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ABSTRACT 
The widespread adoption of Internet of Things (IoT) devices in multiple sectors has driven technological 
progress; however, it has simultaneously rendered networks vulnerable to advanced cyber threats. Conventional 
intrusion detection systems face challenges adjusting to IoT environments' ever-changing and diverse 
characteristics. To address this challenge, researchers propose a novel hybrid approach combining Graph Neural 
Networks and XGBoost algorithm for robust intrusion detection in IoT ecosystems. This paper presents a 
comprehensive methodology for integrating GNNs and XGBoost in IoT intrusion detection and evaluates its 
effectiveness using diverse datasets. The proposed model preprocesses data by standardization, handling 
missing values, and encoding categorical features. It leverages GNNs to model spatial dependencies and 
interactions within IoT networks and utilizes XGBoost to distill complex features for predictive analysis. The 
late fusion technique combines predictions from both models to enhance overall performance. Experimental 
results on four datasets, including CICIoT-2023, CICIDS-2017, UNSW-NB15, and IoMT-2024, demonstrate 
the efficacy of the hybrid model. High accuracy, precision, recall, and AUC values indicate the model's 
robustness in detecting attacks while minimizing false alarms. The study advances IoT security by introducing 
synergistic solutions and provides practical insights for implementing intrusion detection systems in real-world 
IoT environments. 
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1. Introduction 

The rife adoption of the Internet of Things (IoT) has revolutionized different sectors, including agriculture, the power 
industry, transportation, and healthcare. However, this quick proliferation of IoT ecosystems has also exposed them to 
increasingly sophisticated cyber threats and security vulnerabilities. Protecting the IoT device and the data it processes has 
become a major concern [1]. Consequently, there is a critical need for robust and efficient intrusion detection systems (IDS) 
specifically tailored for IoT environments. An Intrusion Detection System (IDS) is crucial for network operations. It actively 
observes network traffic and promptly notifies the administrator of any irregularities or suspicious activities within the 
network [2]. However, traditional IDS approaches often struggle to adapt to IoT networks' ever-changing and diverse 
characteristics. These networks are characterized by diverse device types, communication protocols, and network topologies 
[3]. To respond to these difficulties, researchers and practitioners have turned to innovative machine learning techniques such 
as support vector machines, Naïve Bayes, decision trees, and random forests, capable of modeling the complex relationships 
and interactions within IoT networks [4]. Integrating various machine learning algorithms into hybrid models has proven to 
be a promising approach for improving the accuracy and dependability of IDSs within IoT environments [5]. Graph Neural 
Networks (GNNs) and XGBoost have received considerable recognition in machine learning algorithms due to their 
proficiency in determining multifarious patterns and relationships in high-dimensional and graph-structured datasets.  

The effectiveness of hybrid models lies in their ability to leverage the complementary strengths of different algorithms. GNNs 
excel at learning representations of graph-structured data to execute tasks that follow in the sequence [6], such as IoT network 
traffic, by exploiting the inherent relational structure among network entities at either the edge or node level [7]. By 
propagating information across interconnected nodes and edges, GNNs can effectively capture localized patterns and 
dependencies within the network [8]. On the other hand, Extreme Gradient Boosting (XGBoost) is adept at handling tabular 
data and capturing nonlinear relationships between features by discarding missing values and mitigating overfitting problems 
through parallel processing [9]. The XGBoost algorithm, rooted in gradient-boosted decision trees, is a potent tool for 
enhancing gradients, offering effective solutions for regression and classification tasks by integrating new algorithms with 
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GBDT methods into a versatile soft computing library [10]. The decision to adopt a hybrid approach combining GNNs and 
XGBoost in IoT intrusion detection is motivated by several factors. Firstly, GNNs are appropriate for modeling spatial 
dependencies and interactions among IoT devices and traffic flows, enabling fine-grained network behavior analysis. 
Meanwhile, XGBoost provides a robust framework for integrating the learned representations from GNNs and making global 
predictions based on comprehensive feature sets. Furthermore, integrating GNNs and XGBoost offers synergistic benefits, 
including enhanced feature extraction, improved generalization, and robustness against noise and adversarial attacks. By 
combining the capabilities of two algorithms, the hybrid model can effectively mitigate the limitations of individual 
approaches and achieve superior performance in IoT intrusion detection tasks. The widespread integration of IoT devices has 
triggered technological advancements across various sectors. However, this expansion has made IoT networks vulnerable to 
more complex cyber threats. Traditional IDSs frequently face difficulties adjusting to IoT settings' ever-changing and diverse 
characteristics. The proposed approach in this study has been developed to address these challenges. 

1.1 Motivation 

Adopting a hybrid approach that integrates Graph Neural Networks and XGBoost for IoT intrusion detection is deeply rooted 
in the intricate nature of IoT environments and the imperative need for robust Intrusion Detection Systems. IoT networks, 
characterized by diverse, interconnected devices, sensors, and actuators across various domains, such as healthcare and 
industrial automation, pose significant challenges to traditional IDS methods. The dynamic nature of these ecosystems, 
coupled with diverse device types, communication protocols, and network topologies, renders conventional rule-based and 
signature-based intrusion detection approaches inadequate in addressing evolving cyber threats. GNNs offer a compelling 
solution for modeling and analyzing complex relationships and dependencies among network entities in IoT networks, where 
data is inherently graph-structured. As the network environment becomes increasingly complex, conventional neural network 
solutions struggle to harness the wealth of information within network traffic data due to their singular structure. GNNs 
facilitate the propagation of information across interconnected nodes and edges, enabling fine-grained analysis of network 
behavior and the identification of anomalous patterns or malicious activities. By leveraging the graph structure of IoT data, 
GNNs can effectively capture localized patterns and dependencies within the network, providing insights into the dynamic 
interactions among IoT devices and traffic flows. 

Complementing the capabilities of GNNs, XGBoost stands out as a powerful gradient-boosting algorithm that is noted for its 
capability to handle tabular data and capture nonlinear relationships between features. By sequentially constructing an 
ensemble of decision trees, XGBoost can learn from high-dimensional feature sets and capture complex decision boundaries, 
making it appropriate for IoT intrusion detection tasks. Furthermore, XGBoost's robustness and accuracy in classifying 
instances enhance its applicability in IoT security. 

The motivation for this study arises from the need to develop a more efficacious IDS against the rapidly evolving cyber 
threats in IoT environments, as traditional methods often fall short in detecting these threats due to the complex structure of 
IoT networks and the interactions between devices. The proposed hybrid model in this study contributes an extensive solution 
to these challenges by combining GNN and XGBoost algorithms. The synergy between GNNs and XGBoost offers a holistic 
approach to addressing IoT environments' intricacy and dynamic nature. By integrating the strengths of both algorithms, the 
hybrid approach can cope with the limitations of individual methods and achieve superior performance in IoT intrusion 
detection. This hybrid model enables enhanced feature extraction, improved generalization, and robustness against noise and 
adversarial attacks. Consequently, it offers a robust and adaptive intrusion detection mechanism to safeguard IoT ecosystems 
against emerging cyber threats, thereby strengthening the security and resilience of IoT networks. 

1.2 Research Gap 

Even if the amount of research on IoT intrusion detection is increasing, existing solutions remain insufficiently effective 
against advanced threats that continue to evolve in complexity and sophistication. Traditional intrusion detection systems 
rely on rule-based and signature-based methodologies [11]. However, these methods struggle to adapt to the ever-changing 
IoT environments. Such environments are characterized by diverse network topologies, communication protocols, and device 
types [12], [13]. This inadequacy increases the risk of undetected intrusions, as conventional systems may fail to identify 
novel attack patterns that do not match predefined signatures or rules. Furthermore, the intricate interactions among 
interconnected IoT devices create complex, graph-structured data that conventional neural network solutions cannot fully 
exploit [14]. These conventional methods are constrained by their failure to adequately capture the intricate relational 
information inherent in IoT traffic data. This leads to a significant loss of essential insights regarding network behavior and 
potential security vulnerabilities. Consequently, there is a pressing need for innovative methodologies that can successfully 
deal with these problems. The research gap lies in the under-explored potential of hybrid models that combine the strengths 
of Graph Neural Networks and XGBoost for intrusion detection in IoT settings. GNNs show promise for graph and network 
data analysis, including in Network Intrusion Detection Systems NIDS. However, their effectiveness is hindered by 
limitations such as poor performance with limited or imbalanced training data and susceptibility to adversarial attacks. 
Consequently, further research into GNN-based NIDS is crucial to address these vulnerabilities and improve their robustness 
[10]. While GNNs offer a promising framework for comprehending complex relationships among network entities, they are 
often used in isolation without considering the complementary capabilities of ensemble methods like XGBoost, which excel 
in capturing nonlinear relationships and enhancing classification accuracy. 
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This study aims to fill this gap by providing a hybrid model that leverages the synergistic effects of GNNs and XGBoost, 
thus addressing the shortcomings of existing methods. Integrating these algorithms enhances feature extraction, improves 
generalization and fortifies the model's robustness against noise and adversarial attacks. By doing so, the proposed approach 
aspires to provide a more effective and adaptive intrusion detection mechanism capable of safeguarding IoT ecosystems 
against the multifaceted and evolving nature of cyber threats. This research contributes to the ongoing discourse on IoT 
security by introducing a novel framework that promises to elevate the performance of IDSs in increasingly complex 
environments. 

1.3 Contribution 

Firstly, a novel hybrid approach is presented in this paper, integrating GNNs and XGBoost for IoT intrusion detection. This 
approach offers a comprehensive solution to address IoT environments' complexity and dynamic nature. By leveraging the 
strengths of both algorithms, the hybrid model enhances the accuracy, robustness, and efficiency of IDSs in IoT ecosystems. 
Secondly, the article contributes to the body of knowledge in IoT security by demonstrating the effectiveness of synergistic 
solutions in mitigating the evolving cyber threats IoT networks face. Combining GNNs' ability to model graph-structured 
data and capture localized patterns with XGBoost's capability to handle tabular data and capture complex relationships, the 
hybrid model provides a holistic approach to intrusion detection in IoT environments. Furthermore, the article advances 
machine learning techniques in IoT security applications by exploring innovative methodologies and algorithms tailored 
specifically for IoT intrusion detection. Integrating GNNs and XGBoost represents a paradigm shift in intrusion detection 
research, offering new insights and avenues for enhancing the security and resilience of IoT ecosystems against emerging 
threats. Moreover, the article contributes to the practical implementation and deployment of IDSs in real-world IoT 
environments by providing insights into the hybrid model's performance, scalability, and adaptability. By evaluating the 
model on diverse IoT datasets and benchmarking it against existing approaches, the article offers valuable perceptivity into 
the feasibility and efficacy of hybrid solutions in addressing the unique challenges of IoT security. 

Overall, the article's contribution lies in its innovative approach to IoT intrusion detection, exploration of synergistic solutions 
combining GNNs and XGBoost, and practical insights into implementing and deploying intrusion detection systems in IoT 
ecosystems. Through its findings and recommendations, the article aims to inform and inspire further research and 
development efforts to strengthen IoT network security and resilience against changing cyber threats. 

1.4 Limitations 

Although this study presents high success rates in IoT intrusion detection, it has certain limitations. First, the model's training 
time and computational cost increase, particularly in scenarios where GNN and XGBoost are used together. Therefore, 
optimizing these computational costs for real-time applications in large IoT networks is essential. Second, the model's 
generalization capability may be limited. Without further testing on diverse IoT networks and datasets, it isn't easy to ascertain 
whether the model will be effective across all IoT environments. Specifically, aspects such as multi-class attack detection 
and real-time performance must be explored more deeply in future research. 

Finally, the datasets used in this study have concentrated on specific types of attacks. The model's performance should be 
tested extensively across different datasets and attack types to evaluate its effectiveness comprehensively. 

1.5 Article Organization 

This study is organized as follows: Current studies in the field are presented in the second section. The methodology of the 
model we address is described in the third section. Model architecture is presented in the fourth section. Experimental results 
obtained are presented in the fifth section. Finally, the Conclusion section summarizes the contributions of our paper and 
provides suggestions for future studies. 

2. Related Work  

This section will focus on IoT-based GNN and XGBoost IDS and examine relevant studies in the current literature. Given 
the complexity of IoT networks and the constantly evolving threat landscape, research on the effectiveness and reliability of 
such systems is of great importance. In this context, the capabilities of GNN and XGBoost-based approaches to detect security 
threats in IoT networks will be examined and evaluated, along with findings from previous studies.  

Altaf et al. [7] introduced a deep learning-based IDS for IoT networks, utilizing a Node Edge-Graph Convolutional (NE-
GConv) network. This approach employs Recursive Feature Elimination (RFE) to select 13 pertinent features, optimizing the 
model to effectively address IoT devices' resource constraints. The model enhances attack detection capabilities by integrating 
node and edge features, demonstrating significant improvements in computational efficiency and memory usage. A study 
[15] proposes deep machine learning techniques for developing an effective IDS targeting smart power grids against 
cyberattacks. The proposed IDS merges cyber-physical features collected from a practical trial platform, enabling the fusion 
of these features and adopts a GNN-based topology-aware model to utilize the spatial and temporal correlations in the data. 
Experimental results show that the proposed IDS performs superiorly to benchmark models lacking topology awareness that 
rely only on cyber or physical data. The study does not include detailed analysis or testing in real-world applications for 
further improvement of the proposed IDS's performance. Additionally, more information is needed regarding the proposed 
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IDS's generalization ability and applicability to different power systems. Moreover, a more detailed explanation of the data 
collection and modeling techniques used in the study could enhance the reproducibility of the research. The study [16] 
examines the use of GNNs for unsupervised intrusion and anomaly detection in computer networks, and an approach named 
Anomal-E is proposed. With this approach, attack patterns can be identified without using labeled data, and experiments 
show that Anomal-E significantly improves performance compared to other methods. However, further testing of Anomal-
E's generalization ability and performance on real-world network traffic is required. Additionally, more research is needed 
on how Anomal-E can be more effectively used in large-scale networks. In another study [6], a new NIDS using GNNs was 
proposed. The GNN approach, named E-GraphSAGE, allows for capturing edge features and topological information in IoT 
networks. The performance of this system was demonstrated through extensive experimental evaluations on four different 
IoT NIDS benchmark datasets. These evaluations showed that the E-GraphSAGE-based NIDS surpassed the best-reported 
classifiers based on the F1-score criterion. For example, the F1-scores achieved in the NF-ToN-IoT and NF-BoT-IoT 
experiments were 1.0 and 0.97, respectively, indicating performance comparable to existing algorithms. Areas for 
improvement in this study include testing on a broader dataset and evaluating the generalization capability of the performance 
across different network scenarios. Additionally, exploring explainable graph neural network algorithms (such as GNN 
Explainer) to gain more insights into GNN model outputs and investigating neighborhood sampling techniques (especially 
irregular sampling techniques) to improve the runtime of the study are also considered important. Altaf et al. [17] introduced 
a concatenated Multigraph Neural Network (M-GNN) for detecting IoT intrusions, enhancing the capabilities of Network 
Intrusion Detection Systems. This novel GNN model utilizes a multi-edged graph structure to encapsulate comprehensive 
interactions between IoT nodes, effectively capturing spectral and spatial data characteristics. Extensive testing on multiple 
datasets showcases M-GNN's superior performance, demonstrating improvements in accuracy, precision, recall, and F1 
scores by 2% to 5% over traditional GNN models. The research highlights the advantages of integrating multi-dimensional 
edge features and a complex graph topology, resulting in a more effective detection system with reduced model size and 
training time. Another study by Duan et al. [18] introduces a novel dynamic line graph neural network (DLGNN) method for 
network intrusion detection using semi-supervised learning. This approach captures both the spatial features of network traffic 
and the temporal dynamics between communication events, improving detection accuracy with fewer labeled samples. The 
model transforms network traffic into dynamic, spatiotemporal graphs, using a line graph structure to express edge 
relationships better and enhance message aggregation capabilities. Extensive tests on multiple datasets demonstrate superior 
performance over existing methods, particularly in multi-class detection scenarios.  

Zivkovic [19] proposed an improved firefly (FA) optimization algorithm, CFAEESCA. The proposed improved 
metaheuristics are used to optimize the XGBoost classifier for the intrusion detection problem. The CFAEE-SCAXGBoost 
framework has been proposed, based on the XGBoost classifier, with its hyperparameters optimized and tuned using the 
newly proposed model, which outperforms the variation supported by the original FA algorithm, the PSO-XGBoost, and the 
basic implementation of the XGBoost, which is used in the comparative analysis. The experimental results show that the 
CFAEE-SCA-XGBoost model obtained the best accuracy compared to the original model and suggest the potential for using 
swarm intelligence algorithms for NIDS. Bhattacharya et al.  [9] addressed the problem of IDS classification by proposing a 
hybrid machine learning model combining Principal Component Analysis (PCA), the Firefly algorithm, and XGBoost. Their 
framework involved initially transforming the IDS dataset using One-Hot encoding. Subsequently, a hybrid PCA-Firefly 
algorithm was employed for dimensionality reduction before applying the XGBoost algorithm to the reduced data to classify 
unanticipated cyberattacks. The experimental results presented in their study indicated that their proposed hybrid approach 
achieved higher accuracy than traditional methods. Abdulganiyu et al. [20] proposed the XIDINTFL-VAE framework, 
integrating a Class-Wise Focal Loss Variational AutoEncoder (CWFL-VAE) for targeted synthetic data generation with 
XGBoost for classification, to address the challenge of detecting minority class attacks in imbalanced network intrusion data. 
This work highlights the effectiveness of combining advanced data augmentation with robust ensemble learning to enhance 
the detection of rare intrusions and achieve superior performance in severe class imbalance. Song et al. [21] have proposed 
the WOA-XGBoost algorithm for intrusion detection, combining the XGBoost framework with the Whale Optimization 
Algorithm (WOA). This method innovatively utilizes WOA to automatically select and optimize XGBoost's parameters, 
offering a broader search range and improved accuracy compared to traditional manual or grid search optimization 
techniques. Evaluated on the KDD CUP 99 dataset, the WOA-XGBoost algorithm demonstrated significantly better 
performance than methods based on WOA-SVM, suggesting its potential as an effective tool for network data intrusion 
detection. Amaouche et al. [22] proposed IDS-XGbFS, a smart intrusion detection system. Their framework utilizes the 
XGBoost classifier with feature selection techniques, including Boruta and the Adaptive Synthetic Sampling Approach 
(ADASYN), to handle class imbalance. Evaluated on the NSL-KDD and 5RoutingMetrics datasets, their model demonstrated 
high accuracy, recall, and precision performance compared to other methods like CatBoost and CNN. The related work 
summary is shown in Table 1. 
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Table 1. Studies and findings 

Study Method Findings 
[15] Cyber-Physical GNN-Based IDS GNN-based IDS has demonstrated superior performance by 

integrating cyber and physical data with topological 
awareness. 

[16] Anomal-E: GNN-based unsupervised 
anomaly detection 

Anomal-E, a GNN-based IDS, improves attack detection 
performance by leveraging unlabeled edge features and graph 

topological structure 
[6] E-GraphSAGE – Graph Sample and 

Aggregate GNN  
E-GraphSAGE captures edge features and a network flow 
graph's topological pattern to enhance anomaly and attack 

detection performance. 

[17] Multigraph-GNN - A multi-edge graph 
structure 

Multigraph-GNN shows an improved detection performance 
by processing multiple edges with multi-dimensional edge 

features in the graph structure. 

[7] Node Edge-GNN - Lightweight IDS Node Edge-GNN performs enhanced anomaly detection in 
both payload content and network flow, considering the 

resource constraints of IoT devices. 
[18] Dynamic Line GNN   Dynamic Line GNN enhances detection accuracy by 

transforming network flows into dynamic, spatial, and 
temporal graphs with fewer labeled examples. 

[19] CFAEE-SCA-XGBoost  XGBoost with enhanced firefly algorithm CFAEESCA 
improves attack detection accuracy.   

[9] PCA-XGBoost Utilizing XGBoost with an enhanced Principal Component 
Analysis algorithm enhances attack detection accuracy. 

[20] CWFL-VAE - XGBoost Combining data augmentation with XGBoost improves the 
accuracy of anomaly detection. 

[21] WOA-XGBoost XGBoost framework with the Whale Optimization Algorithm 
improves the accuracy of intrusion detection by automatically 

selecting and optimizing the parameters. 
[22] IDS-XGbFS XGBoost with Boruta, selecting the most relevant features, 

and ADASYN, coping with the imbalanced dataset, provide 
improved intrusion detection accuracy. 

 

Based on a review of existing literature, studies in network intrusion detection frequently demonstrate that integrating 
multiple techniques often yields superior performance compared to employing models in isolation. Hybrid approaches, 
combining core classifiers with methods such as feature selection, dimensionality reduction, data augmentation, or 
optimization algorithms, have been shown to effectively address challenges like severe class imbalance and complex feature 
spaces. These integrated methodologies apply structural modifications to features, more effective feature selection processes, 
or the strategic combination of models and data processing steps to leverage their respective strengths. Consequently, research 
indicates that these combined strategies improve detection accuracy and overall performance metrics. 

3. Methodology 

The hybrid model for IoT intrusion detection integrates the strengths of GNNs and XGBoost to fortify the defense 
mechanisms against cyber threats within IoT environments. The innovative aspect of this study is developing a hybrid model 
that combines the GNN and XGBoost algorithms. GNN effectively captures local patterns by modeling the complex 
relationships between devices and traffic flows in IoT networks. On the other hand, XGBoost is successful in processing 
tabular data and capturing nonlinear relationships between features. 

The developed hybrid model demonstrates superior performance on graph-based and tabular data by combining GNN's 
capacity to learn network structures with XGBoost's robust classification capabilities. Additionally, the late fusion technique 
used in this model allows for higher accuracy rates by merging the predictions of both algorithms. Another innovation offered 
by this model is its ability to simultaneously address spatial dependencies and complex relationships by providing a solution 
based on both the graph structures and attributes of IoT data. 

3.1 Graph Neural Networks (GNN)  

GNN is a deep learning model used to process features in nodes of a graph structure [23]. GNNs capture geometric and 
topological features of entities by embedding relational inductive biases within their deep learning architectures [17]. A graph 
consists of nodes and the edges that connect these nodes. The main idea of GNN is to update feature vectors using 
neighborhood information and structural information in nodes. Feature vectors are determined for each node and edge. These 
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features represent the roles of nodes and edges within the graph. GNNs typically consist of several consecutive GNN layers. 
Each GNN layer updates the features of a node based on its neighbors’ features and its features [24]. Aggregation functions 
are typically used to compute the feature vector of a node in the next layer using neighborhood information. These functions 
process the feature vectors collected from the node's neighbors and create a new feature vector to be transferred to the next 
layer [25]. If the feature vectors of neighboring nodes are represented as ℎ𝑖𝑖, the number of the layer is denoted as  𝑙𝑙, and the 
weights of the edges are omega alt i. j, s are 𝜔𝜔𝑖𝑖𝑖𝑖 then the calculation of the feature vector of a node in the next layer can be 
represented as Equation 1. 

𝐡𝐡𝐢𝐢
(𝐥𝐥+𝟏𝟏) = 𝛔𝛔�𝚺𝚺�̇�𝐉∈𝐍𝐍(𝐢𝐢)

𝛚𝛚𝐢𝐢𝐢𝐢 ⋅ 𝐡𝐡𝐢𝐢(𝐥𝐥)�  (1) 

The 𝑁𝑁(𝑖𝑖), here represents the neighbourhood set of nodes 𝑖𝑖 and 𝜎𝜎 is an activation function. This formula aggregates the feature 
vectors of neighboring nodes with weights and then passes them through an activation function to obtain the new feature 
vector. In general, a GNN model used to update the feature vector of a node can be expressed as Equation 2. 

𝐡𝐡𝐢𝐢
(𝐥𝐥+𝟏𝟏) = 𝐀𝐀𝐀𝐀𝐀𝐀( �𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔�𝐡𝐡𝐢𝐢

(𝐥𝐥), 𝐱𝐱𝐢𝐢��
𝐢𝐢∈𝐍𝐍(𝐢𝐢)

)  (2) 

"Update" represents the function used to update the feature vector of a node. This function considers the information gathered 
from its neighbors to update the feature vector of a node and produces a new feature vector. The feature vector of each 
neighboring node is processed by Aggregation and Update operations to be transformed into an updated feature vector of the 
node. As a result, the feature vector of a node is updated with a combination of information from its neighbors and its features. 

GNN iterates through these processes across multiple layers to process information in the graph structure. Each layer further 
processes the features in the nodes, enhancing the model's overall performance by iteratively refining the information. 

In this study, GNN was utilized to build a model using the features present in the dataset. We did not incorporate a feature 
like the IP address into the GNN node structure. This decision was made because a feature such as an IP address is variable 
and can be altered by an attacker. GNNs can be employed as flexible and powerful modeling tools capable of utilizing 
structural information and features, enhancing their utility in various applications. The features are important in the dataset 
and do not necessarily have to be associated with nodes or edges. In cases where the features provide sufficient information 
to accurately predict a specific target, models like GNNs can be particularly effective. In the dataset we utilized, the 
relationships between rows or the interaction of features in columns are not directly apparent. Therefore, GNNs were 
employed solely to learn patterns and relationships among the data using the features themselves. 

The GNN architecture employed in this study begins with an input layer consisting of nodes equal in number to the features 
in the dataset. This is followed by a first hidden layer comprising 64 neurons, utilizing the boost activation function to enable 
non-linear learning. The second hidden layer, also activated by ReLU, contains 32 neurons. These layers facilitate the gradual 
abstraction of representations learned from the data. Using the sigmoid activation function, the output layer maps the 32-
dimensional input to a single output neuron, producing a probability value between 0 and 1. The Mean Squared Error (MSE) 
loss function is used to evaluate model performance, and the Adam optimization algorithm is employed for updating the 
weights. The architectural details of the GNN model used in this study are summarized in Table 2. 

Table 2. GNN components and description 

GNN Components Description 
Input Layer input_dim = number of dataset features  
Hidden Layer #1 input_dim :  64 neurons, 

activation function: ReLU 
Hidden Layer #1 input_dim :  32 neurons, 

activation function: ReLU 
Output Layer  
(Binary Classification)  

32 to 1 neuron; 
Activation function: Sigmoid 

Loss Function Mean Squared Error 
Optimizer Adam 

GNNs are relevant in IoT environments, particularly in network traffic analysis and intrusion detection. By modeling the 
interactions between IoT devices, sensors, and network components, GNNs can effectively detect anomalies, identify patterns 
of malicious behavior, and enhance the accuracy of IDSs. A GNN can be used to learn the normal interaction patterns of 
devices in an IoT network and detect deviations from these patterns. This can be utilized to detect potential security threats 
and enhance the accuracy of IDS. 
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3.2 Extreme Gradient Boosting (XGBoost) 

XGBoost is an optimized implementation of the Gradient Boosting algorithm, an ensemble learning method [26]. XGBoost 
builds its predictions on decision trees, which are weak predictors, and aggregates the predictions of these trees. After 
calculating the prediction of each tree, the formula used by XGBoost to add its prediction to the prediction of the previous 
tree is shown in Equation 3. 

𝐲𝐲�𝐢𝐢
(𝐔𝐔) = 𝐲𝐲�𝐢𝐢

(𝐔𝐔−𝟏𝟏) + 𝐟𝐟𝐔𝐔(𝐱𝐱𝐢𝐢)   (3) 

In Equation 3, 𝑦𝑦�𝑖𝑖
(𝑡𝑡), represents the prediction of tree 𝑡𝑡 for instance 𝑖𝑖. 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖), represents the prediction of example 𝑖𝑖 for tree 𝑡𝑡 

based on the features 𝑥𝑥. This formula adds the prediction of the next tree to the prediction of the previous tree. In this way, 
XGBoost adds the residuals of each tree to the predictions of the previous trees, attempting to reduce the residuals in the total 
sum of consecutive trees. Each tree focuses on correcting the residuals of the previous trees. XGBoost's objective function is 
a measure of error that needs to be optimized during the model training. The general formula that calculates the total of this 
objective function is determined through gradients (first-order derivatives), second-order derivatives, and other terms. The 
general formula that calculates the total of XGBoost's objective function is as in Equation 4: 

𝒐𝒐𝒐𝒐𝒐𝒐 = 𝜮𝜮𝒊𝒊=𝟏𝟏𝒏𝒏 𝒍𝒍(𝒚𝒚�𝒊𝒊,𝒚𝒚𝒊𝒊) + ∑ 𝜴𝜴(𝒇𝒇𝒌𝒌)𝑲𝑲
𝒌𝒌=𝟏𝟏   (4) 

The objective function is optimized to improve the accuracy of predictions and control the complexity of the model. This 
ensures the model is trained to have a low loss function value while protecting against overfitting. XGBoost exhibits 
effectiveness in handling feature-rich IoT datasets and intrusion detection tasks. Its ability to capture nonlinear relationships 
and high-dimensional feature spaces makes it well-suited to identify anomalous behavior patterns and detect intrusions in 
IoT environments. 

3.3 Integration of GNNs and XGBoost in IoT Intrusion Detection 

Integrating GNNs and XGBoost in IoT IDS presents a promising approach to bolstering security measures in IoT 
environments. By leveraging the complementary strengths of both methodologies, researchers aim to enhance the accuracy 
and efficiency of intrusion detection systems tailored to the specific requirements of IoT systems. This integration leverages 
GNNs to model the intricate relationships within IoT networks. Simultaneously, it utilizes XGBoost to distill complex 
features into potent predictors. This combined approach facilitates robust intrusion detection mechanisms. In conclusion, 
integrating GNNs and XGBoost in IoT intrusion detection represents a promising avenue for enhancing security measures in 
IoT environments. By harnessing the unique capabilities of GNNs to process graph data and capture complex relationships, 
coupled with the predictive power of XGBoost, researchers are paving the way for more robust and intelligent intrusion 
detection mechanisms tailored to the specific requirements of IoT systems. This integration holds significant promise for 
advancing the field of cybersecurity and ensuring robust protection for IoT systems against emerging threats. 

3.4 Datasets 

In our study, we utilized four different datasets. In this section, we briefly outline the characteristics of these datasets and 
specify the reasons for selecting them. 

CICIoT-2023 [27]: Derived from 105 real IoT devices, the dataset is provided by the Canadian Institute for Cybersecurity 
(CIC). It encompasses a total of 33 attack types categorized into 7 classes. The training dataset consists of 466,868 records 
and 47 attributes. We chose this dataset for its currency, including real attacks and specificity to IoT. 

CICIDS-2017 [28]: Produced by the CIC, this dataset contains benign and attack traffic. It includes 14 attack classes and 1 
benign class. The training dataset comprises 2,827,876 records and 79 attributes. Given its widespread use in academic 
research, we used it as a benchmark for comparison. 

UNSW-NB15 [29], [30], [31], [32], [33]: This dataset contains real modern activities along with synthetic contemporary 
attack behaviors. We utilized the test dataset comprising 82,332 records and 49 attributes. While not IoT-specific, it is 
commonly used in IDS applications, thus serving as a benchmark for our study. 

IoMT – 2024 (CICIoMT2024) [34]: Developed for the Internet of Medical Things, this realistic dataset employs 25 real and 
15 simulated IoT devices. Supporting various protocols, it includes a total of 18 distinct cyberattacks. Its selection was based 
on its contemporaneity and the representation of complex healthcare networks by combining real and simulated devices. 
Additionally, we utilized it to observe the impact of our study, particularly in real-world applications such as the medical 
field. Datasets and related cyberattacks in IoT are shown in Table 3. 

Table 3. Datasets used in the study and attack classes in the data sets 

Dataset name Attacks 
CICIoT-2023 * DDoS  

* DoS  
* Recon 

* Brute force  
* Spoofing 
* Mirai 
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* Web-based  
CICIDS-2017 * DoS 

* DDoS 
* Brute force 
* XSS 

* SQL injection  
* Infiltration 
* Port scan  
* Botnet 

UNSW-NB15 * Fuzzers 
* Analysis 
* Backdoors 
* DoS 
* Exploits 

* Generic 
* Reconnaissance 
* Shellcode 
* Worms 

IoMT – 2024 * ARP spoofing 
* Ping Sweep 
* Recon VulScan 
* OS Scan 
* Port Scan 
 

* MQTT Malformed Data 
* MQTT DoS Connect flood 
* MQTT DoS Publish flood 
* MQTT DDoS Connect flood 
* MQTT DDoS Publish flood 
* DoS TCP/ICMP/SYN/ UDP 
* DDoS TCP/ICMP/SYN/UDP 

3.5 Preprocessing and Feature Selection 

Data preprocessing is a critical step for enhancing model performance. Particularly, data from IoT networks is often high-
dimensional and irregular. Therefore, the preprocessing steps of standardization, handling the missing values, and encoding 
categorical features ensure that the model can derive accurate results from the data [35]. Scaling features help maintain all 
features on the same scale, aiding the model in producing high-performance results [36]. Additionally, converting categorical 
data into a numerical format allows machine learning algorithms to process this data effectively [37]. 

Standardization, handling missing values, and encoding categorical features for this dataset were conducted as preprocessing 
steps. As a preprocessing step, standardization involves scaling the features extracted from network traffic data to have a 
mean of 0 and a standard deviation of 1 [38]. This ensures that all features are on a similar scale, preventing any single feature 
from dominating others during model training. By bringing features to a comparable scale, standardization helps avoid biased 
results and aids in model convergence. Missing values, such as NaN or infinite values, were examined within the dataset and 
subsequently removed. This approach ensures data quality and prevents errors during model training. Dropping missing 
values is a common strategy, particularly when the number of missing values is relatively small compared to the dataset size 
[39]. Categorical features in the dataset underwent label encoding, which converts categorical variables into numerical 
representations. This transformation makes the data compatible with machine learning algorithms, which typically operate 
on numerical inputs [40]. Encoding categorical features enables the model to process and learn from these features effectively.  
Another process carried out during the preprocessing stage is the selection of the top 10 features. The best features selected 
during the XGBoost phase and the heatmap related to these features are shown in Figure 1. 

Figure 1. The top 10 features and the heatmap related to these features 
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These preprocessing steps are crucial for preparing the input data for training the hybrid model. Standardization aids in 
convergence during model training and mitigates issues related to varying feature scales. Handling missing values ensures 
that the model learns from complete and accurate data, enhancing its performance. Encoding categorical features enables the 
model to utilize these features in learning. Overall, these preprocessing steps contribute to the robustness and effectiveness 
of the hybrid model for IoT intrusion detection. Feature selection enhances the model's performance by considering only the 
most meaningful features [41]. It has been observed that certain features are more effective in detecting attacks in IoT traffic 
analysis. This leads to faster model training and reduces errors arising from unnecessary features. 

4. Model Architecture  

In our study, we employed an architectural framework depicted in Figure 2 to illustrate the working principle. Our study 
consists of three stages: pre-processing, multi-model training, and fusion & prediction. 

 

 
Figure 2. Architectural Framework for Proposed Model 

 

The pseudo-algorithm of the model we developed is provided in Algorithm 1. 
 

Algorithm 1:  
The algorithm for GNN and XGBoost-based IDS design 

INPUT 
• D =  {(xi, yi)}𝑖𝑖=1𝑁𝑁  𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑟𝑟𝑡𝑡𝑟𝑟𝑑𝑑𝑏𝑏𝑡𝑡 𝑟𝑟ℎ𝑏𝑏𝑟𝑟𝑏𝑏 xi ∈  ℝd, yi ∈  {0,1}. 
• 𝐗𝐗 ∈  ℝ{N × d} be the data matrix, and 𝐲𝐲 ∈  {0,1}N be the label vector 

Preprocessing 

• Remove irrelevant features. 
• 𝑿𝑿 ← 𝐷𝐷𝑟𝑟𝐷𝐷𝐷𝐷 (𝑿𝑿, 𝑖𝑖𝑟𝑟𝑟𝑟𝑏𝑏𝑙𝑙𝑏𝑏𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡 𝑐𝑐𝐷𝐷𝑙𝑙𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑) 

• Handle missing values (e.g., imputation): 
• 𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖 = 𝐼𝐼(𝑿𝑿) 

• Encode categorical features: 
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• 𝑿𝑿𝑖𝑖𝑒𝑒𝑒𝑒  =  ℒ�𝑿𝑿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖�,𝑟𝑟ℎ𝑏𝑏𝑟𝑟𝑏𝑏 ℒ 𝑖𝑖𝑑𝑑 𝐿𝐿𝑟𝑟𝑏𝑏𝑏𝑏𝑙𝑙 𝐸𝐸𝑖𝑖𝑐𝑐𝐷𝐷𝑑𝑑𝑖𝑖𝑖𝑖𝐸𝐸 
• Standardize features: 

•  𝐗𝐗std = (Xenc– 𝝁𝝁)
𝛔𝛔

, where 𝝁𝝁 =  𝔼𝔼[𝐗𝐗],𝛔𝛔 =  std(𝐗𝐗) 

• Feature selection: 
• 𝐗𝐗fs =  𝒮𝒮(𝐗𝐗std) 

• Dimensionality reduction via PCA: 
• 𝐗𝐗pca =  𝐗𝐗fs ·  𝐏𝐏k, where 𝐏𝐏k ∈  ℝ𝑖𝑖×𝑘𝑘, k <  d 

 
GNN Architecture 
Let the GNN be a function fθ: ℝk →  ℝ where θ are learnable parameters 
• Input: xi ∈  ℝk 
• Hidden layers: 

•   𝐡𝐡l =  ReLU�𝐖𝐖l𝐡𝐡l−1 +  𝐛𝐛l� 
• Output: 

•   ŷiGNN  =  fθ(xi) 
• Loss function (MSE): 

•   ℒGNN =  �1
N
�∑ �yI– ŷIGNN�

2{N}
{I=1}  

• Training via gradient descent with Adam optimizer:  
•    θ ←  θ –  η ·  ∇θℒGNN, for each epoch 

 
XGBoost Classifier 
• Train a gradient boosting model gϕ:  ℝk →  [0, 1] ∶ 

•  ŷiXGB  =  gϕ(xi) 
• Convert probabilities to binary prediction: 

• y�iXGB = �1   if ŷiXGB  ≥  τ
0 𝐷𝐷𝑡𝑡ℎ𝑏𝑏𝑟𝑟𝑟𝑟𝑖𝑖𝑑𝑑𝑏𝑏    

       

Late Fusion 
• Define fusion weights: 

• α,β ∈  [0, 1], with α +  β =  1 
• Combine predictions:  

• ŷifused =  α ·  ŷiGNN +  β ·  ŷiXGB  
• Final binary prediction: 

• y�ifused =  �1     if ŷifused ≥  τ
0        𝐷𝐷𝑡𝑡ℎ𝑏𝑏𝑟𝑟𝑟𝑟𝑖𝑖𝑑𝑑𝑏𝑏

  

 

OUTPUT 
• y� fused =  � y�1fused, … , y�Nfused� 

 

This pseudo-algorithm outlines our model's workflow, from pre-processing the data to training multiple models and finally 
fusing their predictions for enhanced performance. During the preprocessing stage, irrelevant fields like IDs were dropped, 
categorical values were converted to numerical representations using Label Encoding, standardization was applied, and 
dimensionality reduction was performed using PCA, preparing the dataset for machine learning. Subsequently, the dataset 
was split into two groups: training and testing. In the Multi-Model training stage, training was initially conducted using GNN 
on the training dataset, and then the XGBoost algorithm was applied to the obtained features. The values obtained from both 
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training were combined using the late fusion technique. With late fusion, new, more accurate, and reliable decisions are 
produced by combining the decisions of each classifier [9]. This study used the Weighted Average Ensemble method as the 
Late fusion technique. It is expressed using a formula to calculate each model's weighted sum of predictions. Given the 
predictions of XGBoost and GNN models as 𝑦𝑦𝑋𝑋𝑋𝑋𝑋𝑋 and 𝑦𝑦𝑋𝑋𝑁𝑁𝑁𝑁 respectively, the Late Fusion method can be calculated as shown 
in Equation 5. 

𝐲𝐲𝐟𝐟 = 𝐰𝐰𝟏𝟏 ∗  𝐲𝐲𝐗𝐗𝐗𝐗𝐗𝐗 + 𝐰𝐰𝟐𝟐 ∗  𝐲𝐲𝐗𝐗𝐍𝐍𝐍𝐍   (5) 

In this context, 𝑦𝑦𝑓𝑓 represents the merged predictions, while 𝑟𝑟1 and 𝑟𝑟2 denote the weights of the respective models. The 
weights are selected to ensure that their sum equals 1, with 𝑟𝑟1 = 0.5 and 𝑟𝑟2=0.5. Late Fusion employs a weighted approach 
when combining predictions from different models, aiming to leverage their diverse strengths and weaknesses to create a 
more robust predictor. It allows each model to be trained and optimized independently, offering flexibility tailored to its 
dataset and parameters, potentially achieving better performance.  

5. Experimentation and Results 

Performance metrics are essential to understanding how well a model performs. These metrics determine how accurately the 
model predicts and where its errors lie [42]. In this work, we used assessment metrics like accuracy, precision, recall, F1-
score, and AUC to assess the performance of our constructed model. A confusion matrix depicts the link between the actual 
and anticipated classes, a tool frequently used to evaluate the effectiveness of a complex classification model. This table 
consists of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) terms. TP represents the 
number of true positive instances correctly predicted as positive by the model. TN represents the number of true negative 
instances correctly predicted as negative. FP indicates the number of negative instances incorrectly predicted as positive by 
the model, while FN indicates the number of positive instances incorrectly predicted as negative. Accuracy expresses the 
ratio of correctly predicted instances to the total number of instances [43] and is expressed by Equation 6. 

𝐔𝐔𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐔𝐔𝐚𝐚𝐲𝐲 = 𝐓𝐓𝐏𝐏+𝐓𝐓𝐍𝐍
𝐓𝐓𝐏𝐏+𝐓𝐓𝐍𝐍+𝐅𝐅𝐏𝐏+𝐅𝐅𝐍𝐍

  (6) 

Precision, the ratio of true positive instances correctly predicted as positive to all instances predicted as positive, is defined 
by Equation 7. 

𝐔𝐔𝐚𝐚𝐔𝐔𝐚𝐚𝐢𝐢𝐩𝐩𝐢𝐢𝐩𝐩𝐩𝐩 = 𝐓𝐓𝐏𝐏
𝐓𝐓𝐏𝐏+𝐅𝐅𝐏𝐏

   (7) 

Recall that the ratio of true positive instances correctly predicted as positive to all actual positive instances is defined by 
Equation 8. 

𝐚𝐚𝐔𝐔𝐚𝐚𝐔𝐔𝐥𝐥𝐥𝐥 = 𝐓𝐓𝐏𝐏
𝐓𝐓𝐏𝐏+𝐅𝐅𝐍𝐍

    (8) 

F1-score, the harmonic mean of precision and recall, is calculated using Equation 9. 

𝐟𝐟𝟏𝟏 − 𝐩𝐩𝐚𝐚𝐩𝐩𝐚𝐚𝐔𝐔 = 𝟐𝟐 ∗ 𝐔𝐔𝐚𝐚𝐔𝐔𝐚𝐚𝐢𝐢𝐩𝐩𝐢𝐢𝐩𝐩𝐩𝐩∗𝐚𝐚𝐔𝐔𝐚𝐚𝐔𝐔𝐥𝐥𝐥𝐥
𝐔𝐔𝐚𝐚𝐔𝐔𝐚𝐚𝐢𝐢𝐩𝐩𝐢𝐢𝐩𝐩𝐩𝐩+𝐚𝐚𝐔𝐔𝐚𝐚𝐔𝐔𝐥𝐥𝐥𝐥

  (9) 

ROC-AUC (Receiver Operating Characteristic - Area Under Curve) represents the area under the curve of the graph where 
the recall and specificity (1 - false positive rate) [44] change at different threshold values. The AUC value ranges from 0 to 
1, with a higher AUC indicating better model performance [45].  

CICIoT-2023 evaluation: pre-processing steps were performed first in our experiment using the CICIoT-2023 dataset. Then, 
the top 10 attributes were selected using GNN. Here, the nodes represent the selected attributes, not the IoT devices.  

After that, these attributes learned from GNN were given as input to the XGBoost algorithm. The evaluation of the CICIoT-
2023 dataset is illustrated in the confusion matrix shown in Figure 3. 

Figure 3. Training and Testing Confusion Matrix for CICIoT-2023. 



 
Onur Ceran, Erdal Özdoğan & Mevlüt Uysal                                     Sakarya University Journal of Computer and Information Sciences 8 (2) 2025 223-244 

234 

The high values of both TP and TN indicate that the model correctly predicts both positive and negative classes. With a low 
FP value, we can say that the model has a low tendency to predict negative classes as positive incorrectly. However, the FN 
value is also notable, as there is a tendency to incorrectly predict positive classes as negative, although it is lower than FP. 
The ROC-AUC curve obtained from the model training is shown in Figure 4. 

 
Figure 4. The ROC Curve for CICIoT-2023 Dataset Training Model 

 

The point near the top-left corner of the graph indicates that your model achieves high precision and recall, meaning it 
accurately detects attacks while minimizing false alarms. The AUC value 1.0 signifies that your model demonstrates excellent 
discrimination, meaning it can reliably distinguish attacks from non-attack events [46]. These results are highly favorable for 
an IoT IDS because security is critical in IoT environments, and missing false alarms or attacks can have serious 
consequences. A high-performing IDS is crucial for protecting IoT devices and networks. Therefore, our results indicate that 
our model effectively detects attacks and is a robust tool for enhancing IoT security. 

The precision, recall, f1-score, and AUC values of our developed model in the training and testing phases are provided in 
Table 4. 

Table 4. Training and testing performance metrics for CICIoT-2023 

 Accuracy Precision Recall f1-score AUC 
Training 0.9952 0.9980 0.9970 0.9975 0.9988 

Test 0.9951 0.9978 0.9972 0.9975 0.9988 

Our model accurately classified almost all examples in the training and test datasets. This high accuracy indicates that our 
model performs well overall. According to the precision value, the rate of true positive predictions seems quite high. The 
high recall value indicates that our model tends to minimize the number of false negatives. High AUC values suggest that 
our model effectively distinguishes between positive and negative classes.  Overall, based on the performance metrics we 
have considered, it can be said that our model performs quite well. With high accuracy, recall, precision, and f1-score in both 
the training and test sets, it is evident that our model reliably detects attacks and is generally effective. 

Figure 5. Training and testing loss 
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In our model's training and test phases, the loss amounts obtained initially with random weight values and after 100 epochs 
are provided, as shown in Figure 5. It can be observed that the values obtained for GNN are close to zero. The loss rate 
significantly decreased during the first 20 epochs. In the subsequent epochs, it can be seen that the losses for both training 
and testing settle into a lower balance. The significant decrease in loss during the first 20 epochs indicates that our model 
adapts better to the training data and initially deviates significantly from random weights. The subsequent epochs' loss settling 
into a lower balance demonstrates that the model exhibits a more consistent and balanced performance on training and test 
data. The reduction in the difference between training and test loss amounts indicates a decrease in the model's overfitting 
risk and improved generalization ability. This implies that the model can perform well on new and unseen data. 

IoTMT – 2024 Evaluation: It is crucial to assess the performance of a model on real-world data in more detail. Therefore, an 
evaluation was conducted on a real-world application dataset, the Internet of Medical Things dataset. The confusion matrix 
for the evaluation conducted for the Internet of Medical Things is illustrated in Figure 6. 

 
Figure 6. Training and testing the confusion matrix for the IoMT dataset. 

 
The performance metrics measured within the scope of the study are presented in Table 5. 

Table 5. Training and testing performance metrics for IoMT-2024 

 Accuracy Precision Recall f1-score AUC 
Training 0.9979 0.9991 0.9987 0.9989 0.9996 

Test 0.9979 0.9991 0.9988 0.9989 0.9996 

Considering these values, we can say that the IDS exhibits a very high accuracy, precision, and F1 score. High accuracy and 
precision values demonstrate the system's ability to accurately classify normal and attack traffic, while the high F1 score 
indicates a balanced combination of these two metrics. Our model achieved high accuracy for this dataset in the training and 
test sets. This indicates the overall success of our model in classifying traffic as either attack or benign. The rate of correctly 
identifying samples predicted as attacks is quite high, indicating a tendency to minimize false positives.  

 
Figure 7. The ROC curve for the IoMT-2024 dataset training model 
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The area under the ROC curve, represented by high AUC values, indicates that the model can effectively distinguish between 
positive and negative classes (Figure 7). 

CICIDS-2017 Evaluation: When we evaluated the performance of our study on the CICIDS-2017 dataset, the results obtained 
are shown in Figure 8 for the binary confusion matrix and in Table 6 for the performance metrics, respectively. 

 
Figure 8. Confusion matrix for the CICIDS-2017 dataset. 

 
Table 6. Training and testing performance metrics for CICIoT-2023 

 Accuracy Precision Recall f1-score AUC 
Training 0.9828 0.9734 0.9382 0.9555 0.9800 

Test 0.9917 0.9930 0.9575 0.9749 0.9781 

UNSW-NB15 Evaluation; We evaluated our study on the UNSW-NB15 dataset for benchmarking. The binary confusion 
matrix and performance metrics obtained are shown in Figure 9 and Table 7, respectively. 

 
Figure 9. Training and testing confusion matrix for UNSW-NB15 dataset 
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Table 7. Training and testing performance metrics for the UNSW-NB15 dataset 

 Accuracy Precision Recall f1-score AUC 
Training 0.9862 0.9912 0.9882 0.9899 0.9900 

Test 0.9991 0.9989 0.9997 0.9987 0.9987 
 

5.1. Memory Usage and Time Consumption 

In machine learning-based IDS, achieving high predictive performance is only part of the challenge. For practical deployment, 
particularly in real-time or resource-constrained environments such as edge devices or high-throughput networks, it is 
essential to assess how much time and memory a model requires during training and inference [47], [48]. Without such 
evaluations, even high-performing models may be unsuitable for operational use. Therefore, this section provides a 
comparative analysis of the computational cost of the proposed GNN and XGBoost-based IDS design. Specifically, we 
measured the training time and memory consumption across four benchmark datasets to examine the feasibility of real-time 
deployment. 

The training times and memory usage of our proposed hybrid model on different datasets are presented in Table 8. 
 

Table 8. Training Time comparison. 

Dataset Samples Features GNN 
Time 
(sec) 

XGBoost 
Time (sec) 

GNN 
Memory 

Usage (MB) 

XGBoost 
Memory Usage 

(MB) 
UNSW-NB15 175,341 49 2.05 1.79 113.08 99.59 
CICIoMT2024 6,956,726 46 133.72 21.43 50.70 207.94 
CICIoT-2023 45,019,243 38 2239.34 85.90 5188.84 2107.34 
CICIDS-2017 2,830,743 79 39.03 7.24 1503.06 135.52 

 
This study proposes a hybrid intrusion detection model combining GNN and XGBoost, designed to effectively address the 
challenges of detecting cyber threats in complex and dynamic IoT environments. The model was evaluated on multiple 
benchmark datasets, which vary in size, feature complexity, and attack diversity. Experimental results highlight both the 
strengths and limitations of the approach in terms of computational time and memory usage. 

 

The results show that the GNN component demonstrates relatively low inference time on small datasets such as UNSW-
NB15 (2.05 sec) and acceptable levels for moderate datasets like CICIDS-2017 (39.03 sec). However, processing time 
increases substantially in large-scale datasets such as CICIoT-2023 (2239.34 sec), which is expected due to GNN's graph-
based representation and learning complexity. XGBoost, in contrast, consistently offers lower processing time across all 
datasets (e.g., 85.90 sec for CICIoT-2023), highlighting its efficiency and suitability for latency-sensitive applications. From 
a memory consumption perspective, the results reveal a nuanced pattern. While GNN tends to consume more memory in 
large datasets (e.g., 5188.84 MB in CICIoT-2023), it surprisingly uses significantly less memory than XGBoost on the IoMT-
2024 dataset (50.70 MB vs. 207.94 MB). This variability suggests that memory demand depends not solely on dataset size 
but also on feature structure, model complexity, and internal data representations. 

The combined use of GNN and XGBoost inevitably results in a higher overall resource footprint, especially regarding 
memory, as seen in high-scale datasets. Despite this, the hybrid model remains viable for IoT security, particularly when 
deployed at fog or gateway nodes, where moderate computational and memory resources are available. These deployment 
strategies allow the system to benefit from the complementary strengths of GNN (deep structural representation) and 
XGBoost (efficient, interpretable decision boundaries), offering a robust and scalable solution for real-time intrusion 
detection in IoT ecosystems. 

Although the hybrid approach introduces increased resource demands, its superior detection capabilities and adaptability to 
heterogeneous IoT data justify its application in environments where edge intelligence or hierarchical resource distribution 
can be leveraged. 

5.2. Qualitative Comparison with Recent Literature Studies 

The CICIDS-2017, UNSW-NB15 and CICIoT-2023 datasets are extensively studied datasets. The IoMT-2024 dataset has 
also begun to attract the attention of researchers with its wide range of attack variations. Therefore, in our study, these datasets 
were used as benchmarks to evaluate our proposed model's performance and compare it with previous studies. High accuracy 
and F1-score values were obtained for both datasets. 



 
Onur Ceran, Erdal Özdoğan & Mevlüt Uysal                                     Sakarya University Journal of Computer and Information Sciences 8 (2) 2025 223-244 

238 

For performance comparison, the accuracy (Acc.) and f1-score results obtained from studies focusing on hybrid approaches 
conducted in the last two years for the CICIDS-2017 dataset are provided in Table 9. 

Table 9. Studies conducted using the CICIDS-2017 dataset in the last two years and their performance metrics 

Paper Methodology Acc. F1-score 
[49] GCN-BiLSTM-Attention > 95.0 94.36 
[50] Decision Tree > 90.0 96.88 
[51] CNN 98.61 98.09 
[52] Novel CNN - 98.7 
[53] Bagging Ensemble-Based DNN 98.74 99.86 
[54] CBCO-ERNN 98.83 99.38 
[55] CNN-BiLSTM 99.76 98.50 
[56] Res-TranBiLSTM 99.15 - 
[57] BLoCNet 98 98 

Our study GNN + XGBoost 98.32 95.66 
 

As presented in Table 9, our proposed model demonstrates competitive performance with an accuracy of 98.32% and an F1-
score of 95.66%, outperforming several traditional approaches. However, certain studies report even higher performance 
metrics. This discrepancy arises from factors such as their use of dataset balancing techniques (which we did not employ) 
and their deployment of deep, complex architectures focused on maximizing accuracy. While these approaches can achieve 
higher scores, they often incur significant computational costs, making them less suitable for resource-constrained IoT 
environments where our study prioritized efficiency and practicality. We achieved strong performance with reduced 
complexity by employing a lightweight late fusion strategy (GNN + XGBoost). Thus, while some methods report slightly 
higher results, our model offers a more practical balance of performance and computational cost for real-world IoT. 

The accuracy and F1-score achievements obtained from studies conducted in the last two years for the UNSW-NB15 dataset 
are provided in Table 10. 

Table 10. Studies conducted using the UNSW-NB15 dataset in the last two years and their performance metrics 

Paper Methodology Acc. F1-score 
[58] GMM-WGAN-IDS 87.70 85.44 
[59] CNN + LSTM 87.6 88 
[60] VGG19 (CNN) 93.56 92 
[61] SAIDS 

(XGBoost+KNN+RF) 
96.24 96.29 

[62] RF 90.1 90.0 
[63] DenseNet 98.6 98.7 

Our study GNN + XGBoost 98.46 98.87 
 

The accuracy and F1-score achievements obtained from studies conducted for the CICIoT-2023 dataset are provided in Table 
11. 

Table 11. Studies conducted using the CICIoT-2023 dataset in the last two years and their performance metrics 

Paper Methodology Acc. F1-score 
[64] LSTM-Based 98.75 98.59 
[65] CNN-based 99.1 99.05 
[66] SSK-DDoS 89.05 - 
[67] Blending 99.51 99.07 
[68] EnsAdp_CIDS 98.93 99.45 
[69] AUWPAE 99.33 98.88 

Our study GNN + XGBoost 99.51 99.75 
 

The accuracy results achieved in the experiments using the IoMT-2024 dataset are presented in Table 12. 
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Table 12. Studies conducted using the IoMT-2024 dataset in the last two years and their performance metrics 

Paper Methodology Acc. F1-score 
[70] Random Forest-

Based 
94.97 95 

[71] MA-DeepCRNN 99.12 99.12 
[72] DL LSTM 98 98 
[73] ROC with RoS 99.7 99.6 
[74] Random Forest-

Based 
99.22 66.09 

[75] CNN Based 95.63 95.16 
Our study GNN + XGBoost 99.51 99.75 

 
When a general evaluation is made for four different datasets, it is seen that our proposed model shows high accuracy and F1 
score. Considering the UNSW-NB15 and CICIDS-2017 datasets, it is seen that our proposed model is above average with 
higher performance. From the perspective of the more recent CICIoT-2023 dataset, it is observed that our model achieves 
slightly higher F1-score and accuracy compared to the referenced studies. Lastly, when considering the more recent IoMT 
dataset, it can be seen that our proposed model demonstrates quite high performance.  

6. Discussion 

The proposed hybrid model in this study significantly impacts IoT intrusion detection. Its ability to adapt to the dynamic 
nature of IoT environments presents a considerable advantage over traditional intrusion detection systems. The GNN has 
effectively modeled the relationships between devices in IoT networks, successfully capturing attack patterns, while XGBoost 
has improved classification performance by learning the nonlinear relationships among features. 

Our hybrid model, which combines the GNN and XGBoost algorithms, has demonstrated greater performance in intrusion 
detection within IoT networks compared to previous studies. A recent study by [7] featuring the NE-GConv model offers a 
resource-friendly approach for IoT devices; however, it has not achieved our proposed model's accuracy and precision rates. 

The E-GraphSAGE-based model developed by [76] has also successfully captured edge features, particularly in IoT networks. 
However, our proposed model provides higher accuracy rates by incorporating the strong classification capabilities of 
XGBoost. 

Our work exhibits higher accuracy, precision, and F1 performance scores than the most recent techniques and other hybrid 
models tested on various datasets. 

The study's results clearly show strong performance in detecting attacks in IoT-based networks, achieving high accuracy, 
precision, and F1 scores. Tests conducted on real-world datasets such as IoMT-2024 and CICIoT-2023 indicate that the model 
is suitable for practical applications. This suggests that the model could provide security solutions in various domains, 
including IoT-based healthcare, smart cities, and industrial IoT. 

However, further testing of the model's real-time intrusion detection capabilities and scalability is necessary. In the future, 
evaluating the model's performance in larger and more complex IoT networks will be beneficial. Additionally, the results of 
the system in multi-class attack detection could also be investigated. 

6. Conclusion 

This study proposes a hybrid model combining Graph Neural Networks and the XGBoost algorithm to develop a robust IDS 
against cyber threats in IoT environments. The proposed model benefits GNNs to model complex relationships and features 
while analyzing and predicting complex features with the XGBoost algorithm. The study evaluates the model's effectiveness 
on different datasets, such as CICIoT-2023, CICIDS-2017, UNSW-NB15, and IoMT-2024. The results show that the 
proposed hybrid model can detect attacks with high accuracy, precision, and recall values. Additionally, it is identified that 
factors such as training time, which were not considered during the study, are important for future research. This study 
provides an innovative and effective approach to enhancing IoT security and a guiding framework for future research. 

Furthermore, the top 10 features are selected in this study, and the model's performance is evaluated based on these selected 
features. Experiments conducted on a broader feature set and comparing results can provide a valuable roadmap for future 
studies. Additionally, it is noted that factors like training time were not considered, indicating a limitation that could be 
addressed in future evaluations, considering cost parameters such as training time and memory consumption. 

The utilization of the IoMT dataset contributes significantly to field experience. However, using datasets from different 
sectors to assess the model's applicability with real data from other domains is advisable. 
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While our study evaluates attack and benign traffic scenarios, it's crucial to consider multi-class prediction involving the 
classification of different attack types. Future studies can thus focus on developing methods to detect and classify different 
attack types. 

Nowadays, there is an increasing focus on multi-class attack classification to ensure the security of IoT systems. The various 
types of attacks encountered in IoT environments, such as DoS, DDoS, man-in-the-middle, and malware, exhibit different 
characteristics, making it essential to develop models to classify these attacks accurately. In this context, developing a hybrid 
design using a combination of XGBoost and GNN, along with evaluations performed on four different datasets, represents a 
significant step toward enhancing the effectiveness of multi-class attack classification. This approach provides in-depth 
information for a more comprehensive classification of attack types and can be supported by feature engineering and 
hyperparameter optimization techniques. 

On the other hand, integrating alternative algorithms such as autoencoders and reinforcement learning holds the potential for 
improving attack detection accuracy. In particular, hybrid systems utilizing XGBoost and GNN can be employed better to 
understand the relationships and structure of the data. Autoencoders effectively detect anomalous behavior by obtaining low-
dimensional representations of the data, while reinforcement learning can be used to adapt to the dynamic conditions of the 
environment. The integration of these methods presents opportunities to enhance the success of the XGBoost + GNN model. 

The applicability of this hybrid model in edge computing environments has become a critical requirement for real-time attack 
detection. Edge computing reduces network latency by enabling data to be processed closer to its source, providing quick 
response times. Given the continuous data streams from IoT devices, these rapid response times are crucial for minimizing 
the impact of attacks. Integrating the hybrid model into edge computing architectures can improve the efficient use of 
resources and scalability, resulting in lower energy consumption and bandwidth savings. 

To evaluate the performance of the developed hybrid model, metrics such as accuracy, precision, recall, F1 score, and ROC 
curve are employed. These indicators are crucial in assessing how well the attack detection system works. Additionally, 
conducting cross-validation methods and trials on different datasets will help understand the model's generalization 
capability. Evaluations performed on four datasets highlight the model's performance under various conditions. 

In conclusion, developing the XGBoost + GNN hybrid model presents an innovative approach for multi-class attack 
classification. Future studies should focus on using deep learning techniques to increase the complexity of the model and 
provide more innovations in detecting more complex attack types. Furthermore, integrating artificial intelligence algorithms 
into edge computing for real-time attack detection and testing this model's performance on more datasets should be among 
the future research directions. It is necessary to continuously update and adapt the systems to develop more innovative and 
effective solutions for the security of IoT devices. These efforts hold great potential for enhancing security in IoT systems 
and contribute to developing modern security solutions. 
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