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ABSTRACT 
In the era of the Internet of Things (IoT), where smartphones, built-in systems, wireless sensors, and nearly 
every smart device connect through local networks or the internet, billions of smart things communicate with 
each other and generate vast amounts of time-series data. As IoT time-series data is high-dimensional and high-
frequency, time-series classification or regression has been a challenging issue in IoT. Recently, deep learning 
algorithms have demonstrated superior performance results in time-series data classification in many smart and 
intelligent IoT applications. However, it is hard to explore the hidden dynamic patterns and trends in time series. 
Recent studies show that transforming IoT data into images improves the performance of the learning model. 
In this paper, we present a review of these studies that use image transformation/encoding techniques in the IoT 
domain. We examine the studies according to their encoding techniques, data types, and application areas. 
Lastly, we emphasize the challenges and future dimensions of image transformation. 
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1. Introduction 

The Internet of Things (IoT) refers to a network of intelligent physical devices embedded with sensors, software, and cutting-
edge technologies that empower them to establish connections and share data with other devices and systems via the Internet 
[1]. In other words, smartphones, wireless sensors, built-in systems, and nearly every device are connected and communicate 
via a local network or the internet. Some of the IoT applications include smart homes [2], smart cities [3], smart agriculture 
[4], smart health [5], smart retail [6], etc.  

The proliferation of IoT and the growing number of IoT devices have led to the generation of immense volumes of time-
series data. Consequently, time-series analysis has been performed extensively across a diverse spectrum of IoT domains [7, 
8]. Traditional time-series analysis methods have accomplished convenient performance with hand-crafted characteristics 
and satisfactory expert knowledge. On the other hand, these methods may not always be suitable for examining IoT time-
series data due to unique features that distinguish it from non-IoT time-series data [9]. Analyzing time-series data for IoT 
devices presents challenges due to its complex nature, unlike non-IoT time-series data analysis. IoT time-series data can be 
quite complex, with spatial and temporal correlations that are often difficult to manage. In addition, many IoT applications 
require real-time or near-real-time data processing in order to make timely decisions, which can be technically challenging 
and require specialized infrastructure. Encoding methods offer significant advancements in feature extraction, pattern 
recognition, and the performance of machine learning and deep learning compared to traditional time-series analysis methods, 
such as statistical approaches and classic machine learning techniques. Traditional time-series analysis often struggles to 
effectively capture the complex and non-linear patterns inherent in IoT data and is not particularly strong in preserving 
temporal dependencies. In contrast, image transformation techniques uncover hidden spatial patterns while maintaining 
temporal dependencies. Moreover, traditional methods require manual feature engineering, whereas image encoding 
techniques facilitate automatic and comprehensive feature extraction. Additionally, image transformation techniques leverage 
powerful deep learning architectures originally designed for image processing. 

To address these challenges, image transformation/encoding techniques have been proposed as promising technologies that 
transform time-series data into visual representations, enabling easier analysis and interpretation. In addition, transforming 
the data into an image and applying image compression techniques like JPEG or PNG can reduce the data size while 
preserving essential information. Compressed image representations of time-series data can be stored or transmitted more 
efficiently. In recent years, researchers have focused on time-series data transformation into an image format because of the 
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great success achieved in the IoT domain, particularly in applications such as anomaly detection, fault diagnosis, and activity 
recognition.   

In this study, we conduct a comprehensive survey of image transformation techniques from several perspectives. Initially, 
we scrutinize existing studies based on their transformation techniques and subsequently categorize them according to data 
types (univariate or multivariate) and application domains. To the best of our knowledge, no prior survey paper has 
investigated the utilization of image transformation techniques in the realm of IoT. To bridge this gap, our paper presents an 
in-depth analysis of the current research landscape within the IoT domain.  

1.1. Motivation  

 The fundamental idea of improving a model is to change it to another model that has higher accuracy. Many researchers 
apply combining models such as hybrid models or pre-trained models [10-13]. However, it is worth considering whether 
model accuracy can be improved without altering the model itself. Some studies suggest that the transformation of time-
series data may be a more effective approach for improving model accuracy than changing the model itself [14-16].  

There are several advantages of representing IoT data as images: i) It becomes easier to visualize and analyze complex 
patterns or trends. ii) It provides visual representations of temporal data, allowing for intuitive interpretation and pattern 
recognition. iii) It is an effective way to reduce dimensionality while maintaining temporal dependencies, leading to more 
efficient analysis and better insights. iv) Deep learning techniques can be effectively employed to analyze IoT time-series 
data in image-based analysis for IoT applications such as pattern classification or healthcare monitoring.  

By highlighting the aforementioned advantages, this review paper enables researchers to make informed decisions about the 
techniques that are most suitable for achieving their objectives. Therefore, it can act as a valuable guide on effectively using 
advanced image transformation methods in real-world scenarios by providing a comprehensive summary of the current state-
of-the-art. Moreover, this paper answers questions such as which techniques were employed in specific IoT applications and 
which yielded more successful results.  

1.2. Research Methodology  

Once the motivation for the study is identified, a research methodology is determined. This methodology provides an 
overview of the approach and details the systematic procedures used in the paper selection process:  

• Literature Search Phase: The first step involves the selection of specific search phrases relevant to the topic. These search 
phrases include “Image Transformation”, “Image Encoding”, “Time-Series Data in IoT”, and “Time-Series Imaging in IoT”. 
Related papers have been retrieved from various digital libraries such as ScienceDirect1, IEEE Xplore2, and Springer3.  

• Paper Selection Phase: We applied the following criteria to identify which papers should be excluded from this study: (i) 
Papers without peer review; (ii) White papers; and (iii) Papers not directly related to IoT.  

• Paper Classification Phase: We selected 39 papers that focus on Time-Series to Image Transformation in IoT and satisfy 
our selection criteria. These papers were divided into categories according to the type of time-series data and IoT domain as 
follows: 5 in Security, 6 in Energy Management, 12 in Healthcare, 8 in Industrial, 1 in Environmental Monitoring, 1 in Smart 
Building, 1 in Transportation and Logistics, and 1 in Wearable Devices, and 4 in other domains which not contain any specific 
domain. Table 3 presents an overview of these 39 articles by categorizing them according to nine IoT domains. In Addition, 
Table 2 summarizes 24 univariate papers, 12 multivariate papers, and 3 papers covering both types.  

1.3. Contribution  

Image transformation stands as a significant innovation with the potential to enhance outcomes not only in the realm of IoT 
but also across various other domains. To the best of our knowledge, no existing study reviews image transformation 
techniques in the realm of IoT. The contributions of this paper are summarized as follows:  

• This study introduces the first survey paper that summarizes time-series transformation techniques in IoT.  

• We provide a comprehensive comparison of recent studies according to their encoding techniques, data types, and 
application areas in the IoT domain.  

• We present challenges and future directions of transforming time-series into images in the context of IoT.  

1.4. Organization  

The rest of this paper is organized as follows: Section 2 gives in-depth information on time-series analysis in IoT and on 
image transformation. Section 3 presents image transformation techniques. A comprehensive literature review that uses time-

 
1 ScienceDirect [online], https://www.sciencedirect.com/, accessed [05/07/2024].  
2 IEEE Xplore [online], https://ieeexplore.ieee.org/Xplore/home.jsp, accessed [05/07/2024].  
3 Springer Link [online], https://link.springer.com/, accessed [05/07/2024]. 
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series data in IoT applications is presented in Section 4. Section 5 outlines the challenges and future research directions. 
Lastly, Section 6 concludes the paper by emphasizing key important things.  

2. Preliminaries  

2.1. Time-Series Analysis in IoT  

A time series is a sequence of data points collected at regular intervals over time, X = {(t1, x1), (t2, x2), ..., (tn, xn)}, where 
xi ∈ ℝm, where 𝑛𝑛 is the number of time-series data points and 𝑚𝑚 is the vector dimension. The time series can be univariate 
or multivariate [17].  

• Univariate Time-Series (UTS): If 𝑚𝑚 equals 1, X is univariate. That means UTS includes a single variable observed over 
time.  

• Multivariate Time-Series (MTS): If 𝑚𝑚 is greater than 1, X is multivariate. In other words, multiple variables are observed 
over time in MTS.  

For instance, a time series containing the daily average temperature of a city is represented as UTS, while a time series 
containing daily weather conditions (including temperature, moisture, and precipitation) for a city is represented as MTS. 
Although many real-world IoT systems have a large number of heterogeneous IoT sensors, there is more emphasis on UTS 
than MTS for several reasons. First, it is difficult to obtain the relationships between the variables in MTS correctly. Then, 
the fact that these variables have a high dimensionality poses a challenge when it comes to analyzing MTS data [18]. So, 
UTS is simpler and easier to implement than MTS. On the other hand, MTS is more complex and requires more data than 
UTS. However, MTS can be more accurate because it deals with relationships between different variables.  

IoT time-series data is generated from different fields, including remote healthcare, wearable devices, energy management, 
smart buildings, transportation, etc. These time-series data are widely used in various IoT problems such as anomaly detection 
[19], monitoring systems [20], signal classification [21], fault diagnosis [22], maintenance prediction [23], etc. Figure 1 
illustrates the details of the time-series analysis in IoT. Accordingly, time-series data are first generated by various sensors 
in IoT applications. These data are then transmitted to the cloud via network equipment and stored on cloud servers. Finally, 
they are analyzed for applications such as anomaly detection and maintenance prediction. IoT time-series data has several 
unique characteristics that distinguish it from other types of data and impact the analysis and interpretation of the data [24, 
25]. First, with the advancements of 5G and beyond communication technologies, time-series data from IoT devices can be 
massive and high-dimensional, allowing for the simultaneous monitoring of billions of devices [26]. Secondly, IoT time 
series include both temporal correlations and complex spatial correlations. Thirdly, IoT time-series data can be prone to noise 
and missing values, which occur due to sensor failures, communication issues, data transmission problems, or errors in the 
measurements [27]. Lastly, IoT time-series data is often generated in real-time or near real-time.  

Conventional time-series analysis techniques are not directly applicable due to the features of IoT time series data mentioned 
above. Understanding and leveraging these characteristics of IoT time-series data is essential for effective analysis, modeling, 
and decision-making in IoT applications. For instance, high dimensionality is required for scalability, which is an important 
challenge for IoT time-series analysis [28]. Also, since the data is continuously produced, real-time or streaming data 
processing methods are required to process data flow, perform instant analysis, and make timely decisions. Furthermore, 
noise and missing values can diminish data quality, necessitating the use of data cleaning and preprocessing techniques to 
ensure data integrity. To overcome these challenges, researchers have proposed different works. This paper focuses not only 
on the method but also on the change in the type of time-series data and the change in methods.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The general structure of time-series analysis in IoT  
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2.2. Image Transformation  

Time-series image transformation converts time-series data into visual representations, such as images. It is a crucial process 
within the IoT context. This technique reduces IoT data dimensionality by compressing extensive data into a compact visual 
format, making it more successful at extracting key features and patterns from IoT time-series data. Additionally, it integrates 
seamlessly with deep learning algorithms like Convolutional Neural Network (CNN). These transformations enhance the 
analysis, interpretation, and utilization of time-series data in IoT applications. The transformation process of IoT time-series 
data into an image is illustrated in Figure 2. 

 

 
Figure 2. The overall framework of image transformation of IoT time-series data 

 
There are varying image transformation techniques described in the literature. While these methods are directly applied to 
UTS, typically, they are not employed directly on MTS. To address this issue, some fusion methods are discussed in the 
literature. Image or feature fusion is a process that is proposed to merge the necessary information from images or features 
[29, 30]. When converting MTS data into two-dimensional (2D) images, fusion methods can be used to combine information 
from different variables or data sources to create a single image representation. One of the popular fusion techniques in 
literature is channel-based fusion, in which an RGB or multi-spectral channel image can be created by assigning each variable 
to a different color channel (e.g., red, green, blue) [31]. Also, some studies use tensor image fusion. MTS data is considered 
as a tensor and is analyzed by tensor decomposition techniques (e.g., Canonical Polyadic Decomposition) to extract patterns 
and interactions from the tensor data [32]. Lastly, feature level (early fusion) and decision level (late fusion) can be utilized 
to transform MTS [33]. Different variables are merged at the input stage and processed together with any methods at the 
feature level [34], [35]. On the other hand, each variable is converted into images separately, and then these images are 
combined at a later stage at the decision level [33], [36], [37]. Also, many researchers have used hybrid fusion by performing 
fusion in both decision and feature levels [38]. Table 2 summarizes the existing studies according to data types, such as 
univariate and multivariate. In addition, it emphasizes fusion techniques used in MTS data. 

3. Time-Series to Image Transformation Techniques  

There are several methods to transform one-dimensional (1D) time series into 2D images. Some of the popular techniques in 
literature are discussed below. Table 1 also shows the studies that used these methods.  

3.1. Gramian Angular Field (GAF)  

Given a time series is 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑁𝑁}, including 𝑁𝑁 samples, there are three steps to encode time series into images [76]. 
Firstly, 𝑋𝑋 Time-series are scaled in the interval [0,1] according to Equation 1. 

 𝑥𝑥�𝑖𝑖 =   𝑥𝑥𝑖𝑖−min(𝑋𝑋)
max(𝑋𝑋)−min(𝑋𝑋)

 (1) 

 

Then, the 1D time-series Cartesian coordinate system is transformed into a polar coordinate system, which is a new 
representation of the time series. Angular cosine (ϕ) and radius (r) are calculated to represent time series as polar coordinates 
using Equation 2. 

                                            �
𝜙𝜙 = arccos(𝑥𝑥�𝑖𝑖) ,    − 1 ≤ 𝑥𝑥�𝑖𝑖 ≤ 1,    𝑥𝑥�𝑖𝑖 ∈ 𝑋𝑋�

𝑟𝑟 = 𝑡𝑡𝑖𝑖
𝑁𝑁

,    𝑡𝑡𝑖𝑖 ∈ ℕ
                             (2) 
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where 𝑡𝑡𝑖𝑖 is the time stamp, and N is a constant factor in regularizing the span of the polar coordinate system. There are two 
types of GAF based on the sum/difference of the trigonometric function, which are the Gramian Angular Summation Field 
(GASF) and the Gramian Angular Difference Field (GADF). GASF is defined in Equations 3 and 4, and GADF is defined in 
Equations 5 and 6.  

 

 GASF = �

cos(𝜙𝜙1 + 𝜙𝜙1) ⋯ cos(𝜙𝜙1 + 𝜙𝜙𝑛𝑛)
cos(𝜙𝜙2 + 𝜙𝜙1) ⋯ cos(𝜙𝜙2 + 𝜙𝜙𝑛𝑛)
⋮ ⋱ ⋮
cos(𝜙𝜙𝑛𝑛 + 𝜙𝜙1) ⋯ cos(𝜙𝜙𝑛𝑛 + 𝜙𝜙𝑛𝑛)

� (3) 

 

 GASF = 𝑋𝑋�′ ⋅ 𝑋𝑋� − �𝐼𝐼 − 𝑋𝑋�2
′
⋅ �𝐼𝐼 − 𝑋𝑋�2 (4) 

 

 GADF = �

sin(𝜙𝜙1 − 𝜙𝜙1) ⋯ sin(𝜙𝜙1 − 𝜙𝜙𝑛𝑛)
sin(𝜙𝜙2 − 𝜙𝜙1) ⋯ sin(𝜙𝜙2 − 𝜙𝜙𝑛𝑛)
⋮ ⋱ ⋮
sin(𝜙𝜙𝑛𝑛 − 𝜙𝜙1) ⋯ sin(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑛𝑛)

� (5) 

 

 GADF = �𝐼𝐼 − 𝑋𝑋�2
′
⋅ 𝑋𝑋� − 𝑋𝑋�′ ⋅ �𝐼𝐼 − 𝑋𝑋�2 (6) 

 

In the above equations, 𝐈𝐈 refers to a unit row vector; 𝑋𝑋�′ and �𝐼𝐼 − 𝑋𝑋�2
′
 is the transposed vector of the rescaled time 

series 𝑋𝑋� and �𝐼𝐼 − 𝑋𝑋�2, respectively. 

 
Table 1. The Studies of Image Transformation Techniques for IoT 

 
 

Time-Series to Image Transformation Techniques 

Reference  Year GAF MTF  RP  STFT CWT  HHT Others 

Baldini et al. [39]  2018  
  

✓ 
    

Yang et al. [40]  2019  ✓  ✓ 
     

John et al. [41]  2019  
     

✓ 
 

Fahim et al. [42]  2020  
 

✓ 
     

Lyu et al. [43]  2020  ✓ 
      

Estabsari and Rajabi [44]  2020  ✓  ✓  ✓ 
    

Ferraro et al. [45]  2020  ✓ 
      

Xu et al. [46]  2020  ✓ 
      

Sreenivas et al. [47]  2021  ✓  ✓ 
     

Zhu et al. [48]  2021  ✓ 
      

Anjana et al. [49]  2021  
   

✓  ✓  ✓ 
 

Zhou and Kan [32]  2021  ✓ 
      

Sharma et al. [50]  2021  ✓ 
      

Chen et al. [51]  2021  
   

✓ 
   

Jiang and Yen [52]  2021  
 

✓ 
     

Garcia et al. [53]  2021  ✓  ✓  ✓  ✓  ✓  
 

✓ 
Huang et al. [54]  2021  ✓ 

      

Jiang et al. [55]  2021  ✓  ✓ 
     

Singh et al. [56]  2021  
   

✓ 
   

Santo et al. [57]  2022  ✓  ✓  ✓  
 

✓ 
  

Chen and Wang [31]  2022  ✓ 
      

Bertalanič et al. [58]  2022  ✓  
 

✓ 
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Table 1. Continued: The Studies of Image Transformation Techniques for IoT 

Alsalemi et al. [59]  2022  ✓ 
      

Zhang et al. [60]  2022  
  

✓  ✓ 
   

Dou et al. [61]  2022  
    

✓ 
  

Abdel-Basse et al. [62]  2022  ✓  ✓  ✓ 
    

Wang et al. [63]  2022  ✓  ✓  
 

✓  
  

✓ 
Bai et al. [64]  2022  ✓  ✓ 

     

Abidi et al. [65]  2023  ✓  ✓  ✓ 
    

Paula et al. [66]  2023  ✓  ✓  ✓ 
    

Quan et al. [67]  2023  ✓  ✓  ✓ 
    

Zhang et al. [68]  2023  ✓ 
      

Copiaco et al. [69]  2023  
      

✓ 
Qu et al. [70]  2023  ✓  ✓  

    
✓ 

Sun et al. [71]  2023  ✓  ✓ 
     

Sayed et al. [72]  2023  
      

✓ 
Hasan et al. [73]  2023  ✓ 

      

Hammoud et al. [74]  2023  ✓  ✓  ✓ 
    

Yan et al. [75]  2023  ✓  ✓  
 

✓ 
   

3.2. Markov Transition Fields (MTF)  

MTF is a powerful tool that keeps time domain information in time-series data by representing the sequential Markov 
transition probabilities. By utilizing the Markov matrix of quantile bins, MTF offers an approach to converting the time-
series data into images [76].  

Given the time series 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛}, where 𝑥𝑥𝑖𝑖 is the 𝑖𝑖th signal on the time-series. By determining 𝑄𝑄 quantile bins, each 
𝑥𝑥𝑖𝑖 is assigned to its corresponding bin 𝑞𝑞𝑗𝑗(𝑗𝑗 ∈ [1,𝑄𝑄]). In this way, a Markov transition matrix 𝐖𝐖 in 𝑄𝑄 × 𝑄𝑄 Dimensions are 
obtained, which can be represented as: 

 

 𝑊𝑊 = �

𝑤𝑤11 𝑤𝑤11 ⋯ 𝑤𝑤1𝑄𝑄
𝑤𝑤21 𝑤𝑤22 ⋯ 𝑤𝑤2𝑄𝑄
⋮ ⋮ ⋱ ⋮
𝑤𝑤𝑄𝑄1 𝑤𝑤𝑄𝑄2 ⋯ 𝑤𝑤𝑄𝑄𝑄𝑄

� (7) 

 𝑤𝑤𝑖𝑖𝑗𝑗 = 𝑝𝑝{𝑥𝑥𝑡𝑡 ∈ 𝑞𝑞𝑖𝑖|𝑥𝑥𝑡𝑡−1 ∈ 𝑞𝑞𝑗𝑗} (8) 

 

where each element 𝑤𝑤𝑖𝑖,𝑗𝑗 stands for the probability that a data point in the state 𝑞𝑞𝑗𝑗 is followed by a data point in the state 𝑞𝑞𝑖𝑖. 
After normalization with ∑𝑗𝑗 𝑤𝑤𝑖𝑖𝑗𝑗 = 1, 𝑊𝑊 becomes the Markov transition matrix. However, this matrix is insensitive to the 
distribution of 𝑋𝑋 and temporal dependencies on time steps 𝑡𝑡𝑖𝑖. which results in the loss of excessive information in the process. 
To overcome this problem. 𝑊𝑊 is expanded to a Markov transition field (MTF) matrix 𝑀𝑀 by placing each probability in time 
order. It is expressed as below: 

 

 𝑀𝑀 =

⎣
⎢
⎢
⎡
𝑤𝑤𝑖𝑖𝑗𝑗|𝑥𝑥1∈𝑞𝑞𝑖𝑖,𝑥𝑥1∈𝑞𝑞𝑗𝑗 ⋯ 𝑤𝑤𝑖𝑖𝑗𝑗|𝑥𝑥1∈𝑞𝑞𝑖𝑖,𝑥𝑥𝑛𝑛∈𝑞𝑞𝑗𝑗
𝑤𝑤𝑖𝑖𝑗𝑗|𝑥𝑥2∈𝑞𝑞𝑖𝑖,𝑥𝑥1∈𝑞𝑞𝑗𝑗 ⋯ 𝑤𝑤𝑖𝑖𝑗𝑗|𝑥𝑥2∈𝑞𝑞𝑖𝑖,𝑥𝑥𝑛𝑛∈𝑞𝑞𝑗𝑗
⋮ ⋱ ⋮
𝑤𝑤𝑖𝑖𝑗𝑗|𝑥𝑥𝑛𝑛∈𝑞𝑞𝑖𝑖,𝑥𝑥1∈𝑞𝑞𝑗𝑗 ⋯ 𝑤𝑤𝑖𝑖𝑗𝑗|𝑥𝑥𝑛𝑛∈𝑞𝑞𝑖𝑖,𝑥𝑥𝑛𝑛∈𝑞𝑞𝑗𝑗⎦

⎥
⎥
⎤
 (9) 

 

where 𝑀𝑀𝑖𝑖𝑗𝑗 in MTF represents the transition probability of data points in 𝑞𝑞𝑗𝑗 followed by data points in 𝑞𝑞𝑗𝑗. 
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3.3. Recurrence Plot (RP)  

RP is a widely used tool to visualize and analyze the recurrent behaviors of time series produced in a dynamic framework 
[77]. It is determined by a recursive matrix by computing the pairwise distance between the trajectories, in which the elements 
are calculated by Equation 10:  

 𝑅𝑅𝑖𝑖,𝑗𝑗 = Θ(𝜀𝜀 − ||�⃗�𝑥𝑖𝑖 − �⃗�𝑥𝑗𝑗||), 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁 (10) 

 

Where 𝜖𝜖 is a threshold, Θ  is the Heaviside function used to binarize the distance matrices, where its value is zero for the 
negative argument and one for the positive argument. 

RP exposes the local correlation information of a sequence and hidden patterns by computing the distance matrix between 
subsequences. 

3.4. Short Time Fourier Transform (STFT)  

STFT can be considered as the frequency domain representation of the original signal. It utilized a window function to extract 
a part of the time domain signal and then performed a Fourier transform on it to specify diverse signal properties [78]. The 
STFT of a given signal y(x) is calculated in Equation 11. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑛𝑛,𝜔𝜔) = ∑∞
−∞ 𝑦𝑦[𝑥𝑥]𝜔𝜔[𝑛𝑛 − 𝑥𝑥]. 𝑒𝑒−𝑗𝑗𝑗𝑗𝑛𝑛 (11) 

 

where 𝜔𝜔(𝑡𝑡) is the window function. In addition, the spectrogram is generated by squaring the STFT magnitude as follows: 

 𝑆𝑆𝑝𝑝𝑒𝑒𝑆𝑆𝑡𝑡𝑟𝑟𝑆𝑆𝑆𝑆𝑟𝑟𝑆𝑆𝑚𝑚(𝑛𝑛, 𝑘𝑘) = |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑛𝑛,𝜔𝜔)|2 (12) 

Table 2. Summary of Image Transformation Application According to Data Types (U: Univariate, M: Multivariate)  

Ref. U M Year Dataset Gray/ 
Colored Methods Fusion Techniques 

[68] ✓  2023 

-Case Western Reserve 
University (CWRU) 
-Autonomous Experimental 
dataset 

Color* GASF 
GADF - 

[39] ✓  2018 
- Private dataset of RF 
emissions collected from 11 IoT 
devices 

Gray* RP - 

[43] ✓  2020 
- A private dataset that collected 
fiber intrusion disturbance 
signals 

Color* GAF - 

[48] ✓  2021 - KDD Cup 99 data Color* GAF - 

[58] ✓  2022 - Rutgers dataset Gray 
Color 

RP 
GAF - 

[42] ✓  2020 - REFIT electrical load 
measurement dataset Color* MTF - 

[44] ✓  2020 - Boston housing price data 
- Load Forecasting Dataset Color* 

RP 
GAF 
MTF 

- 

[41] ✓  2019 

-Private dataset 
-Physionet/ Computing in 
Cardiology (CinC) Challenge 
2016 

Color* HHT - 

[49] ✓  2021 - Seed Color* 
STFT 
CWT 
HHT 

- 

[51] ✓  2021 - Private dataset Color* STFT - 
[56] ✓  2021 - TUH Abnormal EEG Corpus Color* STFT - 

[60] ✓  2022 - Arrhythmia Data 
- Private dataset 

Gray 
Color 

RP 
STFT - 

[61] ✓  2022 - MIT-BIH arrhythmia 
- MIT-BIH normal sinus rhythm Color* CWT - 



 
Duygu Altunkaya, Feyza Yildirim Okay, Suat Özdemir                     Sakarya University Journal of Computer and Information Sciences 8(2) 2025 358-381 

365 
 

- BIDMC 

[66] ✓  2023 - Private dataset Gray 
Color 

GADF 
GASF 
MTF 
RP 

 

Table 2. Continued: Summary of Image Transformation Application According to Data Types (U: Univariate, M: 
Multivariate) 

Ref. U M Year Dataset Gray/ 
Colored Methods Fusion Techniques 

[52] ✓  2021 - Private dataset Color* MTF - 

[53] ✓  2021 - Airbus SAS Airbus SAS 2018 Gray 
Color 

GAF 
MTF 
RP 
GS 

STFT 
DWT 

- 

[64] ✓  2022 - Private dataset Color GAF 
MTF - 

[73] ✓  2023 
- WSN Dataset 
- ETDataset 
- TON IOT Dataset 

Color* GAF - 

[47] ✓  2021 - MIT-BIH arrhythmia database Color GAF 
MTF - 

[59] ✓  2022 - UK-DALE dataset Color GAF - 

[54] ✓  2021 - Caltrans Performance 
Management System (PeMS) Color* GASF - 

[46] ✓  2020 
- WISDM 
- UCI HAR 
- OPPORTUNITY 

Color GASF 
GADF - 

[74] ✓  2023 
- Private dataset 
- OpenEDS 
- NaveGaze 

Gray 
Color 

GASF 
GADF 
MTF 
RP 

- 

[75] ✓  2023 

- CICIDS2018 
- IoT-23 
- N-BaIoT 
- WSCF20231 
- Private Dataset 

Color 
GASF 
GADF 

WT 
- 

[31]  ✓ 2022 - PLAID 
- WHITED Color GAF 

- Single-channel images correspond 
to three channels in the RGB Color 
space, respectively, to create an 
RGB image. 

[32]  ✓ 2021 

- 2018 China Physiological 
Signal Challenge (CPSC2018)  
- PhysioNet Long-term ST 
dataset 

Color* GADF 

- Each channel of the ECG signal 
transforms into a GAF image, which 
is represented as a 2nd-order ECG 
tensor. - These images are then 
stacked together to form a 3rd-order 
ECG tensor by concatenating them 
along the 3rd dimension. 

[45]  ✓ 2020 - Backblaze SMART dataset  Color* GAF 
- Each feature of the time series is 
transformed into a polar coordinate 
through the GAF. 

[69]  ✓ 2023 

- The Simulated Energy Dataset 
(SiD)  
- The Dutch Residential Energy 
Dataset (DRED) 

Gray 
Color 

a 
grayscale 

image 
an RGB 

color 
image 

- A 5 × 5 matrix is used to organize 
features for a given instant.  
- Then, the matrix is resized to 
28x28 pixels and saved as a 
Grayscale or an RGB Color image. 
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(jet 
colormap) 

 
Table 2. Continued: Summary of Image Transformation Application According to Data Types (U: Univariate, M: 

Multivariate)  

Ref. U M Year Dataset Gray/ 
Colored Methods Fusion Techniques 

[70]  ✓ 2023 
- PLAID  
- WHITED  
- HRAD 

Color* 
MTF 
GAF 
WVI 

- Each variable is converted into 
images using three encoding 
techniques.  
- Then, the WVI image and MTF 
image are superimposed to create 
two channels. Also, the I-GAF 
image is saved as a new image by 
the Energy-Normalization (EN) 
block.  
- Lastly, this image is 
superimposed with the other two 
images to get a three-channel 
image. 

[50]  ✓ 2021 
- 1D Biomedical Signals such 
as ECG, PPG, temperature, 
and accelerometer 

Color GAF 

-The average of the computed 
features from various channels is 
found and provided as a single 
fused feature set using Channel-
Wise Mean Fusion (CAF). 

[62]  ✓ 2022 - UCI HHAR  
- UCI MEHEALTH Color 

RP 
MTF 
GAF 

- Each row includes three 
measures, x, y, and z, for AM, GY, 
and MG data in 3D, respectively. - 
Converts x-, y-, and z-axis of 
signals as red, green, and blue 
channels of images. 

[57]  ✓ 2022 
- PAKDD2020 Alibaba AI 
OPS Competition  
- NASA bearings 

Color* 

RP 
GAF 
MTF 
STFT 

- MTS encoded a set of feature 
maps that were computed with four 
different image transformation 
techniques. 

[71]  ✓ 2023 - Private dataset  Color GAF 
MTF 

- GASF, GADF, and MTF layers 
are placed on the red, green, and 
blue layers, respectively, and saved 
images. 

[65]  ✓ 2023 

- SITS data, which was 
collected for a different study 
of the Dordogne-Reunion 
Island study  
- Koumbia 

Color* 

GADF 
GASF 
MTF 
RP 

- Each UTS in MTS is flattened to 
the direct use of MTS instead of 
thinking independently of each 
UTS. - Then, generate the 2D 
images from the flattened MTS. 

[72]  ✓ 2023 

- Student Room Dataset 
(SRD) - UCI dataset (an 
office space) - Living Room 
Dataset (LRD) 

Gray 
Color 

data 
normalization 

matrix 
conversion 

- The list of features(n) of the 
dataset is arranged into a 3xn 
matrix format.  
- Then, the matrix is resized to 
28x28 pixels and saved as an 
image. 

[83]  ✓ 2021 - Wafer dataset  
- ECG dataset Color 

GASF 
GADF 
MTF 

- Encode MTS as a Colored image 
for each univariate time series. 
Each Colored image is separated 
into three monochromatic images, 
namely red, green, and blue 
(RGB).  
- After the separation, these 
monochrome images are 
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concatenated together to form a 
huge image. 

Table 2. Continued: Summary of Image Transformation Application According to Data Types (U: Univariate, M: 
Multivariate)  

 

[63] ✓ ✓ 2022 

- Case Western Reserve 
University (CWRU) Dataset  
- Society for Machinery 
Failure Prevention 
Technology (MFPT) Dataset 

Color* 

STFT 
The direct 
drawing 
method 
GADF 
MTF 

- The vibration signals from 
multiple channels are combined 
into a 2D spectrum map. 

[67] ✓ ✓ 2023 - Chinatown  
+84 UCR datasets Color* 

GAF 
MTF 
RP 

GMR 

- 1D multi-scale features and 2D 
image features are fused in two 
distinct methods, covering the 
feature fusion methods such as SE 
and SA  
-Three images which are encoded 
with different coding methods are 
overlapped as three-channel data 
inputs. 

[55] ✓ ✓ 2021 
- 24 benchmark datasets  
(14 datasets for MTS and  
10 dataset for UTS) 

Color* GAF 
MTF 

- Each UTS in MTS is converted 
into GM images. Each variable is 
considered a channel.  
- G-image and M-image are 
concatenated GM feature maps by 
the adaptive feature aggregation, 
which pass through a 
corresponding shallow CNN 
separately. 

* The color is not specified in the paper. For this reason, the color is determined based on the given images.  

3.5. Continuous Wavelet Transformation (CWT)  

CWT offers an unstable window size that adjusts based on the frequency at the cost of time resolution. Although STFT 
provides a great representation of the signal’s time-frequency characteristics, it presents a fixed resolution in the frequency 
domain, which is not always ideal in certain scenarios. On the other hand, CWT is an operation linear on a time-domain 
signal y(t) given by:  

 

 𝑊𝑊𝑎𝑎,𝑏𝑏[𝑦𝑦(𝑡𝑡)] = 1
√𝑎𝑎
∫∞−∞𝑦𝑦(𝑡𝑡) ∗ 𝜙𝜙 �𝑡𝑡−𝑏𝑏

𝑎𝑎
� 𝑑𝑑𝑡𝑡 (13) 

 

where 𝜙𝜙(𝑡𝑡−𝑏𝑏
𝑎𝑎

) is a dilated version of the base wavelet function 𝜙𝜙(𝑡𝑡) by applying scaling and shifting. 𝑆𝑆 > 0 is the scaling 
variable that regulates the spread of the function, and 𝑏𝑏 is the time-shifting parameter or the instant of time at which the signal 
needs to be analyzed. The visual representation of the CWT of a signal is referred to as a scalogram [79].  

3.6. Hilbert Huang Transform (HHT)  

HHT is an analysis of signals that are non-stationary and non-linear [80]. While most techniques may fail in analyzing 
nonstationary and nonlinear systems, HHT alleviates the challenges of time-frequency-energy representation of the data. 
HHT includes two primary phases, called Empirical Mode Decomposition (EMD) and Hilbert Transform (HT). The 
transformation involves several processes. First, EMD is utilized to obtain Intrinsic Mode Functions (IMFs) from the signals. 
Second, the Hilbert transform is applied to each of the IMF components. Finally, the instant frequency and amplitude can be 
computed.  

3.7. Other Transformation Methods  

In addition to the aforementioned methods, the literature offers a range of alternative techniques that are commonly employed 
to address various types of problems. These methods play a pivotal role in the transformation of IoT time-series data. Some 
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of the notable approaches in this regard include data normalization combined with matrix conversion, the direct drawing 
method, Gaussian Mixture Regression (GMR), Gray-Scale encoding (GS), Gray-Scale image representations, RGB color 
image conversion, and the Wavelet Variance Image (WVI) method. These techniques have gained popularity within the 
literature for their effectiveness in transforming and enhancing the analysis of IoT time-series data.  

Garcia et al. [53] proposed a modification of GS by choosing lower and upper bounds in the original formulations in 
accordance with the GAF encoding instead of minimum and maximum scaling. Wang et al. [63] used the direct drawing 
method which signals are transformed into a 2D spectrum map directly with plt functions in the Matplotlib package in Python 
without any processing. The direct drawing method has higher accuracy than GAF and MTF after STFT. The main idea of 
GS is to transform time-domain raw signals into images. The time-domain raw signals complete the pixels of the image 
sequentially. Wen et al. [81] reorganized the GS using CNN for fault diagnosis in manufacturing systems. A transformation 
method consisting of data normalization and matrix conversion was used for 2D image representation [72], [69]. 1D time-
series data is first normalized in [0,1] with n features. Then, these features are arranged in mxm matrix format. Lastly, this 
matrix is resized to 28x28 pixels and saved as an image to obtain a gray-scale image or RGB color image. The Voltage–
Current (VI) trajectory can be converted into a pixelated VI image (nxn matrix) by meshing the VI trajectory [82]. Qu et al. 
[70] generated 2D load signatures according to the corresponding features of the signal based on the Weighted Voltage–
Current (WVI) trajectory image. 

4. Image Transformation in IoT Applications  

IoT encompasses various domains where time-series data is frequently used. Time-series data is a data type that includes a 
sequence of data points that are collected at regular intervals over time. Table 3 summarizes the existing studies by 
categorizing them according to nine IoT domains. Here are some IoT domains where time-series data is commonly utilized.  

4.1. Security and Privacy  

The security and privacy domain within IoT focuses on handling the challenges and risks associated with ensuring the 
confidentiality, integrity, availability, and privacy of IoT systems, devices, and data. Security in the IoT domain includes 
implementation of preventive measures to obstruct unauthorized access, data breaches, and malicious activities that have the 
potential to jeopardize the functionality, integrity, and confidentiality of IoT devices and systems. Privacy in the IoT domain 
refers to the protection of individual’s personal information and their control over how it is collected, used, and shared by 
IoT systems.  

IoT time-series data plays a significant role in the security and privacy domain by providing valuable insights into the 
behavior, patterns, and anomalies within IoT systems. Anonymization, encryption, and access controls should be applied 
appropriately to protect sensitive information contained within the time-series data. In the context of IoT security and privacy, 
time-series data can be leveraged for various purposes: Intrusion detection, unauthorized access detection, anomaly detection, 
security analytics prediction, etc.  

Baldini et al. [39] presented an approach for the authentication of IoT wireless devices based on Radio Frequency (RF) 
emissions. The proposed approach, which combines CNN and RP (RP-CNN), is tested on the RF emissions dataset, which 
is experimental data collected from 11 IoT devices. They also applied two classification methods called T-CNN, which 
utilizes the digital representation of the RF emissions directly with CNN, and FEAT, which extracts the statistical 
characteristics of RF emissions from their digital representations. The results showed that the RP-CNN improves accuracy 
when compared to T-CNN and FEAT. Lyu et al. [43] proposed an intrusion pattern recognition framework. The method, 
based on the GAF and CNN, achieved a high-speed response time of 0.58 s and a high recognition accuracy of 97.57% for 
six types of optical fiber intrusion events. In addition, it improved the robustness and practicability of the system because the 
GAF algorithm is not sensitive to the fluctuation of power sources in the optical path. Zhu et al. [48] developed a monitoring 
system to detect abnormal traffic and vulnerability attacks in IoT applications. In the system, time series data was converted 
into GAF graphs, and the CNN and Long Short-term Memory (LSTM) combination model was utilized to monitor traffic. 
However, the system that combined C5.0 decision tree (DT) and time series analysis introduced a novel idea for the traffic 
analysis of IoT devices. Bertalanič et al. [58] proposed a new resource-aware approach based on image transformation and 
deep learning for anomaly detection in the wireless link layer. Time-series data were transformed into images using RP and 
GAF. The experiments show that RP outperforms the GAF methods by up to 14%. Yan et al. [75] developed an intrusion 
detection model for few-shot attacks. 1D network traffic data was converted into three-channel RGB images using GADF, 
GASF, and WT. The three two-dimensional images are fused into the red, green, and blue channels of one RGB image, 
respectively. Additionally, the data augmentation module uses an improved Denoising Diffusion Probabilistic Model 
(DDPM), and the image classification module employs a variable network ETNet V2 based on EfficientNetV2. The results 
indicate that the proposed improved GAF method, combined with WT, achieves the highest accuracy compared to one-
dimensional data and other types of conversion methods such as GAF, MTF, and STFT.  

4.2. Energy Management  

IoT enables the monitoring and control of energy consumption, smart grid management, and the integration of renewable 
energy sources. It helps optimize energy distribution, reduce waste, and improve sustainability.  



 
Duygu Altunkaya, Feyza Yildirim Okay, Suat Özdemir                     Sakarya University Journal of Computer and Information Sciences 8(2) 2025 358-381 

369 
 

Fahim et al. [42] proposed a model called Time-series to Image (TSI) to detect abnormal energy consumption in residential 
buildings. This study focused on analyzing the univariate time-series energy data for very short-term analysis. The Proposed 
model utilized a One-Class Support Vector Machine (OCSVM) as a classifier and MTF as a converter, which transforms 
univariate time-series data into images. In this work, the authors demonstrated that this image representation further enhances 
the classifier’s ability to detect anomalous behavior more efficiently. Estebsari and Rajabi [44] proposed a hybrid model 
based on CNN and image encoding methods for single residential loads. They applied three different image encoding 
methods, including the RP, GAF, and MTF, to historical load time-series data. The experiments revealed that RP performed 
the best among the three encoding methods. Alsalemi et al. [59] developed a novel GAF classifier based on the EfficientNet-
B0 for the classification of edge internet of energy applications. The authors aimed to introduce the first lightweight classifier 
for 2D energy consumption working on the ODROID-XU4 platform.  

Copiaco et al. [69] proposed a 2D pre-trained CNN model for detecting anomalies in building energy consumption. This 
model used the 2D versions of the energy time-series signals to give input to several pre-trained models, such as AlexNet 
and GoogleNet, as features of the Linear Support Vector Machine (SVM) classifier. In this study, 1D time series were 
transformed into Grayscale and Jet Color image representations. This study showed that converting energy time-series data 
into images can provide an increase in the correlation between images with the same class. Chen and Wang [31] proposed an 
edge-computing architecture for load recognition tasks in the field of Non-Intrusive Load Monitoring (NILM) that reduces 
data transmission volume and network bandwidth requirements. They also developed a color encoding method based on GAF 
to construct load signatures in home appliances. Qu et al. [70] constructed three 2D load signatures based on the WVI, MTF, 
and current spectral sequence-based GAF (I-GAF). Additionally, they designed a new Residual Convolutional Neural 
Network with Squeeze-and-Excitation (SE) and Energy-Normalization (EN) blocks (EN SE-RECNN) for appliance 
identification in NILM. This study compared the performance of various models, including Residual Convolutional Neural 
Network (RECNN), Residual Convolutional Neural Network with EN blocks (EN-RECNN), and EN-SE-RECNN, and 
confirmed that the performance of EN-SE-RECNN was better. Also, their findings demonstrate that the fusion of different 
signatures enhances performance by enriching the information related to appliance identification.  

4.3. Healthcare  

In healthcare applications, time-series data assists in monitoring patient vital signs, analyzing health trends, predicting disease 
outbreaks, and optimizing healthcare resource allocation. Zhou and Kan [32] developed a tensor-based framework for ECG 
anomaly detection in Internet of Health Things (IoHT)-based cardiac monitoring and smart management of cardiac health. 
The multi-channel ECG signals were converted into 2D images using GADF. In this study, a tensor decomposition-
unsupervised anomaly detection model has been proposed, utilizing multi-linear principal component analysis (MPCA) and 
deep support vector data description (deep SVDD). The proposed model demonstrated that the framework using 2D image 
representations shows better performance than one that directly uses 1D signals because of the difficulty of extracting hidden 
information. Also, when the effect of the ECG length on the GADF image was examined, larger GADF images were found 
to give higher accuracy,  as well as the area under the ROC curve (AUROC) and F-score.  

Sreenivas et al. [47] proposed a CNN model for the classification of arrhythmia in dual-channel ECG signals. In this study, 
GAF and MTF were used to convert the ECG time-series signals into images. The result showed that the GAF model achieved 
higher accuracy compared to the MTF. Anjana et al. [49] proposed a CNN model based on various types of image encoding 
approaches to classify human emotions using EEG signals. In this study, Spectrogram, Scalogram, and HHT were employed 
to transform EEG signal data into images. The experiments showed that the scalogram of image encoding provides the best 
classification accuracy. Paula et al. [66] proposed a 2D-kernel-based CNN architecture to classify the Steady State Visually 
Evoked Potentials (SSVEP) signal. In this work, EEG data is encoded into images using GADF, GASF, MTF, and RP. This 
study demonstrated that the GADF and RP methods consistently showed higher performance. Also, the 1D-kernel-based 
structure of the model was insufficient for learning the necessary information from the data.  

John et al. [41] developed a cardiac monitoring system based on wireless sensing, aiming for accurate diagnosis of heart 
diseases. The system used MQTT for long-distance transmission and HHT for preprocessing and feature extraction of the 
data. Sharma et al. [50] introduced a patient monitoring system based on ontology for early remote detection of COVID-19. 
The proposed system relied on an alarm-enabled bio-wearable sensor system that utilized sensory 1D biomedical signals such 
as ECG, PPG, temperature, and accelerometer. These 1D Biomedical signals were converted into images with GASF after 
extracting their features. Then, SVM and K-Nearest Neighbors (KNN) were employed as ML-based classifiers for the 
classification of COVID-19 patients. Chen et al. [51] proposed an indoor speed estimation framework, SpeedNet, from radio 
signals, mainly aimed at monitoring the movement of elderly individuals. The SpeedNet framework includes three modules: 
the dominant path extraction module, the spectrum analysis module, and the deep learning module. The dominant path signal 
which is obtained from the extraction module was analyzed using STFT in the spectrum analysis module. Also, CNN and 
LSTM were utilized in the deep learning module to extract spatial and temporal features. They introduced a new approach 
for contactless indoor speed estimation with radio signals, addressing the challenges posed by the complex relationship 
between the speed of moving individuals and radio signals. Singh et al. [56] suggested a brain signal classification model 
that transformed brain signals into images as input for a pre-trained VGG19 model by using STFT for seizure detection. In 
addition, blockchain technology was utilized to store images more securely. The study also emphasizes the importance of 
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selecting an appropriate encoding method, which involves using different image conversion techniques such as spectrograms, 
chronograms, or kurtograms. Zhang et al. [60] proposed a system based on 5G-enabled Medical IoT for automatic detection 
of arrhythmia (ARR). Time-frequency spectrograms obtained from RR interval sequences using RP and Fourier Transform 
(FT) were used as inputs to a unified CNN and LSTM model for the classification of ECG signals. Dou et al. [61] proposed 
a novel classification method based on CWT and CNN within the context of the IoT domain. Their approach simultaneously 
classifies various ECG signals for heart disease diagnosis using GoogleNet. Besides, ECG signals were converted into time-
frequency images with CWT. Abdel-Basset et al. [62] developed a lightweight Human Activity Recognition (HAR) 
architecture designed to classify human activities captured by heterogeneous sensors from different IoT devices. They 
proposed a few modifications for three encoding techniques, including RP, MTF, and GAF. These techniques encode the 
three-dimensional (3D) time-series data of human activities into three-channel images to overcome the heterogeneity in 
sensory data.  

Hammoud et al. [74] proposed a DL framework for the classification of Parkinson’s disease (PD) and Progressive 
Supranuclear Palsy (PSP). They extracted the pupil features such as coordinates, area, minor axis, and major axis. The time-
series signals represented by the pupil’s coordinates and its area were reprocessed. Then, these features were converted into 
images using GASF, GADF, MTF, RP, RGB-GAF, and GAF-MTF. The results demonstrate that GADF, RP, and RGB-GAF 
achieved higher accuracy than other methods.  

4.4. Industrial  

Industrial IoT (IIoT) involves connecting industrial equipment, machinery, and systems to enable data monitoring, analysis, 
and optimization in manufacturing, energy transportation, and other industrial sectors. In industrial settings, time-series data 
helps monitor equipment performance, predict failures, optimize maintenance schedules, and improve overall operational 
efficiency.  

Various image encoding methods are commonly used in IIoT to provide intelligent and efficient fault diagnosis. Wang et al. 
[63] proposed a framework for fault diagnosis of single-channel and multi-channel bearing signals. They combined spectrum 
map information fusion and CNN to achieve fast fault diagnosis. GADF, MTF, and STFT were used to generate a 2D 
spectrum graph from 1D bearing vibration data, and STFT achieved the best result with the lowest loss value. The experiments 
indicated that the STFT method could use multichannel information effectively and improve fault identification accuracy. 
Similarly, Zhang et al. [68] presented a novel fault diagnosis method that combines GAF, Extreme Learning Machine (ELM), 
and CNN. They explored different encoding methods, including GADF, GASF, spectrogram, and gray-scale image, to 
indicate the effectiveness of the chosen encoding techniques for pattern recognition. The findings indicated that the GADF 
has the highest performance. Santo et al. [57] developed a model that combined time-series encoding techniques and CNN 
for predictive maintenance. This paper evaluated four main encoding techniques, RP, GAF, MTF, and Wavelet transform. 
The RP achieved the best performance in all metrics.  

Ferraro et al. [45] developed an efficient method for predictive maintenance that improved maintenance strategies and 
decreased downtime and cost. The method involves transforming temporal time-series data into images using GAF and 
utilizing deep learning strategies to predict the health status of the Hard Disk Drive (HDD). Jiang et al. [52] proposed the 
MTF-CLSTM method, which combines the MTF, CNN, and LSTM to predict product quality in Wire Electrical Discharge 
Machining (WEDM). MTF is employed to transform dynamic WEDM manufacturing conditions into images. In addition, 
features were extracted from the images with CNN, and LSTM was used to predict the surface roughness of the WEDM 
products right after manufacturing. When the MTF-CLSTM method was compared with the Deep Neural Network (DNN) 
and the Markov Chain DNN(MC-DNN) methods [84], the proposed method achieved the best performance.  

Garcia et al. [53] explored six encoding methods (GAF, MTF, RP, GS, spectrogram, and scalogram) and the modifications 
to enhance their robustness against the variability in large datasets when transforming temporal signals into images. This 
study revealed that different encoding methods exhibit competitive results for anomaly detection in large datasets. Bai et al. 
[64] proposed a fault diagnosis method called Time-series Conversion-DCGAN (TSC-DCGAN). They utilized GAF and 
MTF to transform 1D electrical parameters into 2D images. Additionally, the Deep Convolutional Generative Adversarial 
Network (DCGAN) was used as a generation method to handle the inadequate data samples of electrical parameters from oil 
wells. Also, the experimental results show that GAF images performed better in terms of classification effectiveness 
compared to MTF images. Sun et al. [71] put forward an idea for diagnosing composite failures of the adaptable multi-sensor 
bearing gear system by leveraging GAF, MTF, and ResNet. The complicated multi-dimensional time-series signals were 
fused and transformed into 2D images to facilitate classification tasks using GAF and MTF.  

4.5. Environmental Monitoring  

IoT devices are exploited to monitor and manage environmental conditions such as air quality, water quality, pollution levels, 
and natural resource conservation. These solutions aid in environmental protection and sustainable practices.  

Abidi et al. [65] proposed a framework for the classification of Land Use/Land Cover (LULC) mapping based on 2D encoded 
multivariate Satellite Image Time-series (SITS). In this work, multivariate SITS data were converted into 2D images by 
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GADF, GASF, MTF, and RP. The results indicated that the RP technique performed better than all encoding techniques. In 
addition, the combination of 2D encoding techniques achieved better performance than using the encoding methods alone.  

4.6. Smart Building  

Smart Building enhances occupant comfort, reduces energy consumption, improves safety and security, and optimizes 
building operations and maintenance. Time-series data in smart buildings is employed to monitor and control various building 
systems, such as HVAC (Heating, Ventilation, and Air Conditioning), lighting, and occupancy.  

Sayed et al. [72] presented an approach for the detection of occupancy using environmental sensor data such as temperature, 
humidity, and light sensors. In this study, multivariate time-series data were transformed into gray-scale and RGB images 
using an image transformation method to encode better and obtain relevant features. This method covered data normalization 
and matrix conversion, unlike commonly used methods such as GAF. The results showed that gray-scale images provide the 
appropriate balance between accuracy and training time compared to the colored images.  

4.7. Transportation and Logistics  

IoT applications in transportation and logistics include fleet management, vehicle tracking, route optimization, cargo 
monitoring, and driver safety. These applications have the potential to transform the industry by enabling intelligent decision-
making, reducing costs, and improving customer experience.  

Huang et al. [54] developed a new method, namely the Traffic Sensor Data Imputation GAN (TSDI GAN), for missing data 
reconstruction. GASF was employed in the paper to process time-series traffic data and transform it into an image format for 
missing value imputation using CNN.  

4.8. Wearable Devices  

Wearable devices focus on the integration of technology into portable devices that individuals can wear. These devices are 
equipped with sensors, connectivity capabilities, and computing power, enabling them to collect data, interact with the 
environment, and provide personalized experiences.  

Wearable devices incorporate various sensors to collect data about the user and their environment, such as accelerometers, 
heart rate monitors, GPS, temperature sensors, etc. They are also connected to other devices or networks through wireless 
technologies such as Bluetooth and Wi-Fi. Thus, wearable devices offer individuals convenient access to personalized data 
and experiences, empowering them to monitor their health, improve their fitness, and stay connected in a more seamless and 
unobtrusive manner.  

With the advancement of the IoT and wearable devices, sensor-based HAR has gained importance due to convenience and 
privacy characteristics. Xu et al. [46] presented two improvements based on GAF and deep CNN based on the Multi-dilated 
Kernel Residual (Mdk-Res) module for HAR. The findings indicated that the developed model was able to efficiently extract 
multi-scale features and improve the accuracy of activity recognition by utilizing the GAF algorithm’s characteristics, along 
with the structure and advantages of CNN, residual learning, and dilated convolution.  

Table 3: Summary of Image Transformation Techniques Studies in IoT Application Domain (A: Authentication, C: 
Classification, D: Detection, I: Imputation, P: Prediction, R: Recognition 

Domain  Ref.  Year  Problem 
Type  

Application 
Type  Methods  Models  Comparison 

Models  Results  

Security 

[39] 2018 A Authentication 
of IoT devices  RP  CNN  T-CNN  

FEAT  

Accuracy:  
RP-CNN: 96.8%  
T-CNN: 96.2%  
FEAT: 91.3%  

[43] 2020 C 
Intrusion 
Pattern 
Recognition  

GAF  CNN  
VGG16  
ResNet50  
Inception V3  

Accuracy:  
97.67%  

[48] 2021 C Anomaly 
Detection  GAF  C5.0 DT  

CNN-LSTM  -  Accuracy:  
96%  

[58] 2022 C Anomaly 
Detection  

RP  
GAF  CNN  

KNN  
SVM  
AlexNet  
VGG11  

F1-score:  
SuddenD: 1.00  
SuddenR: 1.00  
InstaD: 0.92  
SlowD: 0.99  
No anomaly: 0.99  
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[75] 2023 C Intrusion 
Detection  

GADF  
GASF  
WT  

DDPM  
ETNet V2  

CNN  
SVM  

Accuracy:  
99.20%  

Table 3. Continued: Summary of Image Transformation Techniques Studies in IoT Application Domain (A: 
Authentication, C: Classification, D: Detection, I: Imputation, P: Prediction, R: Recognition 

 

Energy  
Management 

[42] 2020 D Anomaly 
Detection  MTF  OCSVM  PCA+OCSVM  F1-score:  

88%  

[44] 2020 P 

Single 
Residential  
Load 
Forecasting  

RP  
GAF  
MTF  

CNN  
SVM  
ANN  
1D-CNN  

MAE: 0.59  
MAPE: 12.54  
RMSE: 0.79  

[59] 2022 C 

Energy 
Consumption 
Data 
Classification  

GAF  EfficientNet-
B0  -  -  

[31] 2022 R Load 
Recognition  GAF  ResNet  

Other Ref. 
Papers (LSTM, 
CNN and three 
AlexNet 
versions)  

Accuracy:  
PLAID:97.97%  
WHITED:97.90%  

[69] 2023 D Anomaly 
Detection  

Grayscale 
image  
RGB color 
image  
(jet 
colormap)  

 
AlexNet  
GoogleNet  
SqueezeNet  
Linear SVM  

AlexNet  
GoogleNet  

F1-scores:  
SiD: 93.63%  
DRED: 99.89%  
Accuracy:  
SiD: 96.11%  
DRED: 99.91%  

[70] 2023 R Load 
Recognition  

MTF  
GAF  
WVI  

EN-SE-
RECNN  

RECNN  
EN-RECNN  
EN-SE-RECNN  

Accuracy:  
PLAID:97.43%  
WHITED:95.99%  
HRAD:98.14%  

Healthcare 

[41] 2019 C 
Cardiac 
Monitoring 
System  

HHT  
Adaptive 
Threshold 
Method  

-  Accuracy:  
96%  

[47] 2021 C Arrhythmia 
Classification  

GAF  
MTF  CNN  Other Papers  

Accuracy:  
GAF: 97%  
MTF: 85%  

[51] 2021 P Indoor Speed 
Estimation  STFT  CNN-LSTM  Other Papers  Accuracy:  

96.33%  

[32] 2021 D Anomaly 
Detection GADF 

Deep SVDD 
Statistical 
Control 
Charts 
MPCA 

Adaboost 
SVM 

F1-score: 
Atrial fibrillation: 
0.9771 
Right bundle branch 
block: 0.9986 
ST-depression: 0.9550 

[50] 2021 D 
Remote Patient 
Monitoring 
(RPM) 

GAF SVM 
KNN 

SVM and KNN 
with different 
Fusion Methods 

Accuracy: 96.33% 

[49] 2021 C Emotion 
Classification 

STFT 
CWT 
HHT 

CNN - 

Accuracy:  
Scalogram: 98%, 
Spectrogram: 78%, 
HHT: 75% 

[56] 2021 C Brain Signal 
Classification STFT VGG-16 

SVM 
Logistic 
Regression 
Random Forest 

Accuracy: 88.04% 

[60] 2022 C ECG Signal 
Classification 

RP 
FT CNN-LSTM Other Papers 

Accuracy: 99.06%, 
Sensitivity: 98.29%, 
Specificity: 99.73% 
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[62] 2022 C HAR  
 

RP 
MTF 
GAF 

CNN-based 
model Other Papers 

Accuracy:  
HHAR: 98.90%, 
MEHEALTH: 99.68% 

Table 3. Continued: Summary of Image Transformation Techniques Studies in IoT Application Domain (A: 
Authentication, C: Classification, D: Detection, I: Imputation, P: Prediction, R: Recognition 

Domain Ref. Year 
Probl
em 
Type 

Application 
Type Methods Models Comparison 

Models Results 

Healthcare 

[61] 2022 C ECG Signal 
Classification CWT GoogLeNet AlexNet  

VGGNet 
Accuracy: 
94.28% 

[66] 2023 C EEG Signal 
Classification 

GADF 
GASF  
MTF 
RP 

ImageNet 
DenseNet 
ResNet 
Google Net 
AlexNet 

1D-kernel-
based CNNs 

Accuracy:(ResN
et50)  
RP –> 96%  
GADF –> 94%  
MTF –> 88%  
GASF –> 54% 

[74] 2023 C 
Neurological 
Diseases 
Diagnosis 

GADF 
GASF 
MTF 
RP 

CNN Other Papers 

Accuracy:  
Left eye: 96.9% 
Right eye: 90.8% 
Both eyes: 
96.9% 

Industrial 

[45] 2020 P Maintenance 
Prediction GAF CNN LSTM Accuracy: 

97.70%  

[52] 2021 P 
Product 
Quality 
Prediction  

MTF CNNLSTM 
Other Papers  
DNN 
MC-DNN 

MAPE:  
3-state MTF: 
3.11%  
4-state MTF: 
2.94%  
5-state MTF: 
3.24% 

[53] 2021 D Anomaly 
Detection 

GAF  
MTF  
RP  
GS  
STFT  
DWT  

CNN - 

AUC:  
SC: 92  
GS: 89  
MTF Mod: 87  
GAF Mod: 84 

[57] 2022 P Maintenance 
Prediction 

RP  
GAF  
MTF CWT  

CNN 

LSTM  
GRU  
XGBoost  
ResNet-50  
DenseNet-121  
VGG-16 

F1-score:  
GAN: 34.47  
CNN: 59.24  
Accuracy:  
RP: 0.95 

[63] 2022 D Bearing Fault 
Detection  

STFT  
The direct 
drawing 
method  
GADF  
MTF  

VGG  -  

Accuracy:  
MFPT:  
STFT: 99.8%  
CWRU:  
DDM: 93.8%  
GADF: 78.1%  
MTF: 79.7%  
STFT: 100%  

[64] 2022 D Fault 
Diagnosis  

GAF  
MTF  

DCGAN  
EfficientNet  

CNN  
VGG16  
GoogleNet  

Accuracy:  
0.8541  

[71] 2023 D Fault 
Diagnosis  

GAF  
MTF  ResNet  DCNN  Accuracy:  

72.14%  
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[68] 2023 D Fault 
Diagnosis  

GASF  
GADF  

ELM  
CNN  

AlexNet  
ANN  
SVM  
KNN  

Accuracy:  
99.2%  

Table 3. Continued: Summary of Image Transformation Techniques Studies in IoT Application Domain (A: Authentication, C: 
Classification, D: Detection, I: Imputation, P: Prediction, R: Recognition 

Domain  Ref.  Year  
Probl
em 
Type  

Application 
Type  Methods  Models  Comparison 

Models  Results  

Environme
ntal  
Monitoring 

[65] 2023 C Time-series  
Classification  

 
GADF  
GASF  
MTF  
RP  

CNN  
ResNet-50  Other Papers  

F1-scores:  
Reunion 
Island:89.34%  
Dordogne:90.26
%  
Koumbia study: 
78.94%  

Smart  
Building [72] 2023 P 

Building 
Occupancy 
Prediction  

Data 
Normalizati
on  
Matrix 
Conversion  

CNN  
KNN  
DT  
RF  

Accuracy:  
SRD: 99.11%  
LRD: 98.54%  
UCI: 99.42%  

Transportat
ion  
and 
Logistics 

[54] 2021 I Traffic Data 
Imputation  GASF  DCGAN  Other Papers  MAE:  

13.7%  

Wearable  
Devices [46] 2020 C HAR  GASF  

GADF  

Mdk-Res 
Module  
ResNet  

Multilayer 
Perceptron 
(MLP)  
LSTM  
CNN_1D 
CNN_2D  
ResNet  
GoogleNet  

Accuracy:  
Proposed: 
96.83%  
CNN: 93.23  
LSTM: 87.53  

Others * 

[40] 2019 C Time-series  
Classification  

GASF  
GADF  
MTF  

ConvNet  
ConvNet  
VGG16  
Other Papers  

Error rates:  
MTF: 0.4 
(Wafer)  
GADF: 5.35 
(ECG)  

[55] 2021 C Time-series  
Classification  

GAF  
MTF  ADDN  

ResNet  
Encoder  
MLP  
MCDCNN  
Time-CNN  

MPCE:  
UTS: 2.90  
MTS: 4.00  

[67] 2023 C Time-series  
Classification  

GAF  
MTF  
RP  
GMR  

ResNet  

ResNet  
Dynamic Time 
Warping 
(DTW)  
MLP  
Fully 
Convolutional 
Network 
(FCN)  

Error rates:  
GMR: 0.2305  
GAF: 0.2431  
MTF: 0.2863  
RP: 0.2543  

[73] 2023 D Sensor Fault 
Diagnosis  GAF  ResNet18-

SVM-GAN  
ResNet18-
SVM  

Accuracy:  
98.7%  

* The studies have not been provided with any domain-specific information 
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4.9. Others 

Beyond the above-mentioned IoT domains, various studies employ data from different fields within IoT. In these studies, the 
effects of the proposed methods on the datasets obtained from diverse fields were examined. For example, Yang et al. [40] 
used two well-known MTS datasets, Wafer and ECG, to classify 1D signals. MTS data was transformed into 2D images by 
applying GASF, GADF, and MTF. These images were then concatenated as RGB input channels for the ConvNet 
classification model. The study concluded that the choice of encoding methods had no significant impact on the prediction 
results. Jiang et al. [55] evaluated the Adaptive Dila-DenseNet (ADDN) model for classifying UTS and MTS data across 24 
benchmark IoT datasets. Both UTS and MTS data were converted into GM-images by leveraging GAF and MTF methods to 
feed into the ADDN model. Quan et al. [67] investigated the impact of different feature construction and fusion methods on 
time-series classification results. They proposed an improved Multi-Scale ResNet (MSResNet) for time-series classification. 
In this study, three images encoded with different methods, including GAF, MTF, and RP, were superimposed as three-
channel data inputs as GMR images. Besides, 1D multi-scale features and 2D image features were fused using two distinct 
methods, including Squeeze-and-Excitation (SE) and Self-Attention (SA) feature fusion architectures. Hasan et al. [73] 
introduced a sensor fault detection approach based on digital twins. They used the GAN method to create the digital 
representation of the sensor. Also, the GAN was trained with images obtained by converting time-series using GAF.  

5. Research Challenges and Future Directions  

Converting time-series data into images attracted significant attention in facilitating IoT data analysis. While this 
transformation can offer new perspectives and enable advanced image processing techniques, it also introduces several 
challenges and limitations related to data handling, computational requirements, interpretability, and real-time processing. 
Since IoT devices typically generate large volumes of data, converting this data into images can result in significant storage 
and processing expenses. Additionally, time-series data often contains noise and anomalies, which can negatively impact the 
transformation process and the quality of the resulting images. To address this issue, significant preprocessing may be 
required to clean and normalize the data before transformation, adding to the complexity and time required for analysis. Also, 
the transformation process is not simple and requires complex techniques. The choice of the conversion method can 
significantly affect the result and the quality of the resulting images. However, these images may not be easily interpreted by 
users who are not familiar with certain transformation techniques. Lastly, some machine learning and image processing 
algorithms may not be appropriate for analyzing images derived from time-series data, as they cannot adequately describe 
the underlying patterns or relationships.  

As mentioned above, this transformation process has a set of challenges. The major challenges and potential solutions are 
presented to address them as follows for researchers [44, 85–96].  

• IoT time-series data is often prone to noise and missing values caused by sensor failures or network problems, which can 
adversely affect the image quality. Also, missing data when creating an image can lead to incomplete representations. To 
address this challenge, researchers should investigate advanced imputation techniques to handle missing gaps. This could 
involve developing specialized image inpainting models [85] specifically designed for images derived from time-series data 
or implementing GAN-based models [86] that can be utilized to learn the unique temporal patterns associated with various 
IoT domains. 

• Encoding large-scale IoT time-series data can be computationally expensive and memory-intensive. To overcome this 
limitation, future research should develop dynamic resolution techniques that automatically determine optimal image 
dimensions based on data complexity [88]. On the other hand, it should be noted that very small sizes can lead to the loss of 
essential details while reducing memory and computational costs. Moreover, current techniques can be redesigned to 
accelerate image conversion.  

• The process of transforming time-series data into images involves compressing the temporal information into a 2D 
representation. This compression can cause information loss. Balancing the trade-off between dimensional reduction and 
information loss is a critical challenge in this field [89]. To minimize information loss, researchers should focus on developing 
robust transformation techniques that balance dimensionality reduction and information preservation. Besides, in order to 
avoid information loss, modifications can be made to the transformation methods, such as changing the function in a formula 
[90], [91].  

• IoT time-series data can involve multiple variables or sensors, resulting in MTS. However, the methods described cannot 
be applied directly to MTS. To better handle multivariate data, researchers should focus on various approaches. They can 
develop specialized encoding techniques that can directly represent relationships between variables, adapting MTS data in 
the visual domain. In addition, dimension reduction methods can be utilized to implement encoding techniques directly [92, 
93] that preserve variable correlations while reducing complexity. Also, effective fusion techniques where each channel 
captures different aspects of the multivariate relationship can be developed to transform MTS data [94].  

• Real-time or near-real-time image representations for dynamic IoT environments can be challenging [44]. If the image 
transformation process takes longer than the time between intervals, the system can fail eventually.  

This delay may be unacceptable for decision-making systems within a short period in IoT applications such as IIoT and smart 
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cities. To improve processing speed, future research should increase hardware resources that can help reduce computation 
time. Also, edge devices provide prominent computational resources for faster real-time decision-making [95], where 
different levels of transformation happen at different nodes. Furthermore, combining edge and cloud architecture in IoT can 
effectively address network traffic congestion and latency concerns [96].  

6. Conclusion  

In recent years, the transformation of time-series data into images has become widespread. However, the adoption of these 
techniques in IoT domains is still in its early stages, with expectations for them to become commonplace across most IoT 
domains in the near future. This study presents a comprehensive review of image transformation techniques employed in 
various IoT domains, including smart buildings, industrial settings, energy management, healthcare, security, and more. We 
categorize existing studies based on their encoding techniques, IoT application areas, and data types. In the literature, various 
transformation techniques are applied to both UTS and MTS IoT data. These transformation techniques are typically used in 
conjunction with fusion techniques for multivariate time-series IoT data. Among the techniques employed, GAF and MTF 
are the most commonly used image transformation techniques, particularly in domains such as energy management, 
healthcare, and industrial applications with purposes such as anomaly detection, fault diagnosis, and time-series classification. 
It is crucial to choose the right method that is suitable for the specific problem and dataset. This decision can significantly 
impact the result and the quality of the resulting images. In addition, handling some important issues such as noise, missing 
values, and outliers increases the effectiveness of the converted images. Additionally, this paper discusses the associated 
challenges, weaknesses, limitations, open issues, and future research directions.  
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