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ABSTRACT 
This study presents a comparative analysis of machine learning models for predicting carbon monoxide (CO) 
emissions in automotive engines. Four models—Linear Regression, Decision Tree, Random Forest, and Support 
Vector Regression—were evaluated using a dataset of engine performance parameters and emission 
measurements. Among these, the Random Forest model demonstrated the highest predictive accuracy, achieving 
an R² score of 0.8965. Feature importance analysis identified nitrogen oxides (NOX), engine speed (RPM), and 
hydrocarbons (HC) as the most significant predictors of carbon monoxide emissions. Learning curve analysis 
provided insights into model generalization and highlighted potential limitations. The study underscores the value 
of data-driven approaches in optimizing engine design and controlling emissions. The findings contribute to the 
development of cleaner, more efficient vehicles, supporting sustainability efforts in the automotive industry. This 
research bridges data science and automotive engineering, offering a framework for advanced emission prediction 
and control that can be applied to other pollutants and engine types. 
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1. Introduction 

The automotive industry is at a critical crossroads, tasked with enhancing engine performance while significantly reducing 
harmful emissions. Among these emissions, carbon monoxide (CO) poses a considerable threat to both human health and the 
environment [1]. As a byproduct of incomplete combustion, CO can lead to severe respiratory issues and, at high 
concentrations, may even be life-threatening [2]. Moreover, CO contributes to ground-level ozone formation, a major 
component of smog that exacerbates air quality concerns [3]. To combat these challenges, stringent global regulations, such 
as the European Union’s Euro 6 standards and the United States’ Tier 3 regulations, have been implemented, driving the need 
for innovative emission reduction strategies [4, 5]. 

Traditional approaches to emission control in internal combustion engines, such as optimizing engine design and using after-
treatment systems, often involve trade-offs with engine performance and fuel efficiency [6, 7]. These methods also struggle 
to address the complex, non-linear interactions between engine parameters and emission outputs, highlighting the limitations 
of conventional techniques. 

Recent advancements in data analytics and machine learning (ML) have introduced new opportunities to tackle these 
challenges. ML techniques are particularly adept at modeling complex, non-linear relationships between variables, enabling 
more accurate emission predictions and optimized control strategies [8, 9]. Studies have applied machine learning algorithms 
to predict pollutants like NOX and CO2, demonstrating promising results. Artificial Neural Networks (ANNs) have been 
effective in predicting NOX emissions, capturing intricate relationships between operating conditions and outputs [10]. 
Similarly, Support Vector Machines (SVMs) and Random Forests have shown success in estimating particulate matter and 
CO2 emissions, respectively, due to their ability to manage complex feature interactions and robust performance across 
diverse datasets [11, 12]. Deep learning techniques, particularly hybrid models like Convolutional Neural Networks (CNN) 
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combined with Long Short-Term Memory (LSTM) networks, have further enhanced the modeling of temporal emission 
patterns, particularly under transient operating conditions [13]. 

Despite these advancements, limited research has focused on comparing multiple ML models specifically for CO emission 
prediction. CO emissions are uniquely sensitive to various engine parameters and operating conditions, making their 
prediction particularly challenging [14]. Moreover, studies rarely address feature importance, which is critical for 
understanding the key engine parameters driving CO emissions. The lack of comprehensive comparative analyses leaves 
gaps in identifying the most effective ML techniques and their practical implications for emission reduction. 

This study addresses these gaps by evaluating the performance of four widely used machine learning models—Linear 
Regression, Decision Tree, Random Forest, and Support Vector Regression (SVR)—in predicting CO emissions based on 
engine performance parameters. The study aims to: (1) assess the predictive accuracy of these models across varying engine 
operating conditions, (2) identify the most influential engine parameters through feature importance analysis, (3) evaluate the 
generalization capabilities and limitations of the models using learning curves, and (4) provide actionable insights for 
integrating ML techniques into emission control strategies and engine design. By offering a comparative analysis of machine 
learning models and their practical applications, this research contributes to the growing body of knowledge on data-driven 
emission reduction approaches and provides a foundation for future studies and industrial applications in optimizing cleaner 
and more efficient automotive technologies. 

2. Materials and Method 

2.1. Dataset Description 

The dataset used in this study was derived from a series of controlled engine performance tests conducted on a two-cylinder, 
electronic injection, naturally aspirated, water-cooled, four-stroke, spark ignition engine. This engine type was selected due 
to its widespread use in small- to medium-sized passenger vehicles, making it highly representative of real-world applications. 
Additionally, its relatively simple design and operation allow for a more focused analysis of the relationship between engine 
parameters and CO emissions without interference from complex subsystems, such as turbocharging or advanced after-
treatment devices. 

The experiments were performed under full-load conditions in a controlled laboratory environment to ensure consistency and 
reproducibility. Key engine parameters were varied systematically, including fuel composition (gasoline-ethanol blends of 
E10, E20, and E30) and engine speed (RPM) across a broad operational range. These conditions were chosen to represent 
typical and extreme scenarios encountered during real-world engine operation, providing a comprehensive dataset for 
modeling. 

Emission values, including nitrogen oxides (NOx), hydrocarbons (HC), and carbon monoxide (CO), were measured using a 
calibrated MRU Delta 1600 L exhaust gas analyzer. To minimize variability, five repeated measurements were taken for each 
test point, and the average values were used for analysis. In total, 90 data points were collected, representing a diverse range 
of operating conditions and configurations relevant to CO emission prediction. 

While the dataset provides a representative sample of typical spark ignition engine conditions, it is important to note its 
limitations. The controlled laboratory environment excludes external variables such as temperature, humidity, and altitude, 
which can influence real-world emission outputs. Furthermore, the focus on a single engine type does not account for 
variations in design and operation seen in turbocharged or diesel engines. Future research should expand the dataset to include 
these factors for broader applicability. 

Feature scaling was applied using the StandardScaler function from the scikit-learn library to normalize input variables, 
ensuring consistency across features and facilitating model training [15].  

2.2. Machine Learning Models 

In this study, four machine learning models were implemented to predict carbon monoxide (CO) emissions based on the input 
features, each with unique characteristics and strengths for handling different data relationships. Below is a detailed 
explanation of each model: 

Linear Regression: Linear Regression is a fundamental statistical model that serves as a baseline for comparison. It assumes 
a linear relationship between the independent variables (engine parameters) and the dependent variable (CO emissions). The 
model calculates coefficients for each feature by minimizing the sum of squared residuals, resulting in a straightforward 
predictive framework. While efficient and interpretable, this method struggles with non-linear relationships or feature 
interactions [16]. 

Decision Tree: The Decision Tree model is a non-linear algorithm that partitions the dataset into subsets based on feature 
values. The model splits the data at decision nodes to minimize an impurity measure, such as the Gini index or entropy, in 
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classification or Mean Squared Error (MSE) in regression. This model is particularly effective at capturing non-linear patterns 
and interactions between features. However, a single tree can be prone to overfitting, especially in datasets with noise [17]. 

Random Forest: Random Forest is an ensemble learning method that combines the predictions of multiple decision trees. 
Each tree is built on a random subset of data and features, introducing diversity and reducing overfitting. The final prediction 
is derived by averaging the predictions (for regression tasks) from all the individual trees. This robustness to overfitting and 
ability to handle complex, non-linear relationships makes Random Forest particularly suited for high-dimensional and noisy 
datasets [18]. 

Support Vector Regression (SVR): SVR is a versatile algorithm that maps input features into a high-dimensional space using 
a kernel function (e.g., linear, polynomial, or radial basis function) to capture linear and non-linear relationships. The model 
aims to fit a regression hyperplane within a tolerance margin, minimizing prediction error while controlling model 
complexity. This makes SVR particularly effective for datasets with intricate, non-linear patterns. However, its performance 
can be sensitive to parameter tuning, such as the choice of the kernel, regularization parameter (C), and epsilon (ε), which 
defines the margin of tolerance [19]. 

All models were implemented using the Python programming language and the scikit-learn library, a well-documented toolkit 
for machine learning applications [15]. The best-performing model also facilitated feature importance analysis, providing 
valuable insights into the relative contributions of input features to CO emission predictions.  

2.3. Experimental Procedure 

The experiments were conducted using a two-cylinder spark plug test engine on an engine test stand to determine engine 
performance parameters and exhaust emissions. An electric dynamometer was employed to provide full load conditions, 
while a mass-scale fuel measurement system was used to measure fuel consumption at varying engine speeds. Exhaust 
emissions were measured using an MRU Delta 1600L emission analyzer. The experiments were performed under full load 
conditions at engine speeds ranging from 1400 to 3400 rpm, in 400 rpm intervals. Initially, gasoline was used as the fuel, 
followed by ethanol-blended fuels. The experimental results obtained were subsequently used as input data for model 
development. 

The experimental procedure included key steps to ensure a rigorous evaluation of machine learning models for predicting 
carbon monoxide (CO) emissions. The dataset consisted of 90 observations, incorporating engine performance parameters 
such as NOX, RPM, HC, and fuel composition, along with the corresponding CO emission values. The data was split into 
training (80%) and testing (20%) subsets, allowing the models to learn patterns from the training data and evaluate their 
predictive performance on unseen testing data. The overall experimental workflow is illustrated in Figure 1. 

The models' predictive performance was assessed using two primary metrics: the coefficient of determination (R²) and the 
Mean Squared Error (MSE). R² quantified the proportion of variance in CO emissions explained by the model, reflecting its 
predictive accuracy, while MSE measured the average squared difference between predicted and actual CO values, 
highlighting the error magnitude. Together, these metrics provided a comprehensive evaluation of the models' performance. 

To further enhance the interpretability of the best-performing model, a feature importance analysis was conducted to identify 
the relative contributions of input features to CO emission predictions [20]. Additionally, learning curves were generated to 
examine how model performance varied with the size of the training dataset, offering insights into the bias-variance trade-
off for each model [21]. 

Finally, scatter plots and residual analyses were prepared for each model to visually compare actual and predicted values, 
and to identify any systematic patterns or biases in the predictions. These methodological steps ensured a robust evaluation 
process, facilitating reliable insights into the models’ applicability for engine performance optimization and emission control 
strategies. 

 

 

 

 

Figure 1. Workflow of the Study for CO Emission Prediction 
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3. Results and Discussion 

In this study, we compared the performance of four different models - Linear Regression, Decision Tree, Random Forest, 
and Support Vector Regression (SVR) - in predicting CO emissions based on engine performance parameters. The results of 
our analysis are presented and discussed below. 

3.1. Model Comparison and Evaluation 

Figure 2 presents a comparative analysis of the performance of all four models. The graph shows each model’s Mean Squared 
Error (MSE) and R2 scores. This analysis shows that the Random Forest model consistently outperformed the other models, 
achieving the lowest MSE and highest R2 score. The Linear Regression model, on the other hand, showed the poorest 
performance, indicating that the relationship between the input features and CO emissions is likely non-linear. Linear 
Regression’s inability to capture complex patterns stems from its strict assumption of linearity, which does not reflect real-
world combustion dynamics. Similarly, SVR demonstrated moderate performance due to its sensitivity to parameter tuning 
and reliance on kernel functions. The limited dataset size may have also constrained SVR’s ability to generalize effectively, 
highlighting the need for robust models like Random Forest in capturing non-linear relationships 

 
 Figure 2. Comparative Performance of Machine Learning Models 

 

To assess the consistency of our models across multiple runs, we analyzed the distribution of R2 scores, as shown in Figure 
3. This box plot reveals that the Random Forest model achieved the highest median R2 score and demonstrated the least 
variability across runs. This suggests that Random Forest is not only the most accurate but also the most reliable model for 
this prediction task. 

 
Figure 3. Distribution of R2 Scores Across Multiple Runs 
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Figure 4 illustrates the importance of different features in predicting CO emissions, as determined by the Random Forest 
model. The analysis reveals that NOX (nitrogen oxides), RPM (engine speed), and HC (hydrocarbons) are the most significant 
predictors of CO emissions. NOX and RPM show almost equal importance, with the highest scores, followed closely by HC. 

Interestingly, while the fuel composition (Gasoline and Ethanol) does impact CO emissions, their importance is considerably 
lower compared to the engine operation parameters and other emission components. This suggests that the engine’s operating 
conditions and the formation of other pollutants play a more crucial role in determining CO emissions than the fuel mixture 
alone. These insights are particularly valuable for engine designers and environmental engineers focusing on emission 
reduction strategies. The high importance of NOX and HC in predicting CO emissions indicates a complex interplay between 
different pollutants in the combustion process. As a top predictor, engine speed (RPM) suggests that optimizing engine 
operation across different speed ranges could be a key factor in controlling CO emissions. 

The relatively lower importance of fuel composition (Gasoline and Ethanol) is noteworthy. While altering fuel mixtures is 
often considered a strategy for emission control, this analysis suggests that more significant gains might be achieved by 
focusing on engine operating parameters and technologies that simultaneously reduce NOX, HC, and CO emissions. This 
feature importance analysis provides a clear direction for prioritizing efforts in emission control: focusing on technologies 
and strategies that address NOX and HC emissions while optimizing engine speed could potentially yield the most significant 
reductions in CO emissions. Additionally, it highlights the importance of a holistic approach to emission control, considering 
the interdependencies between different pollutants and engine operating conditions. 

 
Figure 4. Feature Importance in CO Prediction 

 

The correlation heatmap presented in Figure 5 reveals several significant relationships between input features, providing 
crucial insights into engine behavior and emission patterns. As expected, Gasoline and Ethanol show a perfect negative 
correlation (-1.0), reflecting their complementary nature in the fuel mixture. Engine speed (RPM) demonstrates strong 
correlations with both NOX (0.7) and HC (-0.9), indicating that higher speeds tend to increase NOX production while reducing 
HC emissions, likely due to changes in combustion conditions. The moderate negative correlation (-0.39) between NOX and 
HC emissions highlights the typical trade-off in emission control strategies. Interestingly, Gasoline content correlates 
positively with both NOX (0.59) and HC (0.32) emissions, while Ethanol shows inverse correlations of equal magnitude, 
suggesting that increasing ethanol content might help reduce these emissions. The absence of a significant correlation between 
RPM and fuel composition implies that engine speed-based optimization strategies could be effective across various fuel 
mixtures. These relationships underscore the complex relationship between engine operations, fuel composition, and 
emissions, emphasizing the need for a holistic approach in developing effective CO emission prediction models and reduction 
strategies. 

3.2. Best Model Analysis  

Figure 6 presents a comparative analysis of actual vs predicted CO values for four models, revealing significant variations in 
their predictive capabilities. The Random Forest model emerges as the best performer with an impressive R2 score of 0.8965, 
demonstrating a strong alignment between predicted and actual values across the CO emission range. In contrast, the Linear 
Regression model (R2: 0.0111) shows poor performance, indicating the highly non-linear nature of the CO emission 
prediction problem. The Decision Tree model (R2: 0.7542) and SVR (R2: 0.6236) fall between these extremes, with the 
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Decision Tree showing better consistency than SVR, particularly at lower CO values. Notably, even the top-performing 
Random Forest model exhibits slight tendencies to underpredict at higher CO values and overpredict at lower ones, suggesting 
potential areas for further refinement. These results underscore the complexity of CO emission processes and the superiority 
of ensemble methods like Random Forest in capturing the complex, non-linear relationships between engine parameters and 
emissions. The significant performance gap observed across models highlights the importance of selecting appropriate 
machine learning techniques for accurate CO emission predictions in engine performance analysis. 

 

 
Figure 5. Correlation Analysis of Input Features 

 

The residual plot for the best performing Random Forest model (Figure 7) displays a random scatter of points around the 
zero line, with residuals primarily falling within a -0.06 to 0.06 range. This pattern indicates that the model performs 
consistently across different CO emission levels without significant systematic bias. The even distribution of residuals above 
and below the zero line suggests that the model has captured most of the underlying patterns in the data. However, a slightly 
wider spread of residuals in the mid-range predictions (1.30 to 1.40) and the presence of a few outliers’ hint at some 
complexity in CO emission behavior that the model doesn’t fully capture. Notably, the residuals appear more concentrated 
around zero for lower and higher predicted values, potentially indicating better model performance at these extremes. These 
observations confirm the Random Forest model’s strong overall predictive capability while highlighting areas for potential 
improvement, particularly in handling mid-range predictions and addressing outlier cases. The residual analysis thus supports 
the model’s reliability while pointing to opportunities for further refinement in CO emission prediction accuracy. 

Figure 8 presents the learning curve for the best performing Random Forest model. The graph shows a converging trend 
between the training and cross-validation scores as the number of training examples increases. Initially, there’s a significant 
gap between the two scores, with the training score starting high and the cross-validation score starting low. As more data is 
introduced, this gap narrows considerably, stabilizing both scores at higher levels. The training score remains consistently 
high, slightly decreasing as more data is added, while the cross-validation score shows a steep increase before leveling off. 
This pattern indicates that the model has good generalization ability, effectively learning from the data without overfitting. 
The convergence of scores suggests that the model has reached a point of reducing returns in terms of performance gain from 
additional data. However, the slight upward trend in the cross-validation score at the highest number of training examples 
hints that there might still be small potential for improvement with even more data. This learning curve demonstrates that the 
Random Forest model is well-tuned for the current dataset, balancing complexity with generalization, and is likely to perform 
consistently on unseen data within the same domain. 
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Figure 6. Actual vs Predicted CO Values for the Best Performing Model 

 

 
Figure 7. Residual Analysis of the Best Performing Model 
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Figure 8. Learning Curve Analysis of the Best Performing Model 

 

Finally, Figure 9 compares actual and predicted CO values for the best performing Random Forest model (R2: 0.8965). This 
analysis reveals that our model captures the overall trends and significant fluctuations in CO emissions remarkably well 
across the sample range. The predicted values closely follow the actual values’ pattern, accurately reflecting gradual changes 
and sharp peaks in CO emissions. The model demonstrates a strong ability to capture the trends and fluctuations in the actual 
CO values across the sample range. The Random Forest model demonstrates strong predictive capability, effectively tracking 
CO emissions’ complex, non-linear behavior over the sample range. This performance underscores the model’s potential for 
reliable CO emission forecasting in engine performance analysis.  
The Random Forest model demonstrated superior performance, achieving an R² score of 0.8965, reflecting a strong alignment 
between actual and predicted CO values. This result underscores the model’s ability to capture the complex, non-linear 
relationships inherent in the dataset. However, its applicability beyond the specific dataset warrants further investigation. 
While the dataset includes a range of engine speeds and fuel compositions, it is limited to a single engine type and controls 
laboratory conditions. Real-world scenarios introduce additional variables that may significantly influence combustion 
processes and emissions, such as variations in temperature, humidity, and altitude; long-term engine wear and maintenance 
inconsistencies; and diverse driving patterns, including stop-and-go traffic or highway cruising. These factors, absent from 
the current dataset, highlight the need for broader validation. 

Future research should address these limitations by validating the Random Forest model on datasets encompassing diverse 
engine configurations, such as turbocharged and diesel engines, and incorporating external variables like environmental 
conditions. Such efforts would enhance the model’s robustness across a wider range of operating scenarios. Additionally, 
while the model showed excellent performance, its tendency to underpredict higher CO emission values suggest opportunities 
for refinement. Incorporating advanced ensemble techniques, such as Gradient Boosting or hybrid models, could improve 
generalization across diverse datasets. Furthermore, integrating time-series data and transient operating conditions (e.g., rapid 
acceleration or deceleration) could enhance the model’s adaptability to real-world applications. By addressing these gaps, the 
Random Forest model could become a more versatile tool for real-time CO emission monitoring and control in the automotive 
industry. 

 
Figure 9. Comparison of Actual and Predicted CO Values 
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Our analysis demonstrates that machine learning models, particularly Random Forest, can effectively predict CO emissions 
based on engine performance parameters. The Random Forest model achieved the highest R2 score of 0.8965, significantly 
outperforming other models such as Linear Regression, Decision Tree, and SVR. This superior performance can be attributed 
to Random Forest’s ability to capture complex, non-linear relationships and its robustness to outliers. The model shows strong 
predictive capability across a range of CO emission values, as evidenced by the residual analysis and comparison. These 
findings have significant implications for engine design and emission control strategies. The feature importance analysis 
revealed that NOX, RPM, and HC are the most important predictors of CO emissions, providing valuable insights for targeted 
emission reduction efforts. Manufacturers can optimize engine designs by accurately predicting CO emissions based on 
engine parameters to minimize emissions without compromising performance. For instance, they can focus on optimizing 
engine speed ranges and developing technologies that simultaneously address NOX, HC, and CO emissions. Furthermore, the 
model’s ability to capture trends in CO emissions can aid in real-time monitoring and control systems. This could lead to 
more adaptive and efficient emission control strategies, potentially improving overall engine performance while meeting 
stringent environmental regulations. 

3.3. Analysis of Model Performance 

The performance of the four machine learning models (Linear Regression, Decision Tree, Random Forest, and Support Vector 
Regression (SVR)) revealed distinct patterns in their ability to predict carbon monoxide (CO) emissions. Linear Regression 
and SVR exhibited relatively lower performance than Random Forest and Decision Tree, as shown in Figure 2. Below, we 
discuss the potential reasons for this underperformance. 

Linear Regression, a baseline model, assumes a strict linear relationship between the independent variables (engine 
parameters) and the dependent variable (CO emissions). However, the combustion process in engines is inherently complex 
and involves non-linear interactions among various parameters such as NOX, RPM, and HC. The model’s inability to capture 
these non-linear relationships results in poor predictive performance, with an R² score of 0.0111. Additionally, Linear 
Regression lacks the flexibility to handle feature interactions, making it unsuitable for datasets where input variables exhibit 
strong dependencies, as observed in the correlation analysis in Figure 5. 

Support Vector Regression demonstrated moderate performance (R²: 0.6236) but underperformed compared to the ensemble-
based Random Forest model. While SVR can handle non-linear relationships using kernel functions, its effectiveness depends 
on appropriate parameter tuning. In this study, an RBF (Radial Basis Function) kernel was used, which, while generally 
effective, may not have fully captured the complexity of CO emission patterns due to the dataset’s limited size and diversity. 
Furthermore, SVR struggles with outliers, as the epsilon-insensitive loss function can inadvertently exclude essential data 
points, reducing predictive accuracy in highly variable scenarios. 

In contrast, Random Forest consistently outperformed Linear Regression and SVR, achieving an R² score of 0.8965. This 
model’s superior performance can be attributed to its ability to capture non-linear relationships, handle complex feature 
interactions, and remain robust to noise and outliers. By leveraging multiple decision trees and averaging their predictions, 
Random Forest effectively generalizes across a wide range of input conditions. 

The underperformance of Linear Regression and SVR underscores the importance of selecting models that align with the 
underlying data characteristics. Models like Random Forest, which are inherently flexible and robust, are better suited for 
CO emissions’ complex, non-linear nature. These findings highlight the necessity of comparative analyses to identify the 
most suitable algorithms for specific applications. 

4. Conclusion 

This study has demonstrated the efficacy of machine learning techniques, notably the Random Forest algorithm, in predicting 
carbon monoxide (CO) emissions based on engine performance parameters. Among the models evaluated (Linear Regression, 
Decision Tree, Support Vector Regression (SVR), and Random Forest), the ensemble-based Random Forest model achieved 
the highest predictive accuracy, with an R² score of 0.8965. Feature importance analysis revealed that NOX, RPM, and HC 
levels were the most significant predictors of CO emissions, providing valuable insights into targeted emission reduction 
strategies. The learning curve analysis highlighted the generalization capabilities of the models and identified areas for further 
refinement. 

The findings have significant practical applications in the automotive industry. The machine learning models developed in 
this study can be integrated into the engine design process to optimize configurations and reduce emissions without 
compromising performance. Real-time emission monitoring systems based on these models could dynamically adjust engine 
parameters to minimize CO emissions under varying conditions, promoting more environmentally friendly driving practices. 
Additionally, these systems could guide drivers with feedback on optimal acceleration patterns and gear shifts, supporting 
sustainability goals in the transportation sector. 

This study has certain limitations that should be acknowledged. The dataset used was specific to certain engine types, which 
may restrict the generalizability of the findings across other engine designs or operating conditions. Future work should 
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address these limitations by including diverse engine configurations, external factors such as environmental conditions, and 
real-world driving scenarios to enhance the robustness and applicability of the models. The models also exhibited limitations 
in predicting extreme values, suggesting opportunities for improvement in handling outliers. Furthermore, real-world factors 
such as environmental conditions, fuel quality variations, and long-term engine wear were not considered in this study, 
potentially limiting the applicability of the models in broader contexts. 

Future studies should incorporate data from diverse engine types (e.g., turbocharged and diesel) and environmental conditions 
(e.g., temperature, humidity, altitude) to improve model generalizability. Developing advanced ensemble methods or hybrid 
models could enhance prediction accuracy, particularly for extreme values. Integrating real-time data and time-series analysis 
techniques could enable the creation of adaptive predictive models capable of responding dynamically to changing conditions. 
Expanding the study to include more diverse scenarios and pollutants could further improve the utility and relevance of the 
models in supporting cleaner and more efficient engine technologies. 

This research represents a significant step forward in applying machine learning to emission prediction in automotive engines. 
By providing accurate, data-driven insights, the models developed here contribute to more informed decision-making in 
engine design and emission control. As the automotive industry faces the dual challenges of enhancing performance while 
reducing emissions, the approach outlined in this study offers a promising pathway toward achieving both objectives 
simultaneously. 
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