
 

Cite as: O. J. Adetunji. (2025). Flood area prediction using a stacked ensemble of tree-based algorithms. Sakarya University Journal of  Computer and Information Sciences. vol. 8, no. 2, pp. 
322-345, 2025 doi: 10.35377/saucis...1626057 

 
This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License 

SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND 
INFORMATION SCIENCES 

http://saucis.sakarya.edu.tr/ 
 

Flood Area Prediction using a Stacked Ensemble of 
Tree-Based Algorithms 

 
Olusogo Julius Adetunji  

 
Department of Computer Engineering, Olabisi Onabanjo University, Ago Iwoye, Ogun State, Nigeria, ror.org/05jt4c572 
 
 

ABSTRACT 
Floods cause significant loss of life, property damage, and long-term socioeconomic disruptions, with over 100 annual 
deaths globally. This research addresses the drawbacks of the existing models, such as overfitting effects, inadequate 
dataset and limited study areas through the adoption of a stacked ensemble-based model. The model contained five 
different tree - based models namely hoeffding tree, decision tree, functional tree, reduced error pruning (REP) tree and 
decision stump algorithms. The model was implemented as a system using MATLAB Simulink, version 2020a on laptop 
with 4GB Memory. Experimental results indicate that REP Tree performed better than other four individual tree 
algorithms with accuracy of 98.74%, 97.81% and 97.43% for Dataset A, Dataset B and Dataset C respectively. For 
Dataset A, stacked ensemble model performed better than single algorithms with accuracy, precision, specificity, f1score 
and recall of 99.62%, 99.51%, 99.51%, 99.63% and 99.73% respectively. For Dataset B, stacked ensemble model also 
performed better than single algorithms with accuracy, precision, specificity, f1score and recall of 98.45%, 99.11%, 
98.12%, 97.37% and 99.06% respectively. For Dataset C, stacked ensemble model performed better than single 
algorithms with accuracy, precision, specificity, f1score and recall of 98.75%, 99.25%, 99.64%, 99.90% and 99.24% 
respectively. Our model’s 99.62% accuracy on Dataset A demonstrates potential for integration with real-time sensor 
networks, enabling scalable flood early-warning systems in vulnerable regions like Lagos and Kuala Lumpur. 
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1. Introduction 
 

Flooding is the leading contributor of natural disasters that occurs in a situation, in which the soil are supplied with water, 
more than its retentive capacity [1–4]. Different factors contribute to the occurrence of flood and these factors are categorized 
into natural and human factors [3]. Floods are caused naturally as a result of houses built near river, insufficient or no 
vegetation and nature of soil [5–8] while human causes include dam overflow or dam break down and poor town planning 
[1], [9]. Considering and examining different types of flood, flash flood is prevalent and most fatal form due to its sudden 
mode of actions [10, 11]. Other types include coastal, riverine and urban flooding [12]; coastal flood is caused by storm 
sudden rise [13]; urban flooding occurs in cities where there is no or less proper drainage to accommodate the passage of 
water; riverine flooding occurs when water fills the river or stream to the extent of spreading on its bank [1]. Globally, flood 
occurrence results to greater than 100 deaths on average of 10 times a year [14]. Several measures can be taken in controlling 
and preventing different categories of floods, such measures include effective town planning system, construction of proper 
drainage structures, effective flood waste management system; conservation of soil along drainage areas which helps in 
reducing soil erosion caused by flood and also, improved ecosystem protection and planting of trees by relevant authorities 
[22,23].  Machine learning algorithms, artificial intelligence and decision support systems have been widely applied for the 
prediction of different categories of diseases and natural disasters [4, 17, 24, 25, 46, 47]. Examples of such machine learning 
models for the prediction of floods are Artificial Neural Networks [11, 17, 26, 27]; Support Vector Machine [11, 28, 29, 37]; 
decision tree [2, 30–32]. Artificial Neural Network was developed for the prediction of floods[17, 26, 27] and compared with 
the performance of logistic regression [26]. Different conditioning factors (CgFs) were considered in the data employed for 
flood prediction using Artificial Neural Network (ANN) and those conditioning factors were rainfall, aspect ratio, curvature, 
distance to rail, distance to water, nature of soil, roughness, slope, stream power index, topographic wetness index, 
temperature, elevation, land use, curve number and road [17, 26].  Authors in [26] compared the performance of artificial 
neural network (ANN) model with logistic regression. Artificial Neural Network performed better than logistic regression 
(LR) with accuracy and performance success of 76.4% and 96.4% respectively. The model developed by [17] employed 
parameter tuning approach to enhance its predictive performance. The novel model gives more enhanced predictive 
performance with testing accuracy of 96.54% and training accuracy of 98.91%. Decision tree model was developed with 
synthetic minority oversampling technique (SMOTE) and compared with or without dataset imbalance by [33 - 38]. The 
dataset has eight variables with distinct variables from the dataset employed by [17]. Those variables include wind, 
temperature, humidity, water level, date daily rainfall, monthly rainfall and class for the prediction of floods.  
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Ensemble methods are known for improving prediction accuracy and robustness by combining prediction of multiple single 
models [21]. Some of the works where ensemble techniques have been applied are summarized in the Table 1. Authors in 
[15]  Applied ensemble algorithms for the prediction of flood areas. Those ensemble algorithms are extreme gradient boosting 
ensemble model,  adaptive boosting, boosted generalized linear model and deep boosting model and carried out on Talar 
Watershed, Mazandaran Province, Iran study area.. The experimental results showed that all the applied models are efficient 
for the flood hazards prediction with area under curve of 0.91, 0.88, 0.89 and 0.87 for deep boosting model, boosted generated 
linear model, adaboost and extreme gradient boosting  ensemble model respectively. Considering other evaluation metrics, 
deep boosting model outperformed the performances of other ensemble models with sensitivity, specificity, positive 
predictive value (PPV) and NPV of 0.88, 0.86, 0.88, 0.86 and 0.86 respectively. Stacked ensemble of decision tree classifier, 
K-nearest neighbor, binary logistic regression and support vector classifier were applied by [18] flood areas prediction. 
Ensemble model outperformed other individual classifiers with accuracy and standard deviation of  93.3% and 0.098 
respectively [18].  Random Forest with Bagged CART, XG Boost, Stochastic Gradient Boosting were applied for the 
prediction of floods by [19] and with AdaBoost, Gradient Boosting, Random Forest and Random Forest – Gradient Boosting 
by [20]. Random Forest performed better than other ensemble models in both works [19, 20] with accuracy of 91% for the 
work of [19] and 83% for the work of [20]. Authors in [4] compared and applied four different ensemble models. The 
experimental results showed that the performance of Adaptive Neuro-fuzzy inference system (ANFIS) ensemble with genetic 
algorithm exceeded the performances of other three models with highest success rate area under curve of 0.922, prediction 
rate AUC of 0.924 and the accuracy of training and validation with 0.886 and 0.883 respectively. Authors in [11] developed 
a novel model that combined Bayesian belief network model with extreme learning machine and back propagation (BP) 
structure optimized by a genetic algorithm (GA) named GA-BN-NN model. The experimental results indicated that the novel 
model (GA-BN-NN) model has better goodness-of-fit with prediction accuracy of 0.966. Some of the drawbacks of these 
existing single and ensemble models are overfitting effects, inadequate datasets and limited study areas, hence this work 
addresses these drawbacks by developing stacked ensemble models for improving predictive capacity, presentation of three 
different Datasets in three different study areas. Other  sections are section 2, section 3 and section 4 which depict materials 
and method, results and discussion and conclusion respectively.  
 
 

Table 1. Related Ensemble Models and Current Works 
Author Focus ML algorithm used Source of dataset Result 

[15] Flood hazard areas 
prediction using 
different boosting 
ensemble models 

Adaptive Boosting, Boosted 
Generalized Linear Model, 
Extreme Gradient Boosting and 
Deep Boost (DB) 

Talar Watershed, 
Mazandaran Province, 
Iran  

DB has most efficient Area 
Under Curve (AUC) with 
91%, compared with other 
boosting ensemble models.  

[16] Adoption of ensemble 
machine learning model 
for flood prediction 

Bagging, Random Subspace, 
Random Forest, Support Vector 
Machine  and Artificial Neural 
Network (ANN) 

Teesta sub catchment, 
Northern region of 
Bangladesh 

Bagging Model has the 
maximum performance with 
Area Under Curve (AUC) of 
87.3% 

[18] Compare performance 
of single classifiers and 
stacked ensemble model 
for flood prediction 

Stacked ensemble of K-Nearest 
Neighbors (KNN), Support 
Vector Classifier (SVC), 
Decision Tree (DT), Binary 
Logistic Regression,  

Kerala dataset of 
Southern region of 
India.  

Stacked ensemble model has 
accuracy of 93.3% 

[19] Adoption of ensemble 
model for the prediction 
of floods 

Bagged CART, Random Forest, 
XG Boost, Stochastic Gradient 
Boosting  

36 States of Nigeria and 
Federal Capital 
Territory  

Random Forest and XG Boost 
performed better than other 
models with the same accuracy 
of 91%.   

[20] Flood prediction using 
different ensemble 
models. 

Random Forest, AdaBoost, 
Random Forest – Gradient 
Boosting and Gradient Boosting 

Oum Er Rbia watershed, 
located in the Khenifra 
Province 

Random Forest performed 
better than other ensemble 
models with accuracy of 83% 

[48] Ensemble of ANN for 
Urban flood prediction 

Ensemble ANN model Chinese City of Macao The model has Root Mean 
Square (RMS) and coefficient 
of determination of 0.20 and 
0.96 respectively 

[49]  Flood prediction using 
google earth engine and 
remote sensing 

Gradient boosting ensemble, 
adaboost and gradient boostung  

Oum Er Rbia watershed, 
Morocco 

Gradient boosting ensemble 
has accuracy of 0.96 

Current 
work 

Stacked ensemble of 
tree-based algorithms 
for the prediction of 
flood areas.  

Stacked Ensemble of Decision 
Stump, Hoeffding Tree, 
Functional Tree, Decision Tree 
and Reduced Error Pruning Tree  

Dataset A: 
NiMeT/NIHSA: 
Nigeria, Dataset B: 
USGS/DEM/NASA and 
Dataset C: Jabatan 
Meteorologi Malaysia 
Dataset, Kuala Lumpur 
Area, Malaysia 
 

Stacked ensemble of trees 
performed better than single 
classifiers with accuracy of 
99.62%, 98.45% and 98.75% 
for Datasets A, B and C 
respectively.  
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2. Materials and Methods 

A stacked ensemble model was developed with MATLAB (R2020a version) platform. MATLAB R2020a version was 
installed on laptop computer hardware with two Intel Celeron (N3060) processors each having 1.60 GHz speed and 4GB 
Memory.  Wrapper feature selection techniques integrated with particle swarm optimization algorithm (PSO) were employed 
for the selection of features on the Datasets. Tree-based classifiers namely Functional Tree (FT), Hoeffding Tree (HT), 
Decision tree (DT), Decision Stump (DS) and REP tree as depicted in the Figure 1 were selected as base classifiers. Tree 
based algorithms were selected based on their performances in the preliminary evaluation and have been known for better 
accuracy, stability and ease of interpretation. Also, fine-tuned particle swarm optimization algorithm was employed as  a 
meta learner for stacked ensemble model.  

 
Figure 1. Flowchart of model developed for flood prediction 

 
 

2.1 Data Acquisition and Data Sources  

Three distinct sets of dataset were employed for this research; the first dataset (NiMeT/ NIHSA Dataset) was obtained from 
two different organizations in Nigeria, namely Nigerian Meteorological Agency (NiMeT) and Nigerian Hydrological Service 
Agency (NIHSA); the second dataset (USGS/DEM/NASA dataset) is also Nigeria dataset and was collected from different 
sources such as United State Geological Survey Earth Explorer, digital elevation model (DEM), Nigerian Aeronautics and 
Space Administration (NASA) and lastly, the third dataset (JMM dataset) was obtained from Jabatan Meteorologi Malaysia. 
The first, second and third Datasets are labelled Dataset A, Dataset B and Dataset C respectively.  

2.1.1 NiMeT/NIHSA Flood Dataset 
 

NiMeT/NiHSA Flood dataset was sourced from Eti - Osa area of Lagos State, Nigeria for five (5) years from January 2017 
to December 2021 consisting of 1826 instances with 6 independent variables or input and 1 dependent variable or output. 
The attributes of Dataset A were examined with different characteristics as depicted in Table 2.  The input features are date, 
water level, daily rainfall, temperature, wind and humidity while flood class which can be flood (1) or No flood (0). This 
Dataset A is  related to Dataset employed for  the work of [34].  The Dataset generally follows the principle depicted in the 
Equation 1.  

Dataset (A) = (p1, k1), (p2, k2), (p3, k3)............ (pn, kn)        (1) 

Where p1 Ɛ P, is the ith independent variable or input and q1 Ɛ K, the corresponding dependent variable or output. P = ℝd, 
where p1 = (pi1, pi2, pi3...... pid) is a d-dimensional vector or instance. Figure 2 depicts Pearson’s correlation plot of the input 
and target variables for Dataset A. There is no strong correlation between the attributes. The major strong correlation exists 
between the daily rainfall (RF Daily) attribute and the flood (class) with 0.82. Therefore, there is high degree of association 
between the attribute, daily rainfall and the output, flood (class). Considering the attributes of the dataset in the Etiosa on the 
map, Figure 3 (A), 3(B), 3 (C), 3(D), 3(E) illustrate contexture view of humidity, daily rainfall, temperature, water level and 
wind speed respectively for the study area (Etiosa).  
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Table 2:  Statistics of attributes of the Dataset A 

 
 

 
Figure 2. Pearson correlation’s plot of the input and target variables for Dataset A 

 
2.1.2 USGS/DEM/NASA Dataset 

USGS/DEM/NASA Dataset was sourced majorly from United State Geological Survey Earth Explorer, digital elevation 
model (DEM), Nigerian Aeronautics and Space Administration (NASA). The dataset has 1530 samples with sixteen 
conditioning factors (CgFs). Those conditioning factors are rainfall, temperature, land cover, soil type, slope, aspect, 
elevation, road distance, river distance, roughness, curve number, stream power index, curvature, Topographic Wetness Index 
(TWI) and distance to trail. This Dataset B generally follows the form as illustrated in the Equation 1.  The summary and 
some of characteristics of this Dataset B are elucidated in the Table 3.  

Attribute Min Max. Mean Standard 
Deviation 

25th 
Percentile 

50th 
Percentile 

75th 

Percentile 
90th 

Percentile 
Water Level 
(cm) 

40 360 222 59.22 190 230 270 290 

Rainfall 
Daily (mm) 

0 136 4.07 12.20 0 0 0.28 11.90 

Temperature 
(0C) 

11.8
5 

31.35 26.95 1.87 25.75 26.75 28.35 29.40 

Humidity 
 (%) 

19 99 80.22 7.96 77 81 85 88.5 

Wind 
 (m/s) 

0.5 11.0 3.90 1.40 3 3.72 4.63 5.75 
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(A)        (B) 

 

 
(C)        (D) 

 

 
                                                                                      (E) 
 

Figure 3. Contexture view of the attributes of Dataset A in the specified study area (Eti Osa): (A) Humidity; (B) Daily 
Rainfall; (C) Temperature; (D) Water Level; (E) Wind Speed 

 

Figure 4 shows the Pearson’s correlation plot between the input and output variables. There is no strong correlation between 
the input and output variables. The highest correlation is between the elevation and rainfall variables with a Pearson’s 
correlation value of 0.6.  Considering the attributes of the dataset in the Niger-Benue axis on the Nigeria map, Figure 5 (F), 
5(G), 5 (H), 5(I), 5(J), 5(K), 5(L), 5(M) and 5(N) illustrate contexture view of Niger-Benue axis, states within the Niger-
Benue axis, elevation, water level, soil type, slope, roughness, rainfall and land cover respectively.  
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Table 3:  Statistics of attributes of the Dataset B 

 
 

 
 

Figure 4: Pearson correlation’s plot of the input and target variables for Dataset B 

Attribute Min. Max. Mean Standard 
Deviation 

25th 
Percentile 

50th 
Percentile 

75th 

Percentile 
90th 

Percentile 
Slope 0 89.99 89.44 5.62 89.84 89.93 89.96 89.98 

Soil Type 1 117 27.20 33.66 1.00 1.00 54.00 73.00 
Elevation -3 1595 309.60 218.39 154 297 433 564.30 

Land Cover 10 90 25.42 19.76 10 20 30 50 
Roughness 0 553 34.38 51.17 11 22 36 68 

Rainfall 587 2647 1278 440 901 1162 1544 1891 
Water 0 1.89 0.38 0.29 0.15 0.31 0.56 0.80 
Road 0 0.64 0.04 0.05 0 0.02 0.05 0.09 
Rail 0 3.07 0.63 0.59 0.18 0.48 0.90 1.49 

Curvature -4080 3360 -6.15 285.22 -82.83 0 85.87 219.19 
Aspect 1.39 360 181.50 104.34 90 180 270 330.37 

Temperature 0 33.41 29.05 4.48 28.00 29.71 30.92 32 
TWI -22.65 -1.41 -15.93 2.09 -16.06 -16.06 -16.06 -14.54 
SPI -47.33 5.09 -0.24 1.44 -0.12 -0.05 -0.03 0 

Curve 
Number 

0 100 78.73 10.87 71 81 83 83 
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(F)       (G) 

 
(H)       (I) 

 
(J)      (K) 
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(L)       (M) 

 
(N) 

 

Figure 5. Contexture view of the attributes of Dataset B in the specified study area (Niger – Benue Axis, Nigeria): (E) 
Niger-Benue Axis on Nigeria boundary; (G) States within the   Niger -Benue Axis, Nigeria; (H) Elevation; (I) 

Water Level; (J) Soil Type; (K) Slope; (L) Roughness; (M) Rainfall; (N) Landcover. 
 

2.1.3   Jabatan Meteorologi Malaysia Dataset 
  

Jabatan  Meteorologi Malaysia Dataset is the dataset sourced for five years between 2014 – 2019 in Kuala Lumpur area of 
Malaysia and contained 1823 instances with date, temperature, rainfall (daily), humidity, temperature, rainfall (monthly), 
wind and class (either flood or no flood) attributes. This Dataset C generally follows the form as illustrated in the Equation 
1.  The summary and some characteristics of this Dataset C are elucidated in the Table 3. Figure 6 illustrates the Pearson’s 
correlation plot of the input and output variables. There is no strong correlation between the input and output variables. The 
highest correlation is between the daily rainfall (RF Daily) attribute and class variable with a Pearson’s correlation value of 
0.47.  Considering the attributes of the dataset in the Kuala Lumpur, Malaysia, Figure 7 (O), 7(P), 7 (Q), 7(R), 7(S) and 7(T) 
illustrate contexture view of wind, temperature,  monthly rainfall, daily rainfall, water level  and humidity of the specified 
area respectively.  

 
 
 
 
 
 
 
 



 
Olusogo Julius Adetunji                                                                                                                 Sakarya University Journal of Computer and Information Sciences 8(2) 2025 322-345 

330 
 

Table 3:  Statistics of attributes of the Dataset C 
 

 

 

Figure 6: Pearson correlation’s plot of the input and target variables for Dataset C 

Attribute Min. Max. Mean Standard 
Deviation 

25th 
Percentile 

50th 
Percentile 

75th 

Percentile 
90th 

Percentile 
Water Level 
(cm) 

1703 2543 1898 194 1796 1863 1930 2084 

Rainfall 
Monthly (mm) 

1053 1275 1134 69 1071 1121 1173 1275 

Rainfall 
Daily(mm) 

0 102 13.12 22.03 0 6 12 45 

Temperature 
(0C) 

23.2 26.7 25.04 0.85 24.3 24.9 26 26.2 

Humidity 
 (%) 

80.5 95.9 87.71 4.08 84.1 84.1 91.2 92.8 

Wind 
 (m/s) 

0.4 1.4 0.85 0.19 0.7 0.87 1 1 
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   (O)       (P) 

 
   (Q)       (R)  

 

 
   (S)       (T) 

Figure 7. Contexture view of the attributes of Dataset C in the specified study area (Kuala Lumpur): (O) Wind; (P) 
Temperature; (Q) Monthly Rainfall; (R) Daily Rainfall; (S) Water Level; (T) Humidity 
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2.2 Wrapper Feature Selection 
Wrapper method of feature selection was employed for the selection of the features in three datasets using particle swarm 
optimization algorithm to improve the predictive performance of the model. In this case, features are selected iteratively 
based on particle swarm optimization machine learning algorithm. Particle swarm optimization (PSO) selects features based 
on this solution vector which represents feature subset of as depicted in the Equations 2, 3 and 4.  

x = �x1,x2, x3,………………..xd�;  xi ∈ [0,1]         (2) 

Where 𝑑𝑑 represents the number of features in a given dataset. Considering using the threshold of 0.5 to ascertain tendency of 
selecting feature (s) and this is given as:  

xi =  � 1,
0,    if xi > 0.5,𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒          (3)  

Optimization of the following function occurs,  

f(x) = ∝× (1 − P) × (1−∝) × Nselected
Nfeatures

         (4) 

Where ∝  determines trade-off between classifier performance and selected features with respect to the total of all features. 

 2.3 Tree Based Machine Learning Algorithms  

The developed model (stacked ensemble model) consists of five different tree-based algorithms (base classifiers). The 
algorithms were Hoeffding Tree, Decision Tree, Functional Tree, REP Tree and Decision Stump. Generally, Tree based 
algorithms are predictive algorithms with high accuracy, stability, ease of interpretation and also map non-linear relationship 
well. Tree based model trees also require less effort for data preparation during pre – processing, normalization and does not 
require scaling of data as well.  

2.3.1 Hoeffding Tree Algorithm  

A very fast decision tree algorithm for streaming data instead of the reuse of instances was proposed by [39]. The main 
problem of decision tree is the need to reuse instances to compute the best splitting features. The estimation confidence 
interval of the entropy at a node on a basis of bond is  

𝜖𝜖 =  �
𝑅𝑅2 𝐼𝐼𝐼𝐼1 𝛿𝛿�

2𝐼𝐼
            (5) 

 

WhereR = range of randomvariable 

δ =  is the probability of estimate not being within ϵ of its expected value,δ is the desired probability of the 
estimate not being within 𝜖𝜖 of its expected value, and n is the number of examples collected at the node. 

Algorithm 1: Hoeffding Tree Listing Algorithm [39] 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 
13 
14 
15 
16 
17 

Hoeffding Tree Algorithm (Stream,𝛿𝛿) 
Input: a stream of labelled examples, confidence parameter 𝛿𝛿 
Let HT be a leaf with a single leaf (root) 
init counts 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 at root 
for each example (𝑥𝑥,𝑦𝑦) in Stream 
do HTGROW (𝑥𝑥,𝑦𝑦),𝐻𝐻𝐻𝐻, 𝛿𝛿 
HTGROW ((𝑥𝑥,𝑦𝑦), 𝐻𝐻𝐻𝐻, 𝛿𝛿) 
sort (𝑥𝑥,𝑦𝑦) to 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙 𝑙𝑙 𝑢𝑢𝑒𝑒𝑒𝑒𝑛𝑛𝑢𝑢 𝐻𝐻𝐻𝐻 
update counts 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑂𝑂 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙 𝑙𝑙 
if examples seen so far at l are not all of the same class 
then  
Compute G for each attribute 

if G (attribute) - G (Second best)> �𝑅𝑅2𝑖𝑖𝐼𝐼 1 𝛿𝛿�

2𝐼𝐼
 

then  
split leaf on best attribute  
for each branch  
do start new leaf and initialize counts 
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2.3.2 Functional Tree Algorithm 
Functional trees can be categorized as the generalization of multivariate trees. Multivariate decision nodes are built when 
growing the tree, while functional trees are developed when pruning the trees [40]. Functional tree has the merit of using 
logistic regression function to isolate the internal nodes and prediction at the leaves [41]. Functional tree has regression model 
(RM) which is used in internal nodes and leaves [42]. 
 

Algorithm 2: Functional Tree Listing Algorithm [41] 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
 

Functional Tree Algorithm (Dataset, Constructor) 
If Stop Criterion (Dataset) 
Return a Leaf Node with a constant value  
Construct a model ∅ using constructor  
For each example 𝑥𝑥 ���⃗ ∈ DataSet 
Compute 𝑦𝑦� =  ∅(�⃗�𝑥) 
Extend �⃗�𝑥 with new attributes 𝑦𝑦� 
Select the attributes of original as well as of newly constructed  
Attributes that maximize some merit-function 
For each partition 𝑒𝑒 of the Dataset using the selected attribute 
Treei = GrowTree (Dataseti, Constructor)  
Return a Tree, as functional node based on selected attribute 
Containing the ∅ 𝑚𝑚𝑚𝑚𝑑𝑑𝑒𝑒𝑙𝑙 , and descendant 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 
    End Function 
. 

 
2.3.3 Decision Stump Algorithm 
Decision Stump Algorithm makes use of only one attribute for splitting and discrete attributes, simply consist of single 
interior node (root has only leaves as successor nodes).  Tree becomes more complex for numeric attributes [43] 

Algorithm 3: Decision Stump Listing Algorithm [43] 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
 

A decision stump is defined by 
𝑙𝑙(𝑋𝑋|𝑗𝑗, 𝑂𝑂) ≔ �+1

−1𝑥𝑥otherwise
(j)>𝑡𝑡      

𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗 ∈ {1, … . . , …𝑑𝑑} indexes an axis in ℛd. 
Weighted data 
Training data     (𝑋𝑋1�, 𝑌𝑌1� )…………., (𝑋𝑋𝐼𝐼� , 𝑌𝑌𝐼𝐼�). 
With each data point 𝑋𝑋𝚤𝚤� , we associate a weight 𝑒𝑒𝑖𝑖 ≥ 0 
Training on weighted data  
Minimize the weighted misclassification error: 

(𝑗𝑗∗,𝑂𝑂∗) ≔ 𝑙𝑙𝑒𝑒𝑢𝑢𝑖𝑖,𝑡𝑡
𝑚𝑚𝑖𝑖𝐼𝐼 ∑ 𝑤𝑤𝑖𝑖∐{𝑦𝑦1�≠𝑓𝑓�𝑋𝑋𝚤𝚤� �𝑗𝑗, 𝑂𝑂�}𝑛𝑛

𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

 

 
2.3.4 Reduced Error Pruning Tree Algorithm (REP Tree Algorithm)     
Reduced Error Pruning (REP) tree adopts regression tree logic and creates diverse trees in different iterations. The end point 
of a regression tree is predicted function value rather than predicted classification [44]. In pruning tree, mean square error is 
measured on the predictions made by the trees. The sum of mean square errors is given and shown in the Equations 6, 7 and 
8.  
𝑆𝑆 =  ∑ ∑ (𝑌𝑌𝑖𝑖 − 𝑁𝑁𝑇𝑇)2𝑖𝑖∈𝐸𝐸𝐸𝐸∈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅𝑇𝑇)           (6) 
Where 𝑁𝑁𝑇𝑇 is expressed as,  
𝑁𝑁𝑇𝑇 =  1

𝑃𝑃𝐶𝐶
∑ 𝑌𝑌𝑖𝑖𝑖𝑖∈𝑇𝑇 ;            (7) 

Hence,   
𝑆𝑆 =  ∑ 𝑃𝑃𝑐𝑐𝑉𝑉𝑐𝑐𝐸𝐸∈𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅𝑇𝑇) ;           (8) 
Where,𝑁𝑁𝑇𝑇 = Predictions for leaf N;  Vc = leaf within variance and 𝑃𝑃𝑐𝑐is the class prediction. 
 

 2.3.5 Decision Tree Algorithm 
Decision tree is one of the classification techniques in data mining method that is employed for decision support systems and 
machine learning processes [41, 43]. The basic structure of decision tree is shown in the Figure 8 
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Figure 8. Basic Structure of Decision Tree [45] 
 

Algorithm 3: Decision Tree Listing Algorithm [43] 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Decision Tree Learner (examples, features) 
if all examples are in the same class then  
       return the class label. 
else if no features left then 
        return the majority decision. 
 else if no examples left then  
          return the majority decision at the parent node.  
 else choose a feature f.  
        for each value v of feature f do  
        build edge with label v. 
        build sub-tree using examples where the value             
       of f is v 

 
2.4 Implementation of Stacked Ensemble Model 

The tree-based classifiers (base classifiers) employed are functional tree (FT), hoeffding tree (HT), decision tree (DT), 
decision stump (DS) and REP tree as depicted in the Figure 9. Fine Tuned particle swarm optimization (PSO) algorithm was 
used as Meta classifier. Parameters of all the tree based and particle swarm optimization algorithms were set to achieve 
optimal results as shown in Table 4 and Table 5. Equations 11 and 12 indicate ensemble of the tree-based algorithms 
 

Table 4: Parameter settings for Particle Swarm Optimization Algorithm 

Particle Swarm Optimization Algorithm 

lb    = 0;  
ub    = 1; 
thres = 0.5; 
c1    = 2;              % cognitive factor 
c2    = 2;              % social factor  
w     = 0.9;            % inertia weight 
Vmax  = (ub - lb) / 2;  % Maximum velocity  
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Table 5: Parameter settings for Tree Based Algorithms 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Visualization of Developed Stacked Ensemble Model 
 
Rleaf =  ∏

nt−nLabel(t),t+λ(j−1)+ m

nt+ λJ+m
k−1
m=0          (9) 

Rtree = ∑ nc+η
nt+ ηKtc∈Children(t)          (10) 

Rtree < Rleaf− ∈ �or �Rleaf
k � < �Rleaf

k −∈) 
Dt+1(i) = Dt(i)esp(−αtyiht(xi)

Zt
         (11) 

zt =  �Dt(i)esp(−αtyiht(xi)
m

i=1

 

Ensemble Model (x) = 𝑒𝑒𝑒𝑒𝑢𝑢𝑛𝑛 (∑ ∝𝑡𝑡 ℎ𝑡𝑡𝑇𝑇
𝑡𝑡 )        (12) 

Where Zt = Base classifier  
Ht = Meta Classifer 
𝐷𝐷𝑡𝑡. = Train base learner using distribution 
𝑍𝑍𝑡𝑡  = Normalization factor 
S = Dataset; 𝑑𝑑1 = Machine learning algorithms; t= Base level classifier 
 
 

2.5 Evaluation of the Developed Model 

The performance of the developed prediction model was determined based on accuracy, specificity, f1-score, recall and 
precision. The statistical formulae as defined in the Table 6; where TP = True Positive, TN= True Negative, FN = False 
Negative, FP = False Positive. 

3.  Results and Discussion 

Experiments were conducted on the three datasets (A, B and C) using the five tree algorithms individually as well as in a 
stacked ensemble from the developed model. A stratified percentage split evaluation methodology was employed in all 
experiments with 70% of the data for training and 30% for testing.  Experimental results indicate that REP Tree performed 
better than other four individual tree algorithms with accuracy of 98.74%, 97.81% and 97.43% for Dataset A, Dataset B and 
Dataset C, respectively. For Dataset A, stacked ensemble model outperformed individual algorithms with accuracy, precision, 
specificity, f1score and recall of 99.62%, 99.51%, 99.51%, 99.63% and 99.73% respectively. For Dataset B, the performance 
of stacked ensemble model exceeded the performances of individual algorithms with accuracy, precision, specificity, f1score 

Each Tree Based Algorithms is set with: 

Min Leaf Size = 1; 
Min Parent Size = 2; 
Num Variables To Sample = 'all'; 
Score Transform = 'none'; 
Prune Criterion= ‘error’; 
Split Criterion = 'deviance‘ 
 

Second Layer Estimator          

First Layer Estimator 

Training/Testing Dataset (70:30) 

Hoeffding 
Tree            

Decision 
Tree           

REP Tree          Functional 
Tree            

Aggregation Method  

Evaluation 

Decision 
Stump 
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and recall of 98.45%, 99.11%, 98.12%, 97.37% and 99.06% respectively. For Dataset C, the performance of stacked ensemble 
models is better than the performances of individual algorithms with accuracy, precision, specificity, f1score and recall of 
98.75%, 99.25%, 99.64%, 99.90% and 99.24% respectively. Furthermore, the results of the area under curve (AUC) for the 
models indicate that tree-based algorithms are suitable for the effective classification of flood occurrence as shown in the 
Figure 12. Stacked ensemble model has area under curve of 0.99. Figure 10 and Figure 11 present visualization of dataset 
loading process and experimental results obtained from the prediction model.  

Table 6: Evaluation definition and formula 
  

 

 
Figure 10.  Visualization of the dataset loading process into the prediction model 

Metrics Definition Formula 
Accuracy 
(Acc) 

The percentage of the correctly classified instances i.e. 
accuracy, is obtained by subtracting the percentage of 
incorrectly classified instances from 100.  

Acc =  
Tp + TN

TP + TN + FN + FP
×  

100
1

% 

Precision Precision is calculated as the number of true positives 
divided by the total number of true positives and false 
positives. 

Precision =  
 TP

(TP) + FP
× 100% 

Specificity Specificity is the metric that evaluates a model's ability to 
predict true negative of each available category. 
Specificity can be defined mathematically as the ratio of 
true negative with respect to the sum of true negative and 
false positive 

Specificity =  
 (TN)

(TN) + (FP)
 × 100% 

Recall Recall quantifies the actual proportions of positive label 
that is identified as positive. Recall can be mathematically 
represented as the ratio of true positive with respect to the 
sum of true positive (TP) and false negative (FN). 

Recall =  
 (TP)

(TP )  + (FN)
 × 100% 

F1-score F1-score is the measure of model’s accuracy on a given 
dataset. F1 − score =  

2 × (precison × Recall)
(Precison + Recall)
×  100% 
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Figure 11. Visualization of the results obtained from the prediction model 

 
 

 
Figure 12: Visualization of ROC-AUC of the prediction models 
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3.1 Experimental Results from Dataset A  
Three different iterations (T1, T2 and T3) were observed and the average experimental results are computed. The 
experimental results showed that, the performance of Reduced Error Pruning tree (REP Tree) algorithm is better than 
performances of other individual classifiers with accuracy, precision, specificity, recall and f1- score of 98.74%, 98.98%, 
98.96%, 98.42% and 98.92%, followed by hoeffding tree with accuracy, precision, specificity, recall and f1- score of 98.29%, 
9.88%, 98.91%, 97.21% and 98.21% respectively. Compared with the performance of stacked ensemble models, 
experimental results showed that the performance of ensemble models exceeded the performances of individual classifiers 
with accuracy, precision, specificity, recall and f1- score of 99.62%, 99.51%, 99.51%, 99.63% and 99.73% respectively.  

Figure 13 shows the average experimental result obtained with Dataset A after three iterations (T1, T2 and T3).  Figure 14 
shows the average experimental result obtained with Dataset B after three iterations (T1, T2 and T3).  

Table 7. Experimental results for the first iteration with Dataset A (T1) 

 

Table 8. Experimental results for the second iteration with Dataset A (T2) 
 

 
 
 
 
 
 
 

Table 9. Experimental results for the third Iteration with Dataset A (T3). 

 
Table 10.Average experimental results obtained with Dataset A for the three Iterations 

 
 
 
 
 
 
 
 

 
 
 
 
 

Classifiers TP FN FP TN Accuracy Precision Specificity F1-score Recall (%) 

Decision Tree  263 4 6 274 98.17 97.77 97.86 98.13 98.50 
Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

262 
242 
262 
282 
273 

12 
25 
8 
5 
1 

11 
8 
5 
6 
2 

262 
272 
272 
265 
274 

95.79 
93.97 
97.62 
98.03 
99.45 

95.97 
96.80 
98.12 
97.92 
99.27 

95.97 
97.14 
98.19 
97.79 
99.28 

95.80 
93.62 
97.58 
98.09 
99.45 

95.62 
90.64 
97.04 
98.25 
99.64 

Classifiers TP FN FP TN Accuracy Precision Specificity F1-score Recall (%) 

Decision Tree  266 6 3 272 98.35 98.89 98.91 98.34 97.80 
Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

260 
240 
267 
271 
272 

13 
21 
6 
2 
1 

15 
12 
2 
3 
1 

259 
274 
272 
271 
273 

94.88 
94.00 
98.54 
99.09 
99.98 

94.55 
95.24 
99.26 
98.91 
99.63 

94.53 
95.80 
99.27 
98.91 
99.63 

90.91 
93.57 
98.52 
99.09 
99.63 

95.24 
91.95 
97.80 
99.26 
99.63 

Classifiers TP FN FP TN Accuracy Precision Specificity F1-score Recall (%) 

Decision Tree  269 4 2 272 98.90 99.26 98.53 98.90 98.53 

Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

260 
240 
268 
271 
280 

13 
19 
5 
2 
2 

16 
14 
2 
3 
1 

260 
272 
272 
271 
264 

94.22 
93.96 
98.72 
99.09 
99.45 

94.55 
94.48 
99.26 
98.91 
99.64 

94.91 
98.17 
99.27 
98.91 
99.62 

91.91 
97.17 
95.54 
99.09 
99.82 

95.91 
98.17 
99.80 
99.26 
99.93 

Classifiers  Accuracy Precision Specificity F1-score Recall (%) 
Decision Tree   98.47 98.64 98.43 98.46 98.27 
Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

 
 
 

94.96 
93.98 
98.29 
98.74 
99.62 

95.02 
95.51 
98.88 
98.98 
99.51 

95.14 
97.04 
98.91 
98.96 
99.51 

92.87 
94.79 
97.21 
98.42 
99.63 

95.59 
93.58 
98.21 
98.92 
99.73 
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Figure 13. Visualization of average computational experimental results obtained with Dataset A 

 
3.2 Experimental Results from Dataset B 

Considering the average experimental results obtained after the three iterations (T1, T2, T3), Reduced Error Pruning tree 
(REP Tree) algorithm performed better than individual classifiers with accuracy, precision, specificity, f1-score and recall of 
97.81%, 98.38%, 97.84%, 96.53%and 99.01% respectively. Improved experimental results are obtained with stacked 
ensemble model with accuracy, precision, specificity, f1-score and recall of 98.45%, 99.11%, 98.12%, 97.37% and 99.06% 
respectively. Figure 14 shows the average experimental result obtained with Dataset B after three iterations (T1, T2 and T3).   

Table 11. Experimental results of the first iteration with Dataset B (T1) 
 

 

 

 

 

 

Table 12.Experimental results of the second iteration with Dataset B (T2) 
 

 

 

 

 

 

Table 13. Experimental results of the third iteration with Dataset B (T3) 

 

 

 

 

86

88

90

92

94

96

98

100

Decision Tree
(DT)

Decision
Stump (DS)

Functional
Tree (FT)

Hoeffding
Tree (HT)

REP Tree Ensemble
(Stacking)

Accuracy

Precision

Specificity

F1-Score

Recall

Classifiers TP FN FP TN Accuracy Precision Specificity F1-score Recall (%) 

Decision Tree  219 11 26 203 91.94 89.39 88.65 94.00 95.00 
Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

120 
108 
224 
224 
231 

109 
122 

6 
5 
5 

54 
29 
7 
3 
2 

176 
200 
222 
227 
221 

64.41 
67.10 
97.38 
98.14 
98.47 

68.97 
78.83 
96.97 
95.11 
99.11 

76.42 
87.34 
88.94 
90.13 
96.13 

81.36 
89.26 
95.12 
95.19 
97.37 

83.17 
85.72 
92.05 
99.06 
99.06 

Classifiers TP FN FP TN Accuracy Precision Specificity F1-score Recall (%) 

Decision Tree  216 12 21 210 92.81 91.14 90.91 95.36 97.90 
Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

120 
108 
221 
221 
232 

109 
122 
9 
8 
4 

54 
30 
4 
4 
2 

176 
199 
225 
226 
221 

64.41 
66.88 
97.16 
97.38 
98.40 

68.97 
78.26 
98.21 
98.22 
99.10 

76.42 
93.87 
96.05 
99.11 
96.13 

81.36 
85.23 
89.02 
96.12 
97.37 

91.17 
93.47 
96.02 
98.12 
99.06 

Classifiers TP FN FP TN Accuracy Precision Specificity F1-score Recall (%) 

Decision Tree  200 22 18 219 91.29 91.74 92.41 90.90 90.09 
Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

121 
120 
221 
224 
230 

108 
109 
9 
6 
3 

54 
17 
4 
5 
2 

176 
213 
225 
224 
224 

64.85 
72.54 
97.16 
97.60 
98.47 

69.54 
87.59 
98.21 
98.81 
99.11 

61.54 
74.48 
96.05 
98.06 
99.13 

68.75 
87.42 
85.02 
91.13 
97.37 

67.98 
76.19 
86.02 
96.00 
99.06 
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Table 14. Average experimental results obtained with Dataset B for the three Iterations 

 

 

 

 

 

 

 
Figure 14. Visualization of average computational experimental results obtained with Dataset B 
 
3.3 Experimental Results from Dataset C 
Experimental results showed that the performance of Reduced Error Pruning (REP) tree algorithm outperformed 
performances of other individual classifiers with accuracy, precision, specificity, F1-score, recall of 97.43%, 98.14%, 97. 
17%, 97.90% and 97.00% respectively. The performance of stacked ensemble model exceeded the performance of Reduced 
Error Pruning (REP) tree algorithm with accuracy, precision, specificity, F1-score, recall of 98.75%, 99.25%, 99.64%, 
98.90% and 99.24% respectively. Figure 15 shows the average experimental result obtained with Dataset C after three 
iterations.   
 

Table 15. Experimental results of the first iteration with Dataset C (T1) 

 
Table 16. Experimental results of the second iteration with Dataset C (T2) 

 

 

 

 

 

 

 

86

88

90

92

94

96

98

100

Decision Tree
(DT)

Decision
Stump (DS)

Functional
Tree (FT)

Hoeffding
Tree (HT)

REP Tree Ensemble
(Stacking)

Accuracy

Precision

Specificity

F1-Score

Recall

Classifiers  Accuracy Precision Specificity F1-score Recall (%) 
Decision Tree   92.01 90.76 90.65 93.56 96.70 
Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

 
 
 

64.56 
68.84 
97.23 
97.81 
98.45 

69.16 
81.56 
97.23 
98.38 
99.11 

73.50 
85.23 
97.80 
97.84 
98.12 

74.28 
75.30 
93.92 
96.53 
97.37 

81.36 
87.79 
88.05 
99.01 
99.06 

Classifiers TP FN FP TN Accuracy Precision Specificity F1-score Recall (%) 

Decision Tree  265 8 6 268 96.43 97.79 95.79 95.60 95.65 
Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

264 
265 
262 
265 
267 

9 
8 

11 
9 
6 

6 
6 
4 
5 
3 

268 
268 
270 
268 
271 

93.23 
96.43 
97.25 
97.43 
98.35 

94.25 
97.79 
98.00 
98.14 
99.25 

95.00 
95.79 
96.97 
97.17 
97.44 

91.02 
95.60 
96.02 
97.90 
98.90 

93.20 
95.65 
95.97 
96.70 
98.45 

Classifiers TP FN FP TN Accuracy Precision Specificity F1-score Recall (%) 

Decision Tree  263 10 4 269 96.40 97.70 95.02 95.41 91.65 
Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

264 
265 
260 
264 
267 

9 
8 

13 
9 
6 

6 
6 
2 
5 
3 

268 
268 
272 
268 
271 

93.23 
96.43 
97.25 
97.43 
98.35 

94.25 
97.79 
97.23 
98.14 
99.25 

95.00 
95.79 
96.27 
97.17 
97.44 

91.02 
95.60 
95.97 
97.90 
98.90 

93.20 
95.65 
96.00 
96.95 
97.65 
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Table 17. Experimental results of the third iteration with Dataset C (T3) 

 
Table 18. Average experimental results obtained with Dataset C for the three Iterations 

 
 

 
Figure 15. Visualization of average computational experimental results obtained with Dataset C 
 
3.4 Comparison of the experimental results obtained with the three Datasets (Datasets A, B and C) 
 

Five different performance evaluation metrics were assessed for the developed model which consists of stacked ensemble of 
single classifiers. Figure indicates graphical representation of these five-evaluation metrics obtained using the described 
Datasets A, B and C. The performances of the algorithms were generally better on Dataset A than the other two Datasets with 
accuracy, precision, specificity, f1-score and recall of 99.62%, 99.51%, 99.51%, 99.63% and 99.73% respectively. Figure 16 
presents visualization of the comparison of the average experimental results obtained after three successful iterations with 
Dataset A, Dataset B and Dataset C.  
 
 
 
 
 
 

86

88

90

92

94

96

98

100

Decision Tree
(DT)

Decision
Stump (DS)

Functional
Tree (FT)

Hoeffding
Tree (HT)

REP Tree Ensemble
(Stacking)

Accuracy

Precision

Specificity

F1-Score

Recall

Classifiers TP FN FP TN Accuracy Precision Specificity F1-score Recall (%) 

Decision Tree  265 8 6 268 96.43 97.79 95.79 95.60 95.65 
Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

264 
266 
268 
264 
270 

9 
8 

11 
9 
6 

6 
6 
4 
5 
3 

268 
267 
264 
268 
268 

93.23 
96.43 
97.25 
97.43 
98.35 

94.25 
97.79 
98.00 
98.14 
99.25 

95.00 
95.79 
95.97 
97.17 
97.44 

91.02 
95.60 
96.02 
97.90 
99.45 

93.20 
95.65 
95.97 
96.95 
99.00 

Classifiers  Accuracy Precision Specificity F1-score Recall (%) 
Decision Tree   96.42 97.76 95.53 95.54 94.32 
Decision Stump 
Functional Tree 
Hoeffding Tree 
REP Tree 
Ensemble  

 
 
 

93.23 
96.43 
97.25 
97.43 
98.75 

94.00 
97.79 
98.00 
98.14 
99.25 

95.00 
95.79 
95.97 
97.17 
99.64 

91.02 
95.60 
96.02 
97.90 
99.90 

93.20 
95.65 
95.97 
97.00 
99.24 
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Table 1:  Experimental results obtained with Datasets A, B and C 
 Dataset                                                                                             Ensemble Model 
 Metrics                                Accuracy              Precision            Specificity           F1-score           Recall (%)      
 
Dataset A                             99.62                      99.51                  99.51                   99.63                99.73 
Dataset B                             98.45                       99.11                 98.12                    97.37               99.06 
Dataset  C                            98.75                       99.25                 99.64                    99.90               99.24 
 
 

 

 
Figure 16. Visualization of average experimental results obtained with Datasets A, B and C. 
 

4. Conclusion 
This research addresses the drawbacks of existing models, such as overfitting effects, inadequate dataset and limited study 
areas through the adoption of a stacked ensemble model. The model contained five different tree - based models namely 
hoeffding tree, decision tree, functional tree, reduced error pruning (REP) tree and decision stump algorithms. Experimental 
results indicate that REP Tree performed better than other four individual tree-based algorithms with accuracy of 98.74%, 
97.81% and 97.43% for Dataset A, Dataset B and Dataset C, respectively. For Dataset A, stacked ensemble model performed 
better than individual algorithms with accuracy, precision, specificity, f1score and recall of 99.62%, 99.51%, 99.51%, 99.63% 
and 99.73% respectively. For Dataset B, the performance of stacked ensemble model exceeded the performances of single 
algorithms with accuracy, precision, specificity, f1 score and recall of 98.45%, 99.11%, 98.12%, 97.37% and 99.06% 
respectively. For Dataset C, stacked ensemble model performed better than individual algorithms with accuracy, precision, 
specificity, f1score and recall of 98.75%, 99.25%, 99.64%, 99.45% and 99.24% respectively. The performances of the 
algorithms were generally better on Dataset A than the other two datasets. Furthermore, the stacked ensemble model has an 
area under curve of 0.99 which shows that it is effective for flood areas prediction. The methodology applied for this study 
is generally unique for the prediction of flood areas and significantly, no study has been done with the development of stacked 
ensemble of these specific five tree-based algorithms for floods prediction in the three study areas. Despite improved 
predictive performance of this work, the model is limited to only quantitative dataset of text format. The model developed in 
this research can be integrated with water monitoring sensors, process the response by microcontroller and transmit through 
communication modules as a scalable flood alert system. 
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