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1. Introduction 

Many transportation systems rely on oil as their primary energy source, including vehicles, aircraft, ships, and other 
machinery [1]. Oil also plays an important role in various industrial uses. Crude oil is extracted from wells and refined into 
petroleum products suitable for consumption as part of the oil production process. The exploratory, extraction, and 
distributional phases make up this all-encompassing process [2]. Predicting production is essential in oil field development 
since it helps with economic evaluations, scheduling drilling operations, and designing facility capacity. Therefore, 
accurate production predictions using data from both operational and dormant wells are in great demand [3]. In order to 
create efficient economic planning, production forecasting is crucial for businesses and governments alike [4]. Complex 
numerical reservoir simulations (NRS) and comprehensive engineering evaluations are usual tools for oil and gas 
forecasting[5]. If oil reservoirs are to be monitored and optimized efficiently, these forecasts must be quite accurate. When 
it comes to calculating reservoir output, the petroleum sector typically uses conventional approaches like “ decline curve 
analysis (DCA) and numerical reservoir simulations (NRS) ” [6]. However, due to intricate static models and numerous 
dynamic parameters, numerical reservoir simulation models can be difficult and time-consuming. [7]. Conversely, decline 
curve analysis has many applications but also requires a lot of time and computing power [8]. One potential solution to 
these problems is machine learning, which can now anticipate oil and gas production more accurately and more quickly 
than ever before [9]. To efficiently and accurately predict future output, machine learning models use past data. Worldwide, 
the use of fossil fuels, including oil and natural gas, produced almost 30% of the world's energy in 2020, according to the 
World Energy Report [10]. Many academics are drawn to applying machine learning approaches to oil production 
operations because of the need for accurate production forecasts. More and more, the oil and gas sector is looking to 
machine learning, especially for quick evaluations and production predictions [11]. The field of computer science known as 
artificial intelligence (AI) aims to teach computers to think and act like humans by simulating human intelligence and 
applying it to problems that are very complicated and non-linear [12]. A branch of artificial intelligence known as machine 
learning leverages massive datasets and statistical models to discover answers, enabling computers to mimic human 
learning in their ability to learn and adapt [13]. 

2. Related works 

In recent times, “ the use of machine learning (ML) and deep learning (DL) methods ” has become increasingly effective 
for forecasting oil and gas production, showcasing their capabilities across different formations and data sets. For instance, 
a study by “ Kim et. al. focused on predicting cumulative gas production (CGP) in Canada's Montney Formation using a 
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range of models, including artificial neural networks (ANN), 1D convolutional neural networks (1D-CNN), long short-term 
memory (LSTM) networks, and a combination of 1D-CNN and LSTM models. By utilizing early production data, well 
details, and fracture treatment parameters, the hybrid model showed outstanding performance in enhancing gas production 
predictions [14]. 

Similarly, research by Zanjani et al. assessed the effectiveness of ANN, linear regression (LR), and support vector 
regression (SVR) using data from the Volve field. Although ANN excelled in forecasting hydrocarbon production for well 
NO159-F-1C, the research underscored the necessity of customizing model selection for specific datasets, as no single 
algorithm is universally dominant [15]. 

Tan et al. utilized six algorithms—MLR, XGBoost, LightGBM, ML, RF, and back propagation—to predict output in the 
WY shale gas block in China, building on previous work in the field. Despite the research's limitations, such as its 
constricted dataset from a specific area, XGBoost emerged as the most efficient model via an R² value of 0.87 [16]. Instead, 
extra trees achieved the greatest accuracy (R² = 0.809) when Hui et al. evaluated shale gas production in the Fox Creek 
region using four methods: linear regression, neural networks, XGBoost, and extra trees [17]. 

Eight DL and ML models were investigated in Saudi Arabia by N. M. Ibrahim et al.: ANN, RNN, Decision Tree 
Regression (DTR), XGBoost, SVR, MLR, Polynomial Linear Regression (PLR), and Random Forest Regression (RFR). 
Based on the data provided by Saudi Aramco, the top-performing networks were ANN, XGBoost, and RNN, via R² values 
of 0.9627 for oil, 0.9012 for gas, and 0.926 for water, respectively. A disadvantage of the research is that the dataset is 
limited to wells in Saudi Arabia and does not include any geological variation [18]. For time-series data, S. Hosseini et.al 
proposed a hybrid LSTM-1D CNN model for predicting oil production in the Volve field, with the LSTM model achieving 
an R² score of 0.98. While promising, the study emphasized the need for further investigation into the model's 
generalizability across different wells [19]. 

In another study, Song et al. conducted a comprehensive analysis of the productivity of 394 offshore oil wells in China 
using various machine learning models, such as Linear Regression (LR), XGBoost, LightGBM, Back Propagation (BP) 
Neural Network, and Long Short-Term Memory (LSTM). XGBoost emerged as the leading model due to its exceptional 
generalization ability and stability across diverse datasets. In contrast, LightGBM displayed issues with overfitting, 
highlighting the critical need for selecting suitable machine learning algorithms that align with the dataset's characteristics 
and specific application requirements. The study underscores that the choice of model can significantly impact the 
performance and reliability of production forecasts, especially in complex offshore environments [20]. 

Lastly, Liu et al. proposed a stacked generalization ensemble model to optimize and predict the rate of penetration (ROP) 
during gas well drilling in Xinjiang, China. This model integrated six machine learning algorithms: Support Vector 
Regression (SVR), Random Forest (RF), Extremely Randomized Trees (ET), Gradient Boosting (GB), LightGBM, and 
Extreme Gradient Boosting (XGB). While the ET model showed the highest individual performance with an R² of 0.9268 
on the test set, the stacked generalization model surpassed all individual models, achieving an R² of 0.9568 on the test set. 
The study effectively demonstrated the enhanced predictive power of combining multiple models, particularly in complex 
operations like drilling, where high predictive accuracy is crucial for optimizing operational efficiency [21]. 

Similarly, F.Ye et al. explored production prediction of tight and shale gas wells using a dataset comprising geological, 
reservoir, engineering parameters, and production data from over 200 wells in Gas Field A and 207 wells in Shale Gas 
Field B. The study utilized several machine learning algorithms, including Random Forest (RF), Extremely Randomized 
Trees (ET), LightGBM, and Gradient Boosting Regression (GBR), alongside a blending ensemble learning model. The 
blending model demonstrated superior predictive accuracy and generalization, particularly for shale gas production, 
outperforming individual models. The ensemble learning approach achieved an impressive R² of 0.9524 for shale gas 
production, emphasizing the efficacy of integrating multiple models to enhance prediction accuracy in complex reservoir 
conditions [22]. 

3. Machine Learning Models (ML) 

The current digital transformation activities depend mainly on machine learning, a subfield of Artificial Intelligence AI 
[23]. It consists of a variety of approaches that enable systems to learn from data and make decisions accordingly. In order 
to tackle a wide range of problems, the three primary branches of “ machine learning—supervised, unsupervised, and 
reinforcement learning ”—offer a general framework [24]. “ This study utilized four different supervised machine learning 
models and one ensemble learning technique ”. 

3.1 Random Forest regressor (RFR) 

When it comes to classification and regression, the Random Forest method is the better option. It takes input data as a 
starting point, builds multiple models, gathers predictions from each, and then utilizes a voting process to choose the best 
answer [25]. Decision trees are the backbone of this method, which averages the results from various decision tree 
regressors (DTR) to arrive at the final forecast. The forecast is derived by averaging the results from each individual tree 
[26]. “ Created in 2001 by Professor Leo Breiman, this method is also known as Random Decision Forests ” [27]. To build 
the model, we first split the input into several samples according to the number of trees, then generate a basic prediction 
model for each sample, and finally use a bagging technique to combine the results of all the models to get the final 
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prediction [28]. Each decision tree in the Random Forest is completely grown, so there's no need to slow down processing. 
To avoid overfitting and get more accurate findings, it's recommended to increase the number of trees [29]. “As seen in 
Figure 1”. 

 

Figure 1. Design of a random forest model [26]. 
 

Predicting how many trees to use, how many predictor variables to evaluate at each split, node sizes, and minimum sample 
counts at leaf nodes are all critical components of the Random Forest Regression (RFR) model [30]. A dependent variable 
can be predicted by a random forest of simple trees within the framework of a regression model. Using the input variable x, 
the method generates K separate regression trees ℎ𝑘𝑘𝑘𝑘(x). The model's forecast is the mean of all the forecasts made by all 
the trees in the forest using the given set of inputs (x), where k ranges from 1 to K. Using a process called bootstrapping, 
this methodology can increase the trees' variety, which in turn reduces the possibility that their aggregated results will be 
similar to other trees [29], “as seen in Equation 1” : 

 
RFR prediction 1 ∑𝑘𝑘𝑘𝑘 ℎ (x) (1) 

 

𝑘𝑘𝑘𝑘 𝑘𝑘𝑘𝑘=1 𝑘𝑘𝑘𝑘 

 
3.2 Extremely Randomized Trees Regressor (ETR) 

The Extremely Randomized Trees Regressor (ETR) is a robust ensemble machine learning model designed for both 
regression and classification tasks. Similar to the Decision Tree Regressor, ETR constructs decision trees to model 
relationships within a dataset. However, it introduces additional randomness to enhance diversity among trees, leading to 
more robust predictions and reduced overfitting [30].In ETR, the decision trees are built by randomly selecting features and 
thresholds at each split, as opposed to choosing the optimal split point. This randomness increases the variance among 
individual trees while maintaining low bias in the overall ensemble. The branches represent the decision-making criteria, 
while the nodes correspond to options or events. Each node is associated with features, and branches signify potential 
values of these features [31]. 

During training, ETR uses a random sampling of data (with replacement, known as bootstrapping) to grow multiple 
decision trees. The entire dataset is divided into sections using randomly chosen thresholds for the features at each node. 
This process continues recursively until a stopping criterion, such as the minimum node size, is reached, resulting in 
terminal nodes [32]. Unlike traditional decision tree algorithms, ETR does not solely rely on the Mean Squared Error 
(MSE) to determine splits. Instead, splits are chosen by evaluating a random subset of features and thresholds, ensuring 
faster training and greater model diversity. The model's prediction is the average of the outputs from all trees in the 
ensemble, calculated, “as seen in Equation 2”. 

 
E(m) =  1 ∑M [yi(m)−�y(m)]² (2) 

M  i=1 

 
“As seen in Figure 2”, the initial node in each decision tree acts as the root, representing the entire dataset. Subsequent 
nodes enable the dataset to be divided into smaller, more homogenous subsets, ensuring accurate predictions while 
maintaining computational efficiency. 

3.3 K -Nearest Neighbors (KNN) 
 

Regression and classification are just two examples of the many applications of the widely used “ K-Nearest Neighbors 
(KNN) technique”. [33]. It is a simple yet powerful approach in machine learning, where it operates by comparing a data 
point to its nearest neighbors [34]. The fundamental principle of KNN is to assign an object to a category based on the 
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i=1 

characteristics it shares most closely with nearby elements [ 35]. The value attributed to an object is calculated based on the 
average of its K nearest neighbors. Applying weights to nearby entities can enhance the method's effectiveness, particularly 
when closer neighbors have a more substantial influence on the average than those farther away [36]. KNN helps to avoid 
overfitting by adjusting a parameter, k, which is inversely related to the error rate [35]. “As seen in Equation 3,” One of the 
most common distance metrics used in KNN is the Euclidean distance, which measures the space between two points, (r, s). 

 

Figure 2. Shows the diagram of the extra-trees regressor [32]. 
 

3.3 K -Nearest Neighbors (KNN) 
 

Regression and classification are just two examples of the many applications of the widely used “ K-Nearest Neighbors 
(KNN) technique”. [33]. It is a simple yet powerful approach in machine learning, where it operates by comparing a data 
point to its nearest neighbors [34]. The fundamental principle of KNN is to assign an object to a category based on the 
characteristics it shares most closely with nearby elements [ 35]. The value attributed to an object is calculated based on the 
average of its K nearest neighbors. Applying weights to nearby entities can enhance the method's effectiveness, particularly 
when closer neighbors have a more substantial influence on the average than those farther away [36]. KNN helps to avoid 
overfitting by adjusting a parameter, k, which is inversely related to the error rate [35]. “As seen in Equation 3,” One of the 
most common distance metrics used in KNN is the Euclidean distance, which measures the space between two points, (r, s). 

 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 (R,S) =�∑m (𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 − 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖)2 (3) 
 

In a space with m dimensions, let R be represented as 𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, ..., 𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚, and S as 𝐷𝐷𝐷𝐷1, 𝐷𝐷𝐷𝐷2, ..., 𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚 [33]. The k-Nearest Neighbors 
(KNN) Search technique for k equals 3, the three points in dataset D that are nearest to the query point 𝐷𝐷𝐷𝐷1 “As seen in 
Figure 3”. 

 
 

Figure 3. Illustration of the k-Nearest Neighbors (KNN) search method with k set to 3[33]. 

 
3.4 Gradient Boosting Regressor (GBR) 

 
Gradient Boosting is a method in ensemble learning that constructs predictive models step by step by integrating the 
capabilities of weak learners, often decision trees, to develop a robust predictive model [37]. The fundamental principle of 
Gradient Boosting involves iteratively training new models to address the residual errors of prior models, thereby 
enhancing the overall accuracy of predictions [38] as seen in Figure 4. 
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Figure 4. Understanding Gradient Boosting for Regression [38]. 

3.5 Stacking Regressor 
 

Stacking, also referred to as Stacked Generalization, is an ensemble learning method aimed at boosting predictive accuracy 
by merging several models. This technique comprises two primary phases: initially, multiple base models (often called 
level-0 models) are trained using the same dataset; subsequently, a meta-model (level-1) is trained to make predictions 
from these base models. The outputs of the base models act as input features for the meta-model, which is designed to 
combine these predictions to enhance the accuracy of the overall prediction, as seen in Figure 5 [39]. In this study, stacking 
will be applied by integrating four machine learning algorithms. Each base model will analyze the dataset separately, 
producing predictions that will be utilized by the meta-model. 

 
Figure 5. Shows the structure of Stacked Generalization [39]. 

4. The proposed system 

This study utilizes four machine learning techniques, namely Random Forest Regressor (RFR), Extremely Randomized 
Trees Regressor (ETR), K-Nearest Neighbors (KNN), and Gradient Boosting Regressor (GBR), which are combined 
through a method known as Stacked Generalization. Prediction challenges frequently make use of these algorithms because 
of their adaptability, capacity to learn non-linear correlations, and ensemble abilities in learning. Their accuracy in 
forecasting results and ease of interpretation significantly aid decision-making processes concerning the optimization of the 
production and distribution of resources. The framework suggested includes several crucial phases, as seen in Figure 6. 
The procedure starts with the acquisition of the dataset and involves data preprocessing, cleaning and normalization. 
Subsequently, the machine learning models are applied, utilizing the stacking model to capitalize on the advantages of 
various algorithms. In the final phase, the system evaluates the models' performance using metrics to ensure accurate and 
reliable forecasting outcomes. 

Figure 6. Overview of the Suggested System's Workflow. 
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4.1 Datasets Description 

The main and most important phase of this research is collecting data. This dataset includes production records from oil and 
gas wells in New York State that were drilled between 2001 and the current day [40]. This data set features details such as 
county, company name, well status, well type, and producing formation. This dataset comprises 18 columns and 
approximately 302,000 rows. “As seen in Figures 7 and 8,” showcases a segment of this data set, highlighting oil and gas 
production for the ten most active wells. 

 
 

Figure 7.Illustrated oil production: top 10 active wells. 

 

Figure 8. Illustrated gas production of the top 10 active wells. 
4.2 Dataset Preprocessing 

Before manipulating data, it's essential to prepare the dataset to ensure its quality and suitability for analysis. In this study, 
Google Colab was employed as the online programming platform for Python. The data preparation phase involved three 
main steps: cleaning the data, processing the data, and normalizing it. The initial and most crucial step, data cleaning, 
ensures that the dataset is devoid of errors and inconsistencies, confirming the accuracy and completeness of all 
information. Next, the data processing step and the normalization step adjust the numerical values using an L2 scaler, 
which scales the data to a range from 0 to 1. 

4.3 Methodology 

The essential first step in training a machine learning model involves identifying the parameters that will yield the best 
outcomes. Given the complexity of selecting these parameters, we explored every possible value until we established the 
best settings for each model as seen in Table 1. 
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Table 1. Parameters for machine learning models. 
Model Parameters 

RFR n_estimators = 40, max_depth =13, 
random_state = 33 

ETR n_estimators = 50, max_depth =15, 
random_state = 33 

KNN n_neighbors=13, weights='uniform', 
algorithm='auto 

GBR n_estimators=50, learning_rate=0.1, 
random_state = 33 

 
When the oil and gas parameters have been defined, the data is split into two sets: the training dataset and the testing 
dataset. Machine learning models are trained using the training dataset, which is an essential subset of the dataset. It is 
divided into a training set and a validation set and takes up the most space, 75% of the total data. To evaluate the model's 
performance and adjust its hyperparameters, a separate dataset is needed after training. Hyperparameter optimization 
benefits from this dataset, which is called the validation set. The purpose of the testing dataset is to foretell how the model 
will respond to novel, unseen data in real-world scenarios. It makes up a quarter of all the data. 

5. Experimental results 

The methodology was consistently applied to four machine learning algorithms: Random Forest Regressor (RFR), 
Extremely Randomized Trees Regressor (ETR), K-Nearest Neighbors (KNN), and Gradient Boosting Regressor (GBR), 
each utilizing unique sets of parameters. These algorithms were implemented following the cleaning, normalization, and 
processing of the dataset. The results generated by these individual models are combined through Stacked Generalization, 
an ensemble learning model, and used as input features for a final model (known as the meta-model or final estimator), 
which, by combining the results of the base models, learns to predict the target variable. That captures different patterns 
and interactions in the data that individual models might miss. In this stacking regressor, the “ final estimator is a 
RandomForestRegressor, with n_estimators=50 and random_state=42”. This strategy helps to enhance predictive accuracy. 
The performance of these models was assessed using essential metrics such as Mean Absolute Error (MAE), R², and Mean 
Squared Error (MSE). “As seen in Table 2”, the effectiveness of each single model and the stacked generalization model 
across two categories of data: Oil and Gas. The stacked model yielded superior results in predicting oil and gas production, 
achieving the highest R² scores, with averages of 0.974750 for oil and 0.999848 for gas. Overall, the models demonstrated 
slightly better predictive accuracy for gas data compared to oil data, highlighting their superior performance for forecasting 
in this scenario. 

 
 

Table 2. Results of machine learning models and the stacking model. 
Models OUTPUT MAE MSE R² 

RFR 
Oil 0.000273 0.000011 0.948631 
Gas 0.000273 0.000011 0.999720 

ETR 
Oil 0.000295 0.000073 0.932277 
Gas 0.000295 0.000007 0.999819 

KNN 
Oil 0.000324 0.000017 0.938847 
Gas 0.000324 0.000017 0.999580 

GBR 
Oil 0.00306 0.000276 0.391319 
Gas 0.004396 0.000137 0.996638 

Stacking model 
Oil 0.000469 0.000013 0.970900 
Gas 0.000221 0.000007 0.999806 

 
As seen in Figure 9, RFR, ETR, KNN, GBR, and the Stacking model correlation coefficient scores (R² 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣). 

 
As seen in Figure 10, a comparison of the actual oil output with the forecasted oil production using several machine 
learning methods, such as “ RFR, ETR, KNN, GBR, and a Stacking Model”. According to the findings, there was an 
accurate correspondence between the forecasted and actual oil production. Similarly, “As seen in Figure 11”, the labeled 
figure also compares actual gas output with predicted gas production using the same ML models and the Stacking Model. 
The models' capacity to precisely forecast gas output is demonstrated by the findings, which reveal a high link. The 
Stacking Model closely matches the real data for both gas and oil production, demonstrating outstanding forecasting 
capabilities. 
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Figure 9. Displays Oil and Gas R² values in ML models and the Stacking Model. 

 

 

Figure 10. presents a comparison between the forecasted and actual Oil production employing various machine learning 
models, as well as a stacking model. The results are as follows: (a) Random Forest Regressor (RFR), (b) Extremely 
Randomized Trees Regressor (ETR), (c) K-Nearest Neighbors (KNN), (d) Gradient Boosting Regressor (GBR), and (e) the 
Stacking Model. 
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Figure 11. presents a comparison between the forecasted and actual Gas production employing various machine learning 
models, as well as a stacking model. The results are as follows: (a) Random Forest Regressor (RFR), (b) Extremely 
Randomized Trees Regressor (ETR), (c) K-Nearest Neighbors (KNN), (d) Gradient Boosting Regressor (GBR), and (e) the 
Stacking Model. 

6. Conclusion 

Predicting the amount of achievable oil and gas with any degree of accuracy is necessary for the petroleum sector .This 
ability allows companies to efficiently allocate resources, optimize production, and validate the advantages of predicting oil 
and gas output. Various techniques and models are employed to assess the potential recovery from current and future 
reserves over a specified timeframe. “ The study employs machine learning models such as Random Forest Regressor 
(RFR), Extremely Randomized Trees Regressor (ETR), K-Nearest Neighbors (KNN), and Gradient Boosting Regressor 
(GBR) for production prediction ”. These models are trained and tested on production data, and their results are combined 
using Stacked Generalization, a method of ensemble learning. The performance of the models is assessed using metrics like 
“ Mean Squared Error (MSE), Mean Absolute Error (MAE), and R² ”. The experimental findings show that the Stacking 
Model delivers the highest accuracy, with an R-squared value of 99%, indicating its superior predictive capability . 
Improving predicted accuracy is the primary goal of this research, which uses an ensemble learning method. In the future, 
we want to build a more unified system that integrates ML and DL models with other ensemble learning techniques, 
evaluates them against each other, and chooses the best model according to dataset type, attributes, and other pertinent 
factors. 
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