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ABSTRACT 
Colorectal cancer remains one of the most prevalent and fatal malignancies worldwide, underscoring the 
necessity for early and precise diagnostic approaches to enhance patient prognoses. This study proposes a 
deep learning-based model for predicting microsatellite instability (MSI) in colorectal cancer using 
hematoxylin and eosin (H&E)-stained histopathological tissue slides. A classification framework was 
constructed using convolutional neural networks (CNN) and optimized through transfer learning techniques. 
The dataset, comprising 150,000 unique H&E-stained histologic image patches, was sourced from an open-
access Kaggle repository, with 80% allocated to training and 20% to testing. A comparative evaluation of nine 
pre-trained models demonstrated that the VGG19 architecture yielded the highest classification performance, 
achieving an accuracy of 90.60%, a precision of 88.60%, a sensitivity of 93.10%, and an AUC score of 
90.60%. Considering its high performance, the proposed model is expected to assist pathologists in clinical 
decision-making, potentially enhancing diagnostic accuracy in real-world medical applications. 
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1. Introduction 

Colorectal cancer (CRC), the most common type of cancer worldwide, accounts for a significant proportion of cancer-
related deaths [1]. According to the World Health Organization's International Agency for Research on Cancer (IARC), 
approximately 19.3 million individuals are diagnosed with cancer, while around ten million cancer-related deaths have been 
reported. With these figures, CRC represents 10% of cancer cases, and its death rate accounts for 9.4% of cancer-related 
mortality [2, 3]. Consequently, CRC is considered the third most diagnosed malignancy and is among the second leading 
causes of cancer-related deaths globally [4]. 

For the diagnosis of colorectal cancer, a tissue sample is typically obtained endoscopically, embedded in paraffin (FFPE), 
and fixed in formalin [5]. While FFPE is a standard method that aids in developing medical treatments and disease 
diagnosis, research on the preservation and preparation of biopsy samples has shown that FFPE tissue slides, when properly 
prepared, are highly durable and can be stored at ambient temperature for extended periods [6]. Subsequently, the tissue 
sample is stained with hematoxylin and eosin (H&E) and examined microscopically for diagnosis [5]. CRC patients are 
recommended to undergo advanced molecular testing, especially for microsatellite instability (MSI), which is caused by 
genetic alterations and affects 10-15% of these patients [7, 8]. MSI is a common tumor phenotype characterized by 
abnormal repetitions of short DNA motifs resulting from an insufficient mismatch repair (MMR) system, and it is 
associated with Lynch Syndrome (LS), an inherited cancer syndrome [9]. 

Systematic MSI screening is generally recommended for evaluating the response to colorectal immunotherapy [8] and has 
been controversially proposed for chemotherapy response. MSI diagnosis is traditionally performed using polymerase chain 
reaction (PCR) or next-generation sequencing (NGS) by analyzing H&E-stained CRC tissue and manually detecting 
abnormalities in microscopic images [10]. These methods are time-consuming and costly and require specialized expertise 
that may not be available at all centers, which can sometimes lead to errors [11]. Therefore, there is a growing need for 
tools that are widely accessible, cost-effective, and provide high-accuracy results in a shorter time. 
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Deep learning technologies, a subfield of artificial intelligence (AI), have become increasingly prevalent in healthcare [12]. 
Significant contributions to medicine have been made by developing segmentation and classification models that can 
diagnose and detect tumor mutations and molecular changes using convolutional neural networks (CNNs). These methods 
have been applied in detecting skin cancer using dermoscopic images [13] and in detecting lung [14], liver [15], and breast 
[16] cancers using histopathological images. Building upon these studies, this research aims to estimate the MSI status in 
colorectal cancer by conducting comparative analysis using deep learning models previously trained on H&E-stained 
histopathological slides. 

The paper's organization is as follows: The studies on deep learning techniques applied to histopathological images for MSI 
prediction are presented in Section 2. The dataset is described in detail in Section 3.1. The deep transfer learning 
architecture, pre-trained models, and experimental setup parameters are explained in Sections 3.2 and 3.3, respectively. 
Performance metrics are provided in Section 3.4. The experimental results obtained from the proposed models and 
discussions are presented in Section 4. Finally, conclusions and future work are summarized in Section 5. 

2. Related Works 

Several studies have diagnosed MSI using H&E-stained histopathological images in cancer research, employing dual or 
multi-class classification based on deep learning methods. While some studies used raw data, others applied segmentation 
techniques through feature extraction. Additionally, the number of datasets used in these studies varies. Among these 
studies, convolutional neural networks and machine learning are the most commonly evaluated methods, particularly in 
studies incorporating transfer learning approaches. However, there is still no consensus on the ideal neural network 
architecture. Furthermore, variations are observed in the success rates of different models with varying parameters. 

In contribution to the dataset used in our study, Kather et al. employed the ResNet18 model architecture over ImageNet to 
train and validate H&E-stained FFPE and frozen images from various independent cohorts, such as gastric and colorectal 
cancer from The Cancer Genome Atlas (TCGA). The German colorectal cancer cohort (DACHS) was used as an external 
confirmation set. It was observed that colorectal cancer exhibited better performance results than gastric cancer at the 
patient level. They demonstrated that MSI could be estimated with an area under the curve (AUC) value of 0.84 for the 
colorectal cancer set [17]. 

Cao et al. proposed a deep learning model based on multi-example learning to estimate MSI from histopathological images. 
They developed the Ensembled Patch Likelihood Aggregation (EPLA) model using two different colorectal cancer cohorts 
from TCGA-COAD and Asia and the ResNet18 architecture. Initially, it was trained and validated with TCGA-COAD, 
achieving an AUC of 0.8848. However, a lower AUC of 0.6497 was obtained using the EPLA model on the Asia-CRC 
external confirmation dataset. By utilizing previously trained networks within the model, the AUC was improved to 0.8504, 
and MSI estimation was successfully performed. They evaluated model performance by generating pathological signatures 
from the model [18]. 

Echle et al. developed a deep learning system based on MSI or dMMR estimation of colorectal cancer patients' H&E-
stained slide images. This system was trained using the ESA-based ShuffleNet model architecture and validated externally 
with the Yorkshire Cancer Research Bowel Cancer Improvement Program (YCR-BCIP) cohort. The system demonstrated 
high performance in estimating MSI/dMMR tissue characteristics [19, 20]. 

Lee et al. introduced a two-phase classification method to estimate MSI in CRC. Initially, they segmented the tumor 
regions into MSI-L and MSI-H areas using a feature pyramid network. Then, tumor classification was performed using 
Inception-ResNetV2. The pathology images were magnified at 10x and 20x, and the suggested method was reported to 
outperform traditional methods in terms of performance [21]. 

Krause et al. developed synthetic images using conditional generative adversarial networks (CGAN) to estimate MSI status 
in CRC. Training with these synthetic images achieved an AUC of 0.742 on actual image data. When both actual and 
synthetic images were used for training, the AUC improved to 0.777, demonstrating an approach to augment small datasets 
with synthetic data [22]. 

Zhang et al. employed a different visualization method for MSI estimation in rectal cancer using high-resolution T2-
weighted magnetic resonance imaging (MRI). Their model, developed with the MobileNetV2 neural network architecture, 
achieved AUC values of 0.573, 0.82, and 0.868 for the clinical, purely visual, and combined models. It was noted that the 
clinical model exhibited lower performance compared to the other two models [23]. 

Yamashita et al. developed the MSINet-100 deep learning model by scanning H&E-stained whole slide images magnified 
at 40x. The model was externally validated with images from TCGA and using 20x magnification. Additionally, they 
compared the performance of MSINet with five gastrointestinal pathologists and concluded that the deep learning model 
outperformed the pathologists in estimating MSI [24]. 

Bustos et al. developed a deep learning system that reduced multi-biases using adversarial networks from tissue 
microarrays to estimate MSI in colorectal cancer. This system was validated with data from 1,788 patients from 
EPICOLON and HGUA. Tissue types and model performance effects were evaluated using different magnifications at both 
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tissue and patient levels. The study marked the first attempt to estimate MSI using a multi-bias ablation technique with 
tissue microarrays [25]. 

Further studies on MSI estimation in CRC include those by Lee et al., Qui et al., Su et al., Muti et al., and Saillard et al., 
who applied deep learning-based classification methods using neural networks for MSI estimation in multiple cancer types, 
including gastric cancer and Epstein-Barr virus-related cancers [26-30]. 

3. Material and Methods 

3.1. Dataset 

In this study, histopathological tissue images of colorectal cancer (COAD) from The Cancer Genome Atlas (TCGA), 
specifically focusing on MSI and MSS cases, were obtained from the open-access Kaggle website and provided by Joan 
Gibert. This dataset comprises 192,312 unique image patches extracted from the histopathological images of cancer 
patients. These images were reproduced from diagnostic slides that had been fixated with formalin and embedded in 
paraffin (FFPE) [31]. FFPE diagnostic slides play a crucial role in medical diagnoses, as they are produced by fixating a 
tissue sample in formaldehyde and embedding it in a paraffin wax block for sectioning. A clear, well-defined image is 
created to prepare the sample for computational analysis [32]. 

The dataset was categorized into two groups: MSS and MSI. It contains 117,276 images in the MSS category and 75,039 in 
the MSI category. During the creation of the dataset, Kather performed several preprocessing steps. These steps included 
automatic tumor detection, resizing the images to a 0.5 µm/px resolution with dimensions of 224x224 pixels, followed by 
color normalization using the Macenco method [33]. The images were then classified as either "MSS" (microsatellite 
stable) or "MSIMUT" (microsatellite unstable or highly mutated) based on the patients' conditions [34]. As a result of these 
preprocessing steps, the images were of high quality and were used in their final form as JPG files in the study. Sample 
images are shown in Figure 1. 

 
Figure 1. Histopathological Image Samples of MSI and MSS Classes 

3.2. Architecture of Deep Transfer Learning 

Deep learning is a subfield of machine learning that operates by mimicking the working style of the human brain, 
processing information through multiple layers. In recent years, as deep learning technology has been applied in areas such 
as autonomous systems, computer vision, and speech recognition, it has also made significant advancements in medical 
data analysis and medical image processing [35, 36]. In our study, we achieve substantial results by applying deep learning 
methods to medical imaging data. 

Studies in classification, segmentation, and lesion detection are conducted using images obtained from medical imaging 
modalities, such as positron emission tomography-computed tomography (PET-CT), magnetic resonance imaging (MRI), 
computed tomography (CT), and x-rays. As a result of these analyses, the detection and classification of certain diseases 
have become more rapid and cost-effective [37-39]. 

Deep learning models rely on several algorithms, one of the most widely used being the Deep ESA algorithm in image 
classification. ESA is a multi-layer, feed-forward neural network that utilizes sensors to analyze data through controlled 
learning processes [40]. This algorithm captures the features of the image data used in the study and classifies them through 
various stages. As illustrated in Figure 2, feature extraction is initially performed in the convolutional layers. A filter is 
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applied in the feature extraction process, and a comparison is made between the newly generated image and the image label 
by sliding the filter over the image. The network’s inconsistencies are addressed by reducing parameters and performing 
calculations in the pooling layer. In short, the fully connected layer completes the classification process [41]. Therefore, 
data passes through three distinct layers—convolutional, pooling, and fully connected—during the application of ESA. 
These layers are discussed in further detail below. 

 

 
Figure 2. Architecture of the VGG19 Model 

This layer is the first stage of the ESA algorithm. It is responsible for detecting the features of image data. The 
convolutional layer extracts both low-level and high-level features from the image by applying a filtering process. These 
filters assist in extracting the edge information and fine details of the image. As shown in Figure 3, the applied filters are 
3x3x3 multidimensional matrices composed of pixel values. The first value of the filter represents the matrix's height, the 
second value represents the matrix's width, and the third value indicates the matrix's depth [42]. 

 
Figure 3. Calculation Process of Layers Using the Convolutional Formula (N+2p-f) +1 

N: the input image size, p: padding (pixel adding), f: filter size, s: stride (scroll step). 

The pooling layer is designed to reduce the number of computations and parameters within the network. Our study utilized 
both maximum pooling and global average pooling variants. Maximum pooling involves the application of a 2x2 filter, 
which selects the largest value within the area covered by the filter on the feature map, as illustrated in Figure 4. This 
process reduces the size of the image, thereby decreasing the computational load while preserving the essential features of 
the image data. On the other hand, global average pooling connects to the fully connected layer by aggregating all the 
neurons in the feature map into a single value, thereby reducing the dimensionality of the data [43]. 

This layer is the final layer of ESA and connects each neuron to every neuron in the subsequent layer. It is responsible for 
learning through artificial neural networks. In our study, the Rectified Linear Unit (ReLU) activation function was 
employed in this layer, while the sigmoid activation function was used to estimate the output data in the neurons. The 
mathematical formulations for these activation functions are provided in equations (1) and (2). 
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Figure 4. Illustration of the Pooling Process 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = �0, 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0
𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0 (1) 

𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆(𝑥𝑥) = 𝜎𝜎(𝑥𝑥) =
1

1 + exp(−𝑥𝑥) (2) 

In these equations, x represents the input data. Transfer learning is a machine learning technique in which a model 
developed for one study is reused as the starting point for a subsequent model in another study. In other words, instead of 
training convolutional neural networks (CNNs) from scratch, transfer learning accelerates the learning process by 
leveraging information from a previously trained model, thus facilitating faster transactions and improving training 
efficiency. Pre-trained networks are models that inherit weights from a model that has been previously applied to a similar 
or even a different problem. While these networks may not always offer the optimal solution for every new problem, they 
help avoid the need for redundant training, enabling faster results with reduced computational effort. Pre-trained networks 
typically leverage the ImageNet visual object recognition database [44, 45]. 

In this study, deep ESA-based pre-trained networks, including VGG19, VGG16, MobileNet, MobileNetV2, ResNet50, 
InceptionV3, ResNet18, GoogleNet, and AlexNet, were employed to classify colorectal cancer histopathological tissue 
images into two categories: MSI and MSS. The performance of these networks was compared. The applied processes are 
illustrated in Figure 5. The study’s resources are also publicly available in the open-access repository: 
https://github.com/hsynrkc/MSI-Prediction. 

Figure 5. Schematic Flowchart Illustrating the Estimation Process of Pre-Trained Models for MSI and MSS Classification 

Keras, an open-access deep learning library written in Python, is an application programming interface (API) for neural 
networks that operate with frameworks such as TensorFlow, Theano, and CNTK (Microsoft Cognitive Toolkit). Keras 
applications provide deep learning models with pre-trained weights, which can be utilized for tasks such as estimation, 
feature extraction, and fine-tuning. The models employed in this study are detailed below with their respective descriptions 
[46]. 

The VGG19 model is a convolutional neural network architecture with five pooling layers developed by the Visual 
Geometry Group (VGG) at the University of Oxford. It consists of 19 layers, 16 of which are convolutional, and three are 
fully connected. The network was trained using over one million images from the ImageNet database and performs 

https://github.com/hsynrkc/MSI-Prediction
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classification tasks on various images with an input size of 224x224 pixels [47]. Among the models used in this study, 
VGG19 achieved the best performance regarding computational cost, accessibility, high accuracy, and low loss. After the 
convolutional layers in the VGG19 architecture, a fully connected layer with 128 neurons is added, utilizing the sigmoid 
activation function. 

The VGG16 model is another convolutional neural network architecture consisting of 16 layers, including 13 convolutional 
layers and three fully connected layers. VGG16 and VGG19 are similar, with the key difference being the number of 
layers. A notable feature of this network is that it includes joint layers after 2x2 or 3x3 convolutional layers, distinguishing 
it from other models [47]. 

The MobileNet model, developed by Google researchers, is a low-dimensional convolutional neural network designed to 
reduce computational cost and the number of parameters by employing depthwise separable convolution layers [48, 49]. 
MobileNetV2, an evolution of MobileNet, incorporates bottleneck layers and inverted blocks after 32 filtered convolutional 
layers. This variant is more efficient in dimensionality, with fewer parameters and greater depth than the original 
MobileNet [50]. 

ResNet (Residual Network) is an artificial neural network that incorporates residual connections, which involve stacking 
bottleneck blocks. The ResNet50 model is a convolutional neural network with a depth of 50 layers, comprising 48 
convolutional layers, one max pooling layer, and one average pooling layer. It is a widely used model in deep learning 
applications [51]. 

InceptionV3, developed by Google, is another convolutional neural network trained on the ImageNet dataset. It includes 
multiple convolutional layers, max-pooling layers, and a fully connected layer at the final stage [52]. 

Table 1. Parameters Used in Deep Learning Models for MSI and MSS Classification 
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PyTorch is an open-access Python library used to develop deep learning models. It provides a practical environment for 
creating neural networks with speed and flexibility, leveraging the power of graphics processing units (GPUs). PyTorch's 
popularity stems from its Pythonic nature and ease of use in constructing neural network models [53]. Below are 
descriptions of some models employed within the PyTorch environment: 

The ResNet18 model is a convolutional neural network with 18 layers, trained using the ImageNet dataset. It is a residual 
network similar to ResNet50 and is implemented using PyTorch [51, 54]. 

GoogleNet, developed by Christian Szegedy and colleagues in 2014, is a convolutional neural network architecture with 22 
layers. This PyTorch implementation model includes two auxiliary classifier layers, which combine multiple inception 
model layers [55]. 

AlexNet, developed by Alex Krizhevsky and colleagues in 2012, is a neural network architecture with a depth of 8 layers, 
consisting of five convolutional layers and three fully connected layers. It is implemented using PyTorch, and the ImageNet 
dataset was trained on it [56]. 

As shown in Table 1, the parameters used in the deep learning models for MSI and MSS classification are summarized, 
highlighting each model's key components and configurations. 

3.3. Experimental Setup 

The Python programming language was utilized to train the proposed deep transfer learning models. All colorectal cancer 
histopathological image experiments were conducted at no cost using Google Colaboratory (Colab) servers, leveraging 
online cloud services and Tesla T4 Graphics Processing Unit (GPU) hardware. In addition, personal computers equipped 
with an Intel Core i3-5005U processor, 2 GB RAM, an NVIDIA GeForce 920M graphics card, and 8 GB RAM were used 
for supplementary tasks. Training for ESA models (VGG19, VGG16, MobileNet, MobileNetV2, ResNet50, InceptionV3, 
ResNet18, GoogleNet, AlexNet) was performed using the root-mean-square propagation (RMSprop) optimization 
technique with the cross-entropy loss function. 

In the proposed model, the batch size, learning rate, and number of epochs were set to 64, 1e-5, and 10, respectively. The 
datasets were randomly divided into two independent subsets for training and testing, with 80% of the data used for training 
and 20% for testing. During model training, 80% of the data was employed, while the validation process was conducted by 
randomly generating a 20% validation dataset from the training data. The model’s performance was evaluated using the 
remaining 20% of the dataset, which served as the test set. 
3.4. Performance Metrics 

Several performance metrics are utilized to evaluate the performance of deep learning transfer learning models. These 
metrics include: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
  (3) 

𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝑖𝑖𝑃𝑃𝑖𝑖𝑆𝑆𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
  (4) 

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (5) 

𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑆𝑆𝐴𝐴𝑅𝑅 =
2 ∗ 𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝑖𝑖𝑃𝑃𝑖𝑖𝑆𝑆𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅
𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝑖𝑖𝑃𝑃𝑖𝑖𝑆𝑆𝑃𝑃 + 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

 (6) 

In these equations, TP, FP, TN, and FN represent the counts of true positive, false positive, true negative, and false negative 
cases, respectively. Specifically, for the test dataset and model, TP refers to the number of MSI cases correctly predicted as 
positive by the model, FP refers to MSS cases incorrectly predicted as positive (i.e., false positives), TN represents the 
number of MSS cases correctly predicted as negative, and FN refers to MSI cases incorrectly predicted as negative. 

The proposed model for MSI diagnosis in colorectal cancer and other models used in this study are evaluated using 
classification performance metrics such as accuracy, precision, recall, and F1-score. Accuracy is the proportion of the total 
number of correct predictions made by the model to the total number of samples. Precision refers to the proportion of 
correctly predicted positive samples (MSI) out of all samples predicted as positive. Recall indicates the proportion of actual 
positive samples (MSI) the model correctly identified. The F1-score represents the harmonic meaning of precision and 
recall, balancing the two. 
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The ROC curve is used to visualize the model's ability to discriminate between the two classes (MSI and MSS) at various 
threshold values. It plots the false positive rate (FPR) on the x-axis, which is defined as 1−Specificity, and the true positive 
rate (TPR) on the y-axis. These are defined as: 

𝑆𝑆𝑆𝑆𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑆𝑆𝐴𝐴 = 𝑇𝑇𝑇𝑇𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 (7) 

𝐹𝐹𝑇𝑇𝑅𝑅 =
𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇
  (8) 

4. Experimental Results and Discussion 

In this study, we conducted dual-class classification between MSI (Microsatellite Instability) and MSS (Microsatellite 
Stable). To evaluate the performance of various models, we compared nine different pre-trained models: ResNet18, 
GoogleNet, and AlexNet (from the PyTorch library) and VGG19, VGG16, MobileNet, MobileNetV2, ResNet50, and 
InceptionV3 (from the Keras library). 

For model training, 80% of the dataset was randomly selected for the training/validation set, while the remaining 20% was 
reserved for the test set. This process was repeated until each model's test set was evaluated. 

The detailed results of these experiments, including the performance metrics for each model, are summarized in Table 2. 

 

Table 2. Training Accuracy and Loss Values of Pre-Trained Models Used in the Study 

Models Values 

Keras 
Train Validation Test 

Acc Loss          Time Acc Loss Acc Loss 

VGG19 91 0.19           17666s 91 0.21 90 0.22 

VGG16 91 0.19          13989s 90 0.22 89 0.25 

MobileNet 93 0.17           6040s 86 0.31 85 0.33 

MobileNetV2 91 0.21           6653s 86 0.31 85 0.34 

ResNet50 87 0.27          11355s 87 0.29 86 0.30 

InceptionV3 81 0.40          7736s 81 0.39 80 0.41 

Pytorch       

ResNet18 86 0.30         7166s 85 0.33 86 ~ 

GoogleNet 82 0.38        4887s 83 0.37 83 ~ 

AlexNet 75 0.53         3595s 77 0.52 76 ~ 

 

According to the best loss value during the training period for the models applied to the dataset, the accuracy and loss 
values are presented in Table 1. In evaluating the model's performance, accuracy and loss rates are considered during 
training. The accuracy graphs for the Keras library models are shown in Figure 6. 

The loss function is critical to evaluate the discrepancy between the true and predicted values. A decrease in the loss 
function signifies an increase in the model's robustness [58]. The VGG19 model outperforms the others, achieving lower 
loss values and higher detection rates for the MSI-MSS classes. While MobileNet models show better accuracy and loss 
values during the training phase, they perform worse than VGG19 and VGG16 in the accuracy and test phases. 
Additionally, although ResNet50 and InceptionV3 models yield good training results, their accuracy and test values are 
relatively poor. Therefore, VGG19 demonstrates the highest overall performance with an accuracy of 91%. The results 
summarized in Table 3 reflect the training outcomes on the histopathological images of all the pre-trained models used in 
this study. The accuracy values represent the general success rates of the models. 
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 Figure 6. Training and Validation Accuracy Curves of the Pre-trained Models 

Table 3. Performance Metrics of Six Different Models 

Models SPE (%) ACC (%) PRE (%) REC (%) AUC (%) F1-Score (%) 

VGG19 88.1 90.6 88.6 93.1 90.6 90.8 

VGG16 93.5 89.4 92.9 85.3 89.4 88.9 

ResNet50 86.7 86.6 86.6 86.4 86.6 86.5 

MobileNet 83.9 85.1 84.3 86.3 85.1 85.3 

MobileNetV2 86.3 85.2 86.0 84.0 85.2 85.0 

InceptionV3 81.9 80.9 81.5 79.8 80.9 80.6 
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The VGG19 model outperforms the other models primarily due to its deeper architecture, which enables superior feature 
extraction from complex medical images. Its 19 layers effectively capture low-level and high-level features, improving 
classification accuracy. Furthermore, VGG19 benefits from transfer learning, having been pre-trained on large datasets like 
ImageNet, which helps it generalize well to new tasks with limited data. The model's optimized activation functions, such 
as ReLU, enhance its learning efficiency and stability. These factors contribute to VGG19's superior performance metrics, 
including accuracy, precision, recall, AUC, and F1-score. 

The VGG16 model, while similar to VGG19, has a slightly shallower architecture with 16 layers, which may limit its 
ability to capture more intricate features in complex data. As a result, it achieved lower performance in certain metrics, 
particularly recall, compared to VGG19. While it still benefits from transfer learning and optimized activation functions, 
the reduced depth of the network restricts its ability to exploit the available data fully. 

ResNet50, which incorporates residual connections to overcome the vanishing gradient problem, performs well but not as 
highly as VGG models. Its architecture allows for deeper networks without the typical degradation of performance seen in 
traditional deep networks. Yet, its overall performance is limited by factors such as the model's relatively lower ability to 
extract fine-grained features and its complexity compared to VGG-based models. The accuracy, precision, and recall 
performance are slightly lower, which could be attributed to the model's difficulty in generalizing the medical image dataset 
used in this study. 

MobileNet and MobileNetV2 are optimized for mobile and embedded devices and designed to be lightweight and efficient, 
but they sacrifice some accuracy in favor of computational efficiency. While good for applications requiring lower 
computational cost, these models show decreased performance compared to the VGG and ResNet models, particularly in 
accuracy and recall. The reduced model size and fewer parameters reduce the capacity to learn detailed features from the 
complex data. 

Finally, InceptionV3, despite its sophisticated architecture designed to capture a wide variety of features at multiple scales, 
demonstrates the lowest performance in this study. This could be due to its relatively high complexity, which may hinder its 
ability to effectively learn from smaller or specialized medical datasets, as well as potential issues with optimization for the 
specific task of heart disease prediction. 

In conclusion, while deeper and more complex models such as VGG19 tend to perform better due to their ability to capture 
detailed features and benefit from transfer learning, lighter models like MobileNet and InceptionV3 show lower 
performance because of their design limitations and computational trade-offs. 

The confusion matrix table, which is created separately for each model, is shown in detail in Figure 7. In these confusion 
matrices, the predictions made by the models based on the dataset split and the actual values of the images are presented. 
Based on the pre-trained VGG19, which provided the best performance among the models, the test dataset consists of 3000 
images. Out of 15,000 MSI images, 1,321 were correctly predicted, while 1,789 were misclassified as MSS. For the MSS 
images, 13,967 out of 15,000 were correctly identified, while 1,033 MSI images were incorrectly classified. The confusion 
matrices of the other pre-trained models can be interpreted similarly.  

The estimation rates presented in Table 3 are calculated separately for each model's performance metrics, with the 
corresponding calculation formulas provided in equations (3)-(8). The AUC value (Area Under the Curve) refers to the 
"area under the ROC curve," which indicates the model's success rate based on the area it covers. The ideal value for the 
area under the curve is 1 [59]. Figure 8 illustrates the pre-trained models' ROC curve and the area under the curve. The 
AUC, accuracy, F1 score, and other metrics presented in Table 3 are used as criteria for evaluating the performance of the 
models. According to studies by Ling et al., the AUC value is considered a more reliable metric than accuracy, as it 
provides a more accurate assessment of the model's performance [60]. 

A comparison of several studies on the estimation of MSI is presented in Table 4. Previous research has generally focused 
on a limited number of histopathological image datasets. In contrast, this study compares nine pre-trained models using a 
dataset comprising 150,000 image samples. Notably, the proposed method is fully automated, with no manual intervention, 
utilizing images resized to 224x224 pixels. Moreover, this study stands out by leveraging a larger dataset and incorporating 
more pre-trained models than many existing studies in the field. However, as the dataset size increases, the number of 
stages involved in the process decreases. This trade-off is mainly due to the limitations of the free cloud environment 
(Google Colab), which restricts the amount of processing time and capacity. Despite these constraints, the proposed system 
offers a cost-effective decision support tool for pathologists and doctors, aiding them in rapidly diagnosing and diagnosing 
MSI in colorectal cancer patients through histopathological images. 
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Figure 7. Confusion Matrices for the Evaluated Models 
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Figure 8. ROC Curves of the Pre-Trained Models 
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Table 4. Comparison of MSI Estimation Studies 

Study Cancer 
Type Dataset CNN Model Performance 

Kather et 
al. [17] 

Colorectal 
Cancer TCGA Cohort (738 patients) ResNet18 AUC = 0.84 

Cao et al. 
[18] 

Colorectal 
Cancer 

TCGA Cohort (429 WSI) 

Asian Cohort (785 WSI) 
ResNet18 

TCGA Cohort AUC = 0.885 

Asian Cohort AUC = 0.850 

Krause et 
al. [22] 

Colorectal 
Cancer 

TCGA Cohort (256 WSI) 

NLCS Cohort (1457 WSI) 

10000 Synthetic Data 

 

ShuffleNet 

TCGA Cohort 

AUROC = 0.742 

NLCS Cohort 

AUROC = 0.757 

Synthetic images only 
AUROC = 0.743 

Combination of both 
synthetic and real data 

AUROC = 0.777 

Zhang et 
al. [23] 

Rectal 
Cancer 

West China Hospital (High-
resolution T2-weighted MRI 

images - 491 patients) 
MobileNetV2 AUC = 0.868 

Bustos et 
al. [25] 

Colorectal 
Cancer 

Spain Hospitals EPICOLON 
(1705 patients) 

HGUA (283 patients) 
ResNet34 AUC = 0.87 

Qiu et al. 
[28] 

Colorectal 
Cancer 

TCGA Cohort (100000 H&E 
unique images) ResNet34 AUC = 0.809 

Su et al. 
[30] 

Gastric 
cancer 

Beijing Cancer Hospital (467 
patients) ResNet18 AUC = 0.785 

Muti et al. 
[27] 

Gastric 
cancer 

Multicenter patient cohort 
(South Korea, Switzerland, 
Japan, Italy, Germany, UK, 

and the USA – 4128 patients) 

ShuffleNet 

Cross validation MSI 
AUROC = 0.836, EBV 

AUROC = 0.897.  

External validation MSI 
AUROC =0.863, EBV 

AUROC =0.859 

This Study Colorectal 
Cancer 

TCGA Cohort (150000 H&E 
unique images) VGG19 AUC = 0.906 

 

5. Conclusion 

The early detection of microsatellite instability (MSI) in colorectal cancer patients plays a crucial role in determining 
appropriate diagnostic and treatment strategies. This can help minimize side effects, reduce the time and costs associated 
with the disease, and ultimately improve patient outcomes. Colorectal cancer histopathological images are obtained through 
special staining techniques and scanning devices applied to tissue samples collected from patients, which are then digitized 
for analysis. This study proposes a deep transfer learning-based approach to estimate MSI from these images automatically. 

Various activation functions, optimization methods, neuron counts, and epochs were explored to identify the optimal 
classification model for deep learning. Based on these parameters, the results of the models exhibit variations in 
performance. Classification accuracy is the primary metric used to evaluate the effectiveness of the models. 

This study compared nine pre-trained models with identical activation and optimization methods to classify the MSI and 
MSS histopathological images derived from colorectal cancer patients. VGG19 demonstrated the best performance among 
the models evaluated, yielding accuracy, precision, recall, and F1-score values of 90.60%, 88.60%, 93.10%, and 90.80%, 
respectively. Models from the PyTorch library did not meet the expected performance standards. The findings suggest that 
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the VGG19 model, with its superior performance, holds the potential to assist pathologists in making more informed 
decisions in clinical settings. 

Further improvements can be made in future studies, such as exploring more advanced models, optimizing computational 
resources, and increasing the dataset size. These enhancements are expected to lead to even more accurate results. The 
high-performance demonstrated in this study contributes significantly to existing literature, offering a valuable tool for 
researchers and clinicians working on MSI estimation and colorectal cancer diagnosis. By advancing this methodology, we 
can provide more efficient decision support systems, ultimately aiding in better diagnosis and treatment planning. 
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