
 

Cite as: A. Sevin, G. Yaman, and D. Atilgan, “Analysis of queue models in simulation applications,” Sakarya University Journal of Computer and Information Sciences, vol. 8, no. 1, 

pp. 123-135, 2025, doi: 10.35377/saucis...1610018 
 
This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License 

  

SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND 
INFORMATION SCIENCES 

http://saucis.sakarya.edu.tr/ 

 

Analysis of Queue Models in Simulation Applications 

 

Abdullah Sevin1* , Göktuğ Yaman1 , Durdali Atılgan1  

 
1Department of Computer Engineering, Sakarya University, Sakarya, Türkiye, ror.org/04ttnw109 

 

ABSTRACT 

With the advancement of technology, the speed and efficiency of information processing have become vital for 

meeting the growing demands of individuals and organizations. As time constraints increase, rapid and accurate 
access to information has gained critical importance. To address these challenges, organizations in the business 

and public sectors are increasingly relying on simulation methods, a core area of computer science, to optimize 

their responses to customer demands. Simulation provides a robust framework for analyzing and modeling 
complex systems. Within this framework, queue theory plays a central role by examining how systems handle 

incoming demands and offering insights into improving resource utilization, minimizing waiting times, and 

enhancing overall performance, particularly in service industries. 

This study provides a detailed analysis of queue theory, exploring its fundamental principles, key features, and 

various models. Additionally, a comparative evaluation of different queueing models is conducted through 
simulation, assessing key performance metrics such as server utilization, maximum queue length, and average 

response time. The results indicate that model selection significantly impacts system efficiency, with certain 

models exhibiting superior performance under specific conditions. These insights equip organizations with the 
tools to develop more effective strategies, optimize their processes, and enhance responsiveness to evolving 

demands. 
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1. Introduction 

In today's rapidly evolving and highly connected world, waiting has become unavoidable, impacting individuals and 

organizations across various domains. Whether it is a customer waiting in line to order coffee, a patient waiting for their 

appointment at a hospital, or vehicles delayed at traffic lights, waiting is a universal phenomenon. As populations grow and 

societal demands become increasingly complex, businesses, public institutions, and other organizations face significant 

challenges in managing waiting times efficiently while maintaining high-quality service. The consequences of waiting extend 

beyond mere inconvenience. Excessive delays can lead to customer dissatisfaction, loss of business opportunities, and 

reduced operational efficiency. These inefficiencies in critical sectors such as healthcare, transportation, and logistics can 

also have broader societal and economic implications. Therefore, understanding and optimizing the dynamics of waiting 

systems is essential for enhancing service quality, resource utilization, and overall system performance. 

Queue theory, a branch of operations research and applied mathematics, provides a robust framework for analyzing and 

managing waiting lines in various systems. By modeling the behavior of customers, service mechanisms, and system capacity, 

queue theory offers valuable insights into how organizations can minimize waiting times, improve resource allocation, and 

enhance customer satisfaction. From service industries like banking and retail to technical applications in computer networks 

and telecommunications, queue theory is critical in addressing the challenges posed by increasing demand and limited 

resources. Simulation, as a complementary tool, further enhances the practical application of queue theory. Using 

computational models, simulation allows organizations to mimic real-world processes, test different scenarios, and evaluate 

the effectiveness of strategies in a controlled environment. This combined approach enables data-driven decision-making, 

empowering organizations to develop efficient and adaptable solutions. 

This study delves into the fundamental principles, characteristics, and applications of queue theory, particularly emphasizing 

its integration into simulation studies. By exploring performance metrics and real-world applications, the study aims to 

highlight the critical role of queue theory in improving organizational processes, meeting customer demands, and addressing 
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the complexities of modern systems. As industries continue to evolve, the insights provided by queue theory and simulation 

remain indispensable for ensuring sustainability and competitiveness. 

2. Literature Review  

Queue theory, a fundamental branch of operations research, has been extensively studied across various disciplines due to its 

critical role in analyzing and optimizing waiting systems. From its theoretical foundations to practical applications, queue 

theory provides valuable insights into system performance, resource utilization, and customer satisfaction. Numerous studies 

have explored its use in diverse fields such as healthcare, transportation, telecommunications, and service industries, 

demonstrating its versatility and effectiveness. This section reviews the existing literature on queue theory, highlighting key 

contributions, practical implementations, and emerging challenges. Particular attention is given to integrating queue theory 

with simulation techniques, which offer enhanced capabilities for addressing dynamic and complex real-world systems. 

Sztrik aimed to establish a technical foundation by addressing the subject of queue theory with its fundamental aspects [1]. 

Ulaş conducted a theoretical examination addressing a parallel-channel queue system by using the birth-death process to 

determine the parameters of a parallel queue system. Additionally, a two-heterogeneous-channel queue system was analyzed 

using a Poisson process [2]. Şimşek implemented a single-service channel model, examining the passages of tankers and 

other ships through the Istanbul Strait. The results indicated intense tanker traffic in the Istanbul Strait, with an increasing 

number of passing tankers [3]. Kiremitçi aimed to efficiently create transportation plans for ships and achieve cost savings 

by addressing the vehicle route planning problem in the maritime transportation sector [4]. Parlak focused on queue systems 

in healthcare institutions and the Central Physician Appointment System (MHRS). The study analyzes the effectiveness of 

appointment systems, information level, satisfaction level, and the benefits they provide patients accessing healthcare services 

[5].  

Batur provided detailed information on the functioning of the evolving air transportation sector and aimed to offer solutions 

to the problems arising in this industry. The research included examples from Türkiye and worldwide air transportation [6]. 

Chaves conducted a study on two-stage queue models developed for the aviation sector. A single-channel multi-phase queue 

model was examined in the first stage, and in the second stage, a general distributed single-phase model was proposed [7]. 

Adan and Resing examined queue model examples in detail, providing technical information about mathematical modeling 

[8]. Ertuğrul and others studied queue theory and analyzed customer waiting queues at branches of two banks operating in 

the city of Denizli using queue theory [9]. Majid and Manoharan compared the M/M/c queue model from two different 

perspectives, comparing the model they developed [10]. Yıldız and Arslan examined students' waiting queues in the Central 

Cafeteria of Düzce University, calculating the average performance of the system [11]. Maragathasundari and others studied 

non-Markovian queue models for aircraft control systems [12].  

Lan and Tang performed stability analysis by evaluating the probability of problem occurrence in the Geo/Geo/1 queue 

system [13]. Kim and others created a simulation-based queue model for unmanned and automatic systems by examining 

potential airport queue models [14]. Anosike and Nneka evaluated the adequacy of the Nigeria Nnamdi Azikiwe International 

Airport (NAIA) for current demand by mathematically modeling the passenger queue problem [15]. Smith analyzed M/M 

grouped queue models, considering rounding errors in numerical calculation situations [16]. Jawab and others aimed to 

optimize and enhance the passenger queue model at Fez-Sais Airport in Morocco [17]. Girginer and Şahin investigated the 

waiting queue problem during the use of sports equipment in sports facility operations through simulation methods. The study 

simulated the system in a sports facility using data collected over 45 days to identify factors affecting capacity issues [18]. 

Kumar and others studied the performance parameters of the M/M/1/N feedback customer queue [19].  

Artalejo and Falin analyzed the renewable queue model, where a customer cannot receive service based on limited capacity, 

density, and other reasons. They compared M/G/1 and M/M/c queue models [20]. Smith and others examined a queue system 

in the M/M/N/N format where two types of users, prioritized and non-prioritized, attempt to reach N resources. This study 

aims to model future portable radio systems [21]. Ibe and Isijola examined a queue system with multiple vacations following 

the busy period in the M/M/1 queue model. They interpreted the differences between the model with zero duration, where no 

customer is served after the busy period, and the model with nonzero duration, where service can be provided immediately 

after the busy period [22]. Vandaele and others examined a traffic flow analysis traditionally based on experimental 

(empirical) methods and developed an analytical queue model to perform this analysis. They described the model established 

for traffic control and density analysis on a main road [23]. Using Bessel functions and probability techniques, Kumar 

examined the Markovian multi-phase queue system (M/M/c). According to the results, the established model could play a 

significant role in systems such as emergencies in hospitals and call centers [24].  

Wang and Zhu proposed a dynamic queue model solved using the multiple-server model for excessive demand. They used 

an assumption involving customers joining the queue early or late, differentiating evaluation and cost criteria. They examined 

this model in systems such as shopping malls, restaurants, and highways [25]. Sharma and others explained the fundamentals 

and usage of queue theory, offering information on mathematical modeling [26]. Christien and others studied the sequencing 

of landing aircraft with different operational procedures in the three major ports of Europe. This study aimed to shed light on 

solving complex operations during peak hours [27]. Mehri and others worked on explaining basic queue models and focused 
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on mathematical modeling [28]. Chew worked on a new modeling of the standard M/M/1 queue structure, proposing a 

queueing model in this new structure that includes single-phase and real/virtual customer types. They compared this model 

to the standard model with simulation support [29]. In his research book, Winston focused on the fundamentals of queue 

theory and mathematical modeling [30].  

Awasthi studied the M/M/1/K finite capacity queue model on customer behaviors, including balking (customer leaving if the 

queue is too long) and reneging (customer leaving if the queue is moving too slowly) [31]. Som and Seth developed a Markov 

queue system for single-phase and finite arrivals. Addressing the encouraged arrival model, they created a model reflecting 

the effects of discounts and attractive offers implemented by companies. They examined the model numerically and through 

simulation [32]. Jhala and Bhatwala proposed a model to reduce airport queues and increase customer satisfaction [33]. Çevik 

and Yazgan developed a queueing model to determine customer waiting times in a bank and calculated the average efficiency 

of the system [34]. Poongodi and Muthulakshmi proposed a control chart method for the infinite capacity M/M/s queue 

model. This method aims to predict possible waiting times, maximum waiting times, and minimum waiting times in advance, 

considering customer satisfaction [35]. Using the operator analytics technique, Massey designed an M/M/1 Markov queue 

model for non-static situations. Using a common parameter to determine arrival and service rates, this technique reveals 

dynamic asymptotic behavior different from broad time interval analysis [36]. Idris and others analyzed data to determine 

flow constraints delaying departure operations at Boston Logan International Airport, comparing it with other airports [37].  

Shone and others worked on the optimal control and modeling of aircraft queues at runway thresholds, providing a literature 

review of related studies [38]. Tiwari and others studied the M/M/1/N queue model with Poisson arrivals and exponential 

service times, researching the expected total minimum cost [39]. Thiagarag and Seshaiah worked on the landing aircraft 

queues, exploring the limits of analytical approaches and making inferences about how simulation methods should be used 

[40]. Bertsimas and Nakazato examined the MGEL/MGEM/1 queue model using the MGE method, a subclass of the Erlang 

distribution. They calculated the queue length distribution and waiting times using the first-come, first-served principle [41]. 

Karapetyan and others worked on the pre-departure sequencing of aircraft, conducting a study on the goals, requirements, 

and real-time decision mechanism of the system developed using an algorithm [42]. Aydın worked on determining the landing 

order and times of aircraft in the air. The study suggested that the aircraft scheduling problem could be solved using 

metaheuristic methods, achieving an optimal solution, and shedding light on future research related to ACP [43]. Arslan 

focused on efficiently using aircraft gates and optimizing the gate assignment process by considering factors that could affect 

passenger satisfaction [44].  

Doğan worked on minimizing costs arising from unexpected flight routes by airline companies. For this purpose, they 

developed two different decision support systems by analyzing meteorological data retrospectively and making future 

predictions [45]. Fatima and others present the efficiency of patient management in healthcare institutions by comparing 

traditional queuing systems with modern technological advancements. The study highlights how integrating innovative 

technologies can improve operational efficiency, minimize delays, and enhance patient satisfaction [46]. Anita and others 

present a Markovian two-stage tandem queueing system with retrial policy and server vacation, where customers undergo 

service at both stations and those unable to be served immediately retry after a random time. The system's performance is 

analyzed through birth-death balance equations, and the effects of various parameters are illustrated graphically [47]. Dhibar 

and Jain analyzed a Markovian retrial queueing system with two types of customers, unreliable servers, and Bernoulli 

feedback, focusing on customer decisions to join or balk based on service profit and delay cost. The study employs Chapman-

Kolmogorov equations and the probability-generating function method to derive performance metrics, and optimization 

techniques like PSO and GWO are used for cost optimization and QoS enhancement, with results validated through numerical 

simulations [48].  

Amjath and others review past research on the performance evaluation and optimization of Material Handling Systems 

(MHSs) using queueing network models. It comprehensively analyzes relevant research questions and adopts systematic 

literature review, bibliometric, and content analysis techniques to offer insights for scholars and practitioners in material  

logistics [49]. Ambika and others examine a queueing model in production management with working vacations and 

Bernoulli vacations, where the manufacturing unit operates at a reduced rate during maintenance phases. Mathematical 

techniques are used to calculate transient state probabilities, and numerical examples illustrate the impact of these dynamics 

on production management [50]. Çakmak and Torun evaluate the performance of different queue management algorithms in 

LTE networks through simulations conducted in the NS-3 environment [51]. Çakmak and Albayrak comprehensively analyze 

various active queue management techniques used in mobile communication networks. It examines different algorithms, their 

working principles, and their impact on network performance [52]. In another work, they also analyze the performance of 

queue management algorithms between the Remote-Host and PG-W in LTE networks [53]. Gündoğar and others analyze a 

spring mattress manufacturing line to identify and eliminate bottlenecks using the Theory of Constraints (TOC). By applying 

simulation-based methods in Arena 13.5, they tested various scenarios to optimize production flow [54]. 

Overall, the reviewed literature demonstrates the broad applicability of queueing models across various domains, highlighting 

their potential to enhance operational efficiency, minimize waiting times, and improve customer satisfaction. Similarly, our 

study compared simulations of different queueing models to evaluate their performance under various conditions. By 

analyzing models such as M/M/1, M/D/1, and others, we aimed to provide deeper insights into their practical applications 
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and identify which models most effectively optimize service systems. This comparative analysis offers valuable contributions 

to understanding queueing theory and its role in improving operational processes across diverse industries. 

3. Queueing Theory 

3.1. What is Queueing Theory?  

Queueing theory is a branch of applied mathematics and operations research that analyzes waiting lines or queues. It studies 

the behavior of customers arriving for service, the processes they undergo, and the factors affecting system efficiency. By 

examining these dynamics, queueing theory provides valuable insights into optimizing service processes and minimizing 

delays. At its core (Figure 1), queueing theory evaluates key components such as arrival rates (the frequency of customer 

arrivals), service rates (the speed at which services are provided), and queue disciplines (rules governing the order of service). 

Ordinary queue disciplines include First-In-First-Out (FIFO), Last-In-First-Out (LIFO), and priority-based approaches, each 

suited to different operational contexts [55].  

For instance, FIFO is often used in retail checkout lines, while priority-based systems are common in emergency healthcare 

services. This theory is not only concerned with the mathematical analysis of queues but also with their practical implications. 

By modeling waiting systems, organizations can improve resource utilization, reduce waiting times, and enhance customer 

satisfaction. The queueing theory finds applications in diverse fields, including banking, transportation, telecommunications, 

and healthcare, making it an essential tool for academic research and practical decision-making. As modern systems grow 

more complex, queueing theory is increasingly combined with simulation techniques to address dynamic and unpredictable 

scenarios. This integration enables organizations to test and refine strategies in virtual environments, ensuring optimal 

performance in real-world applications. 

 

Figure 1. Basic Queueing System Schematic 

3.2 Poisson Process 

Let { 𝑁(𝑡): 𝑡 ≥ 0} be a counting process and 𝜆 > 0. A counting process satisfying the following properties is called a Poisson 

process with rate 𝜆 [56]:  

(Property 1) Independent Increments: The process has independent increments. The number of events appearing in non-

overlapping time intervals is independent of each other. For any ordered time, indices 0 ≤ 𝑡1 < ⋯ < 𝑡𝑛, the random variables 

𝑁𝑡1
, 𝑁𝑡2

− 𝑁𝑡1
, … , 𝑁𝑡𝑛

− 𝑁𝑡𝑛−1
  are independent.  

(Property 2) Poisson Distribution: The number of events occurring within a unit time interval follows a Poisson distribution 

with an average rate of 𝜆. Additionally, the number of events appearing within a time interval of length 𝑡 follows a Poisson 

distribution with a mean of  𝜆𝑡: 

Pr (𝑁𝑡+𝑠 − 𝑁𝑠 = 𝑘) =
𝑒−𝜆𝑡(𝜆𝑡)𝑘

𝑘!
, 𝑘 = 0,1,2, … (1) 

(Property 3) Considering a small positive real number ℎ ≥  0: the possibility of a single event appearing in the time period 

[𝑡, 𝑡 + ℎ) is: 

Pr (𝑁𝑡+ℎ − 𝑁𝑡 = 1) =  𝜆ℎ + 𝑜(ℎ) (2) 

On the other hand, the probability of at least two events occurring in [𝑡, 𝑡 + ℎ) is: 

Pr (𝑁𝑡+ℎ − 𝑁𝑡 ≥ 2) = Pr (𝑁ℎ ≥ 2) = 𝑜(ℎ) (3) 

The probability of no events occurring in [𝑡, 𝑡 + ℎ) is: 

Pr (𝑁ℎ = 0) = 1 − 𝜆ℎ − 𝑜(ℎ) (4) 

These probability equations imply that the likelihood of a substantial number of events happening in small time intervals 

tends to be small. 

Theorem: If 𝑁𝑡 has a Poisson distribution and 𝑋𝑛 represents the time among the (n−1)th and nth events, then the inter-arrival 

times are independent and follow an exponential distribution with a mean of 1/𝜆 [57]. 
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3.3. Characteristics of Queueing Theory 

Fundamentally, a queue consists of two main components: 

• The side requests the service (also known as the arrival side or customers). 

• The side provides or completes the service (also known as the service side or server). 

The elements of the queue system are further detailed in the following subsections. 

3.3.1. Called Population 

The population of possible customers is known as the calling population. Although the number of potential customers is 

technically finite, it is often assumed to be infinite to simplify the model. This assumption is reasonable when the potential 

customer base is large, particularly if the number of customers currently receiving or waiting for service represents only a 

slight fraction of the total population. Assuming an infinite population implies that the arrival rate of customers is unaffected 

by the number of customers already in the system, allowing the arrival rate to remain constant over time [58]. 

3.3.2. System Capacity 

Queue systems often limit the number of customers occupying the waiting line or the system. If the system reaches capacity, 

incoming customers cannot enter and are immediately redirected to the calling population. However, some systems are 

designed with infinite capacity, allowing unlimited customers to enter. In systems with restrained capability, a distinction is 

made between the arrival rate, the number of customers arriving per unit time, and the effective arrival rate, which represents 

the number of customers per unit time that enter the system [59]. 

3.3.3. Arrival Process 

For infinite population models, the arrival process is characterized by the time intervals between consecutive customer 

arrivals. Arrivals can occur at planned or random times. In the case of random times, the intervals between arrivals are 

typically characterized by probability distribution. Customers can also arrive individually or in groups, with the party being 

of a fixed or random size. For random arrivals, the Poisson arrival process is the most significant model and the primary focus 

of our consideration. Let 𝐴𝑁, represent the inter-arrival time for the 𝑁, then between the (𝑁 − 1)𝑡ℎ and 𝑁𝑡ℎ customer, it 

follows an exponential distribution with an average of  (1/𝜆) per unit of time. The arrival rate is 𝜆, 𝑤ℎ𝑖𝑐ℎ denotes the average 

number of customers arriving per unit of time. Over a long time, interval 𝑇, the total number of arrivals follows a Poisson 

distribution with an average of 𝜆𝑇 customers [60]. 

3.3.4. Queue Behavior and Queue Discipline 

Queue performance refers to customers' actions and decisions while waiting for service. During this waiting period, customers 

may sometimes decide not to join the queue, which is known as balking. Customers who have joined the queue might leave 

before receiving service, which is called reneging. Additionally, when multiple queues are available, customers might switch 

to a different queue if they perceive it to be moving faster, a behavior called jockeying. Queue discipline refers to the rules 

determining the order in which customers are selected for service. One of the most ordinary queue disciplines is FIFO, where 

the customer who has been waiting for the longest is served first. Another less common discipline is LIFO, where the most 

recent customer who joined the queue is served first. Service-In-Random-Order (SIRO) involves selecting customers for 

service randomly without regard to their arrival time or position in the queue. In some systems, customers may be served 

based on priority. In such cases, customers with higher priority (e.g., VIPs or urgent cases) are served before others, regardless 

of their position in the queue [61]. 

3.3.5. Service Times and Service Mechanism 

The service times for consecutive arrivals are denoted as 𝑆1, 𝑆2, … can either be constant or random. In cases where they are 

random, {𝑆1, 𝑆2, 𝑆3, … } is typically modeled as a sequence of independent and identically distributed random variables. While 

service times for customers of the same type, class, or priority often share the same distribution, customers of several types 

may have distinct service time distributions. Furthermore, service times in some systems may vary based on factors such as 

the time of day or the length of the waiting line. A queue system comprises a network of service counters and interconnected 

queues. Each service center contains a certain number of servers, denoted b 𝐶, operating in parallel. When a customer reaches 

the front of the queue, they are assigned to the first available server. The parallel service mechanism can take different forms: 

a single server (𝐶 = 1) 𝑜𝑟 multiple servers (1 < 𝐶 < ∞)[62]. 

 



 

Abdullah Sevin, Göktuğ Yaman, Durdali Atilgan                             Sakarya University Journal of Computer and Information Sciences 8 (1) 2025, 123-135 

128 

4. Analysis of Queue Models in Simulation Applications 

4.1. Representation of Queue Models 

There are numerous queue representations, and a six-character notation is commonly used to represent these models. The 

first three characters of this notation were proposed by Kendall in 1953 and signify the arrival distribution, service time 

distribution, and the number of servers (channels). A. M. Lee later added the fourth and fifth characters in 1966. In 1968, 

Hamdy A. Taha defined the last character. This notation is often used in software to describe and define queue models. The 

Kendall notation summarizes three key factors: arrival distribution, service time distribution, and the number of servers, 

represented as A/B/C/D/E/F. These characters correspond to the following [63]: 

• A: Distribution of arrivals 

• B: Distribution of service times 

• C: Total parallel servers (channels) 

• D: Queue rules 

• E: System capability 

• F: Population size, 

Standard notations that can replace A and B include M (exponential), D (constant or deterministic), Ek (Erlang), and G 

(general). These notations represent the characteristic distribution type for arrivals and service times. 

4.2. The Importance of Queue Theory for Simulation 

Queue theory is a crucial concept in simulation studies, especially when simulations assess and enhance the performance of 

businesses, organizations, or systems. The following aspects are of particular significance in highlighting the importance of 

queueing theory in the context of simulation [64]: 

1. Analysis of Waiting Times: Queue theory is utilized to understand how waiting and queues form within a system. 

When used to model a specific process or point in a system during a simulation, it helps evaluate how waiting occurs 

and assesses its impact on process efficiency. 

2. Optimization of Resource Utilization: Queue theory analyzes the effective utilization of resources such as personnel, 

machinery, service points, etc. It can be used in simulation models to develop strategies for enhancing the efficiency 

of specific resources or service points and optimizing overall capacity. 

3. Improvement of Service Quality: Queue theory is valuable for evaluating and improving the service quality of a 

system. Since waiting times directly impact customer satisfaction, using queue theory through simulations allows 

for optimizing service processes, ultimately enhancing the overall customer experience. 

4. Determination of Performance Metrics: In simulation models, queue theory can be used to identify specific 

performance metrics. These metrics, such as average waiting time and resource utilization efficiency, can be 

determined to assess and improve system efficiency. 

5. Risk Analysis: Queue theory applies to understanding how a system behaves in certain scenarios and evaluating 

potential risks. Employing queue theory through simulations provides insights into how a system would respond in 

specific scenarios. 

In conclusion, queue theory is a powerful tool for analyzing systems' effectiveness, performance, and resource utilization 

within simulation models. This theory can assist businesses in optimizing their processes, making more efficient use of 

resources, and ultimately improving customer satisfaction. 

4.3. Applications of Queue Theory 

Queue theory has diverse applications across multiple sectors, which is crucial in optimizing processes and improving 

efficiency. Some key areas where queue theory is commonly applied include [65]: 

1. Service Sector: In service industries such as banks, hospitals, and restaurants, queue theory is employed to analyze 

and optimize customer service processes. It reduces waiting times, improves service quality, and manages staff 

capacity. 

2. Transportation and Logistics: Queue theory is applied in transportation and logistics sectors, including traffic 

management, airport flight scheduling, and bus terminal operations. It is used to evaluate the effectiveness and 

efficiency of transportation systems, aiming to reduce waiting times and develop strategies for more effective 

resource utilization. 
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3. Telecommunications: Queue theory is utilized in telecommunication systems such as call centers, data transmission 

lines, and internet service providers. It helps evaluate network performance, optimize capacity, and enhance service 

quality. 

4. Manufacturing and Industrial Processes: In industrial settings, including manufacturing lines, inventory 

management, and order processing, queue theory is applied to improve production efficiency and optimize material 

flow. 

5. Computer Science: Queue theory is used in computer science fields such as computer networks, data transfer 

between processors, and database management. It helps evaluate system performance and response times. 

6. Finance and Banking: Queue theory finds application in areas like bank queues, ATMs, and the processing of 

financial transactions. It aims to improve customer service, minimize waiting times, and increase transaction 

capacity. 

7. Healthcare Services: In healthcare, queue theory is applied to emergency services, appointment scheduling, and 

treatment processes. Its goal is to reduce patient waiting times and assist in the more effective management of 

healthcare services. 

These application areas highlight the versatility of queueing theory as a valuable tool for optimizing system performance 

across various industries. For instance, queuing theory can be employed in the banking sector to optimize customer service 

operations. Banks can adjust staffing levels by analyzing factors such as waiting times and transaction volumes to ensure 

customers are served more efficiently, particularly during peak hours. This reduces waiting times, improves customer 

satisfaction, and more effective resource utilization. In logistics, queuing models can enhance material handling and 

warehouse operations. Logistics companies can reduce bottlenecks, minimize delays, and improve throughput by optimizing 

the flow of goods and managing inventory more effectively. Queuing theory in this context contributes to better scheduling 

of tasks and resource allocation, leading to more streamlined operations and cost savings. By applying queuing theory in 

these real-world settings, organizations can achieve tangible benefits such as increased operational efficiency, reduced costs, 

and improved customer satisfaction, ultimately fostering a more competitive and sustainable business model. 

4.4. Queue Theory Performance Metrics 

Various sources may use various terms to describe the metrics used to evaluate the performance of queue models, but these 

metrics essentially measure the same core concepts. Waiting time refers to the duration customers spend waiting before 

receiving service. In contrast, the time spent on the system is the total time a customer spends, including waiting and service 

time. The distribution of the number of customers in the system reflects the number of customers present at any given time. 

Workload distribution is the total service time required for waiting customers and the remaining service time for the customer 

being served. The service station’s busy time refers to the continuous duration during which the service station remains 

occupied and operational. These metrics provide valuable insights into a queueing system's overall performance and 

efficiency [66]. 

Key performance metrics include average waiting time and time spent in the system. These metrics are significant in studies 

aimed at understanding system performance. The operational characteristics of steady-state queue systems can be calculated 

using various formulas, which help assess how the system performs under different conditions.: 

• 𝜆 (Average Arrival Rate): The mean number of customers that arrive on the system within a unit of time. 

• 𝜇 (Average Service Rate): The mean number of customers that serve in the system within a unit of time. 

• 𝑝 (Average System Utilization Rate): 𝜆 𝜇⁄ , the mean system utilization rate. 

• 𝐿 (Average Number of Customers in the Queue System): 𝜆/(µ −  𝜆), The mean number of customers present in the 

queueing system at any given time. 

• 𝐿𝑞 (Average Number of Customers Waiting in the Queue): 𝑝𝐿, The mean number of customers waiting in the queue 

for service at any given time. 

• 𝑊 (Average Time Spent in the System): 1/(µ − 𝜆), The total average time a customer spends in the system, 

encompassing both the waiting time and the service time. 

• 𝑊𝑞 (Average Time Spent Waiting in the Queue): 𝑝𝑊, the average time spent on delay in the queue. 

• 𝑃𝑛 (Probability of having n Customers in the Queue): (1 − 𝑝)𝑝𝑛, the possibility of having n customers in the queue 

at any given time. 

These formulas and models should be used under the condition that the service rate is greater than the arrival rate (µ >  𝜆). 

Otherwise, the queue can excessively lengthen. Therefore, it is essential to ensure that this condition is met before using these 

formulas and models. 
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4.5. Performance Evaluation of Queueing Models  

In this section, we compare several widely used queueing models based on three key performance indicators: Server 

Utilization, Maximum Queue Length (MQL), and Average Response Time (ART). These parameters are essential for 

evaluating the efficiency and effectiveness of different queuing systems under varying conditions. The queueing models 

considered in this comparison include the following:  

• M/M/1: Single-server queue with exponential inter-arrival and service times. 

• M/D/1: Single-server queue with exponential inter-arrival times and deterministic service times. 

• M/N/1: Single-server queue with exponential inter-arrival times and Normal-distributed service times. 

• M/U/1: Single-server queue with exponential inter-arrival times and uniform service time distribution. 

• M/Weibull/1: Single-server queue with exponential inter-arrival times and Weibull-distributed service times. 

• M/LogNormal/1: Single-server queue with exponential inter-arrival times and LogNormal-distributed service times. 

• M/Erlang/1: Single-server queue with exponential inter-arrival times and Erlang-distributed service times. 

In queueing theory, the calculation of key performance metrics such as server utilization, ART, and MQL generally follows 

specific formulas. Still, the exact calculation depends on the type of queueing model and its respective characteristics. Server 

Utilization is typically calculated using the formula ρ =
λ

μ
 , where λ is the arrival rate and μ is the service rate. This formula 

holds for most queueing models, although slight variations may exist depending on the system's characteristics. ART is 

calculated based on Little’s Law and specific model characteristics. For many models, the general formula is 𝑊 =
1

μ−λ
, with 

modifications made for different service distributions (e.g., Poisson, deterministic, Weibull). MQL is typically computed 

using  L𝑞 =
λ2

μ(μ−λ)
, but in models with capacity restrictions (such as M/N/1), this formula must be adjusted to account for the 

system's maximum capacity. Each queueing model (e.g., M/M/1, M/D/1, M/N/1) introduces specific variations in these 

formulas based on factors such as arrival rates, service rates, and the type of service distribution. Models with deterministic, 

uniform, or specialized distributions (e.g., Weibull or LogNormal) require tailored calculations that reflect these distribution 

characteristics. While general formulations exist, the exact metrics depend on the specific queueing model and its associated 

parameters. 

The analysis uses a mean inter-arrival time of 4.5 minutes, representing the average time between successive arrivals. The 

mean service time, the average time a server takes to serve a customer, varies across three values: 2.5, 3.2, and 4. The Sigma 

value, representing the standard deviation of the service time distributions, is also set to 0.6. The distribution parameters are 

adjusted based on the mean service time for models involving non-exponential service times, such as Weibull, LogNormal, 

and Erlang. Specifically, for each distribution, the shape and scale parameters (for Weibull), the mean and sigma (for 

LogNormal), and the k and lambda values (for Erlang) are tailored to match the corresponding service time characteristics.  

The values for the mean service time (2.5, 3.2, and 4) and sigma (0.6) were chosen to represent different service scenarios 

with varying system utilization and congestion levels. The mean service time values allow for analyzing queueing 

performance under different operational conditions: 2.5 represents a relatively low service time, indicating a faster processing 

rate with lower congestion; 3.2 represents a moderate service time, balancing efficiency and queuing effects; and 4 represents 

a higher service time, simulating a more congested system with longer waiting times. These values ensure meaningful 

comparisons across different queueing models by examining their impact on key performance metrics such as server 

utilization, maximum queue length, and average response time under different conditions. The selected sigma value of 0.6 

also introduces controlled variability in service times for models incorporating stochastic distributions, such as LogNormal 

and Weibull, ensuring realistic variations without extreme deviations. These parameters were carefully determined to 

comprehensively evaluate queueing behavior while maintaining system stability and producing interpretable results. To 

ensure high accuracy and minimize the impact of random fluctuations, the system is simulated with 1,000,000 arrivals. This 

large sample size guarantees that the results are statistically reliable and represent real-world conditions. The performance 

metrics, including server utilization, MQL, and ART, are computed for each model under these conditions. The results will 

provide valuable insights into the strengths and limitations of each queuing model, offering a basis for selecting the most 

appropriate model for different system requirements. 

Figure 2 presents the ART for various queueing models at three mean service times: 2.5, 3.2, and 4 minutes. The comparison 

of ART across various queueing models reveals significant insights into the behavior of the systems under different service 

time distributions. The M/M/1 model consistently shows the highest ART, especially as the mean service time increases. This 

can be attributed to its exponential distribution, which leads to high arrival and service times variability, causing greater 

waiting times. In contrast, models with more predictable service time distributions, such as M/D/1, M/N/1, and M/U/1, exhibit 

lower response times. The M/D/1 model, with its deterministic service times, performs particularly well in maintaining stable 

response times. Models utilizing more flexible service time distributions, like M/Weibull/1 and M/LogNormal/1, show 

slightly higher response times than the deterministic models but still offer improvements over M/M/1. The Weibull and 
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LogNormal distributions capture more complex real-world service time behaviors, leading to more accurate performance 

predictions in certain systems. Lastly, the M/Erlang/1 model exhibits lower ART in most scenarios, demonstrating improved 

performance in handling service time variations. Its ability to achieve relatively lower response times suggests that it may 

offer advantages in systems where reducing waiting times is a priority. The results emphasize the importance of selecting an 

appropriate queueing model based on system characteristics. While M/M/1 provides a baseline for simple scenarios with 

exponentially distributed service times, models such as M/D/1, M/Weibull/1, and M/Erlang/1 show varying performance 

characteristics that may benefit systems with different service time distributions. 

 
Figure 2. The Average Response Time of the Models 

 

As the mean service time increases, the MQL in Figure 3 tends to grow for all models, reflecting the direct relationship 

between service time and queue length. However, the performance of different queue models varies. The M/M/1 model 

exhibits the highest MQL across all service times, with values of 21, 37, and 85, respectively. This is due to the variability 

introduced by the exponential distribution of service times, which leads to larger fluctuations and higher queue lengths. On 

the other hand, the M/D/1 model shows the best performance, with the lowest MQL at each mean service time value: 12, 20, 

and 42. This is expected due to the deterministic service times in the M/D/1 model, which result in more predictable and 

stable system behavior, reducing the chances of large queues building up. The M/N/1 and M/U/1 models display moderate 

increases in MQL as service time increases, but they still perform better than the M/M/1 model, with values of 13, 21, and 

49 for M/N/1, and 15, 24, and 45 for M/U/1. These models exhibit better control over the queue than the M/M/1 model but 

are not as efficient as M/D/1. The M/Weibull/1 and M/LogNormal/1 models demonstrate moderate MQL values that are 

higher than M/D/1 but lower than M/M/1, showing that the flexibility of these distributions in capturing variability leads to 

slightly higher queue lengths (17, 26, 54 for M/Weibull/1 and 12, 21, 45 for M/LogNormal/1). Finally, the M/Erlang/1 model, 

while still relatively efficient in managing queue lengths, performs slightly worse than M/D/1, with MQL values of 13, 20, 

and 47. The results indicate that the Erlang distribution leads to shorter queue lengths than the M/M/1 and M/Weibull/1 

models in the tested scenarios. This suggests that the choice of service time distribution plays a significant role in queue 

behavior, highlighting the need for careful model selection based on system requirements. 

When analyzing the server utilization in Figure 4, values across different queue models, we observe that the values for all 

models are quite similar, particularly when the mean service time increases. This suggests that the models operate with 

relatively consistent utilization rates, with minimal differences between the deterministic and stochastic models. The M/M/1, 

M/D/1, M/N/1, M/U/1, M/LogNormal/1, and M/Erlang/1 models all show a steady increase in server utilization as the mean 

service time grows, with values progressing from 0.5552 to 0.7119, and then to 0.8871 as the service time reaches 4. The 

increased utilization across these models is expected because longer service times mean the server is busy for a greater portion 

of the time. However, the M/Weibull/1 model shows slightly lower utilization than the other models. At mean service times 

of 2.5, 3.2, and 4, the utilization values for M/Weibull/1 are 0.5234, 0.6694, and 0.8355, respectively. This is likely due to 

the shape of the Weibull distribution, which, depending on the shape parameter, can produce more variability in service times, 

leading to periods where the server is idle more often than in models with deterministic or less variable distributions. 
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Figure 3. Maximum Queue Length of the Models 

 

 
Figure 4. Server Utilization of the Models 

5. Conclusions 

This article comprehensively examines queueing theory and its role in simulation applications. It offers a detailed exploration 

of fundamental concepts, including input queues, output queues, service points, and waiting lines, laying a solid foundation 

for understanding the core elements of queueing theory. The study also delves into mathematical models for assessing 

processor speed, advanced queueing systems, and overall performance. 

In addition to covering the basic principles of queueing theory, this article emphasizes its mathematical underpinnings, 

offering readers a well-rounded understanding of the subject. A simulation-based application compares the performance of 

different queueing models under varying service time conditions. The results reveal that models such as M/D/1 and 

M/Erlang/1 generally lead to shorter queue lengths and reduced average response times compared to M/M/1 in specific 

scenarios. This highlights the significance of choosing an appropriate model based on system requirements to optimize 

efficiency and performance. 

In conclusion, this study demonstrates that queueing theory is a powerful tool for simulating and optimizing system 

performance when applied correctly. The findings underscore the importance of selecting suitable queueing models based on 
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system characteristics, as different models exhibit distinct advantages in handling service time variations. By integrating 

theoretical insights with simulation-based analysis, this study provides a valuable resource for researchers and practitioners 

seeking to enhance system performance through queueing theory applications. 
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