents a unit vector in the x-direction, which is [1 0], and 𝑝𝑐 is the principal component of 𝑅𝑦(𝜃)𝑅𝑥(𝜓)𝑎𝑥
𝑇 and 

𝑅𝑦(𝜃)𝑅𝑥(𝜓)𝑎𝑦
𝑇 which correspond to the ground-referenced x and y axes components.  

In summary, the device-referenced x and y-axis signals are transformed into ground-referenced format, and the angle 𝛽 is 

determined with the help of PCA. 

As a result of the transformation, the signals 𝑎𝑥
′  and 𝑎𝑦

′  respectively carry information about the forward and lateral 

components of a person's movement, whereas the signal 𝑎𝑧
′  provides information about components perpendicular to the 

ground. The signals in 𝐴′ can be utilized for HAR and FD. 

2.2. Relevant Features for Fall Detection 

To demonstrate the functionality of 𝐴′ for FD, a comparison between device referenced and ground-face referenced 

accelerometer signals was necessary. The sum vector magnitude, ||𝒂|| = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2, is frequently employed in 

accelerometer-based FD algorithms. This choice of signal is primarily due to its independence from device position and 

orientation. On the other hand, in the ground-referenced signal, fall-related information is carried by downward signal, 𝑎𝑧
′ . 

Hence, a comparison was made between 𝑎𝑧
′  and ||𝒂|| in terms of the insights they provided into the fall event.  

Illustrated in Figure 2, the timeframe consisting of one second before the peak and the subsequent 0.3 seconds has been 

identified as the critical phase. For the purpose of comparison, we selected several features: maximum, minimum, and vertical 

displacement during the pre-impact phase, range, standard deviation of the critical phase, and maximum falling speed.  
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Figure 2. The Phases of Falls Utilized for Feature Extraction 

2.3. Assessment Criteria 

To assess the information carried out by each feature related to the fall event, Mutual Information Criteria (MIC) values were 

obtained. The mutual information quantifies the amount of knowledge a feature offers regarding the fall event. For each 

feature, Receiver Operating Characteristic (ROC) curves were plotted, illustrating the trade-off between sensitivity (fall 

detection capacity) and specificity (capacity to avoid wrong fall alarm performance). Furthermore, Area Under the Curve 

(AUC) values, which indicate the overall performance of a binary classification model by calculating the area under the ROC 

curve, were computed. 
 

Additionally, the signals were compared to the classification accuracy achieved by machine learning models. Support Vector 

Machine (SVM), k-Nearest Neighbors (KNN), and Random Forest (RF) algorithms were employed, and values for 

sensitivity, specificity, and accuracy were obtained. 
 

2.4. Dataset 
 

The proposed ground-face reference system has been tested with a public, extensive fall dataset, KFall [40]. The dataset was 

obtained from 32 young participants who performed 21 activities of daily living (ADLs) and 15 types of falls. An inertial 

sensor was attached to their lower back to capture the movements. The dataset comprises 5075 motion files, including 2729 

ADL and 2346 fall events. Each file provides acceleration, angular velocity, and Euler angle samples along three axes.  
 

3. Experimental Results  
 

The proposed method was tested by rotating the device-referenced signal to the ground-face reference system and its usage 

on FD.   
 

3.1. Calibration Stage 
 

Accelerometer signals referenced to the ground-face coordinate system were captured during the calibration phase. This 

phase involved measuring acceleration and orientation angles during straight walks. An individual positioned an Android 

mobile phone on their waist at various angles and performed straight-line walks. The phone was placed at five different 

angles, and the individual completed five 5-second walks. Acceleration data, along with the rotation angles 𝜓 and 𝜃, were 

recorded from the phone. Figure 3 shows the Android device's axes and the corresponding acceleration measurements. 
 

(a) (b) (c) 

  

(d) 

 
Figure 3. Calibration Experiments. (a) Android Device Axes for Acceleration and Rotation. (b) The Device Placed at 

Various Angles on the Individual’s Waist. (c) Acceleration Signals Relative to the Device, with Average Rotation Angles 

of 𝜓 = −89° and 𝜃 = −6°. (d) Ground-Face-Referenced Acceleration Signals, with Gravity Observed Solely on the Z-

Axis. The Calculated 𝛽 Angle was 63°. 
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Ground-referenced signals were obtained from the acceleration values and 𝜓 and 𝜃 rotation angles measured from the phone 

positioned at angles around the waist as specified by Real 𝛽 in Table 1. Using these values, the 𝛽 angles shown in Table 1 

were calculated, where 0° corresponds to the right side of the waist and 180° to the left side. A review of Table 1 reveals that 

the calculated values are very close to the real values. In Figure 3(d), examining the x and y components of the ground-face 

referenced accelerometer signal indicates that the forward movement during walking is reflected in the x-axis. 

Table 1. Real and Calculated 𝛽 Angles 

Real 𝛽 15° 55° 90° 115° 155° 
Calculated 𝛽 9.5° ± 4.7° 56.6° ± 5.1° 90.1° ± 4° 113.8° ± 1.8° 162.8° ± 6.6° 

 

3.2. FD by Downward Signal  

The downward signal, perpendicular to the Earth in the ground-face referenced acceleration signals, was analyzed for its FD 

potential by comparing it to the acceleration magnitude. The accelerometer signals during a fall are depicted in Figure 4. 

Device-referenced signals are shown in Figure 4 (a), while ground-face referenced signals obtained through transformation 

are shown in Figure 4 (b). In Figure 4 (c), the acceleration magnitude, ||𝒂||, is illustrated, and in Figure 4 (d), the downward 

signal, 𝑎𝑧
′ , signal is depicted. In Figure 4 (a), a high magnitude is visible along the y-axis during impact, while in Figure 4 

(b), a high magnitude is observed along the z-axis. Upon comparing Figure 4 (c) & (d), it becomes apparent that the 

acceleration change during a fall is more pronounced in the 𝑎𝑧
′  signal.  

 

Figure 4. Device and Ground-Face Referenced Accelerometer Signals During a Lateral Fall While Walking. (a) Device 

Referenced One (b) Ground-Face Reference One (C) Acceleration Magnitude (D) Downward Signal 

Detailed analyses and FD detection were performed using the feature values obtained for ||𝒂|| and 𝑎𝑧
′  during the critical 

phase, and the results are presented in the following tables and graphs. In Table 2, you can see the MIV and AUC values 

derived from ||𝒂|| and  𝑎𝑧
′ . In the results of both metrics, it's evident that the 𝑎𝑧

′  signal better represents falls. Notably, there 

is a significant difference in MIV and AUC values for the vertical displacement and max falling speed features. 

Table 2. The MIV and AUC Values Obtained from the Acceleration Magnitude and Downward Signals 

 Mutual Information Value  Area Under Curve 

Feature ||𝒂|| 𝑎𝑧
′  ||𝒂|| 𝑎𝑧

′  

Max 0.370 0.367 0.936 0.934 

Min 0.181 0.260 0.759 0.839 

Range 0.344 0.345 0.920 0.919 

Standard deviation 0.337 0.336 0.893 0.856 

Vertical displacement 0.184 0.305 0.831 0.907 

Max falling speed 0.331 0.502 0.920 0.981 
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In Figure 5 (a), the vertical displacement feature is depicted in a scatter plot, while in Figure 5 (b), the max falling speed 

feature is presented. As evident from the figures, it can be observed that the attributes derived from 𝑎𝑧
′  provide better 

discrimination between ADL and fall samples. 

 

Figure 5. The Distribution of Features Obtained from Acceleration Magnitude and 𝑎𝑧
′  (a) Vertical Displacement (b) 

Maximum Falling Speed. 

In Figure 6, ROC curves for each feature are displayed. The curves represent the sensitivity and specificity values obtained 

using the SVM classifier. When each feature is individually assessed, it becomes evident that the features derived from the 

𝑎𝑧
′  signal carries equal or more fall-related information.  

 

Figure 6. ROC Curves for Each Feature Obtained from Acceleration Magnitude and 𝑎𝑧
′  

Classification results using ||𝒂||, 𝑎𝑧
′  and both together are shown in Table 3. Set1 represents the features derived from the 

||𝒂||, while Set2 represents the features derived from the 𝑎𝑧
′ . Set3 is the combination of Set1 and Set2. The results were 

obtained using the leave-subjects-out cross-validation approach, where in each trial, half of the subjects were chosen for 

training and the remaining half for testing. 

Table 3. Performance Evaluation Using Various Classifiers and Feature Sets 

 ACCURACY (%) SENSITIVITY (%) SPECIFICITY (%) 

 SET1 SET2 SET3 SET1 SET2 SET3 SET1 SET2 SET3 

SVM 95.51 95.55 97.15 96.06 95.15 97.03 95.05 95.89 97.25 

KNN 95.01 94.86 96.26 94.94 94.65 95.71 95.06 95.04 96.72 

RF 95.27 95.41 96.28 95.38 95.48 96.10 95.18 95.34 96.43 
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Upon examining the results, it is observed that the accuracy values obtained from Set1 and Set2 are approximately the same. 

However, Set1 provides higher sensitivity compared to Set2, while Set2 offers higher specificity values. The combination of 

all features extracted from both signals has led to a significant improvement in classification performance, resulting in an 

increase of approximately 2% with SVM. 

In order to better assess the influence of the 𝑎𝑧
′  signal on FD detection, the results of SVM classifier for each activity and fall 

type are displayed in Figure 7. The figure demonstrates that 𝑎𝑧
′  is particularly capable of more accurately representing certain 

falls and activities. 

4. Discussion 

Due to its advantages, such as portability and low power consumption, accelerometers are commonly preferred for FD 

problems. Accelerometer devices present signals in a device-referenced manner. This device-referenced signal presentation 

can provide information about the person’s orientation, whether vertical or horizontal. However, during a fall, the individual's 

rotation can change, causing the downward motion-induced acceleration changes to be shared across the x, y, and z axes. 

Consequently, device-referenced signals may not accurately reflect downward motion. In this study, it is claimed that when 

the x-y plane is consistently parallel to the ground surface, acceleration values will better reflect downward motion and thus 

carry more information for FD.  

 

Figure 7. The Misclassification Counts of the SVM Classifier Using Set1 and Set3 for Each Activity and Fall Type in the 

Dataset 

To address this issue, a ground-face coordinate system has been proposed. In this system, the x-y plane remains consistently 

parallel to the ground surface, while the z-axis remains perpendicular to the ground. In the study, ground-face referenced 

signals were derived from device referenced signals through a rotation process. The potential of these derived signals in FD 

has been investigated. For a fair evaluation, the information provided by the commonly preferred ||𝑎|| signal and the 

transformed 𝑎𝑧
′  signal regarding fall events, as well as their suitability for FD, have been extensively compared. The results 

of this detailed comparison are presented in the Experimental Results section. 

When examining the MIV and AUC values for each feature in the table, it is evident that features derived from the 𝑎𝑧
′  signal 

yield either comparable or significantly better results. Notably, the downward maximum speed attribute exhibits a strong 

discriminative characteristic concerning fall events. Furthermore, the ROC curves depicting the trade-off between sensitivity 

and specificity for each feature also exhibit promising outcomes for FD using the 𝑎𝑧
′  signal.  

When examining the classification results obtained with feature sets Set1, Set2, and Set3, it becomes apparent that Set1 and 

Set2 yield similar outcomes, while Set3 demonstrates a noteworthy increase in accuracy by up to 2%. A closer look at the 

sensitivity and specificity values on the Figure 8 reveals an interesting pattern: Set1 exhibits higher sensitivity, whereas Set2 

showcases higher specificity. This implies that Set1 is more adept at detecting falls, while Set2 excels in recognizing non-

fall situations. The integration of Set3 significantly enhances both sensitivity and specificity values. Based on this 

observation, it can be inferred that combining the ||𝑎|| signal with the 𝑎𝑧
′  signal is more suitable for FD. Figure 7 validates 

the recommendation to use the ||𝑎|| and 𝑎𝑧
′  signals together for FD. Notable reductions in the misclassification of daily 

activities and falls, such as 'Jog with turn', 'Stumble while walking', and 'Sit for a moment, attempting to rise, and then 

collapsing into a chair,' were observed. This suggests that the 𝑎𝑧
′  signal may represent certain activities more effectively. 
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Figure 8. Comparing the Accuracy Levels Among Set1, Set2, and Set3 

Regarding the difference between the proposed method and other coordinate systems: In the global coordinate system, the x-

axis represents the east direction, and the y-axis points to the north pole. This leads to the x and y-axis signals being dependent 

on the direction of movement. In FD and HAR studies using the global coordinate system, the components of motion in the 

east and north pole directions do not carry any specific meaning related to the nature of the motion. In the user-centric 

coordinate system, the y-axis aligns with the user's direction. However, since the user's direction is estimated based on the 

instantaneous velocity in the 3D space, this method is more susceptible to device rotations and noise.  

One limitation of the proposed method is that the performance improvements obtained from each feature did not repeat when 

these features were used together. This discrepancy could be limited information carried by the 𝑎𝑧
′  signal concerning ADLs.  

Considering the ground-face referenced signals parallel to the Earth's surface may enhance FD performance.  

Another constraint of the suggested approach is its dependence on momentary angle values during the transformation process, 

necessitating the use of both accelerometer and gyroscope devices. In FD systems, using only accelerometers can lead to 

lower-cost systems at the expense of performance. However, the proposed method requires gyroscope data due to the need 

to express accelerometer data in a different coordinate system based on angle values. Additionally, the proposed system 

requires a 3x3 matrix multiplication for each measured acceleration value. Although this step is performed only once, the 

calibration stage increases the computational load. Thus, there is a trade-off between FD performance and cost. For systems 

where the FD process is performed on a computer, this computational load can be negligible, but it must be considered for 

embedded systems. 

It should be noted that ground-face referenced signals do not replace device-referenced signals; rather, they provide additional 

information. This allows for more comprehensive analyses, leading to more successful FD and HAR systems. 

5. Conclusion 

In this study, a novel coordinate system called ground face coordinate system is proposed for accelerometer signals that can 

be used in IMU-based HAR and FD studies. The effectiveness of the downward signal obtained is tested in the FD problem.  

Comparative experiments using the commonly preferred ||𝒂|| signal in accelerometer-based FD studies have demonstrated 

that the use of the downward signal increases the correct detection of falls and daily activities around %2. Thus, the downward 

signal provides more distinctive information about falls. Therefore, the proposed coordinate system has the potential to 

enhance performance in both HAR and FD studies.  

In future research, incorporating the evaluation of signals parallel to the ground obtained through the proposed transformation 

could lead to more successful systems. 
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