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ABSTRACT 

Early and accurate diagnosis, however, is still lacking for the most common form of lung cancer, and this 
remains one of the leading cancers leading to mortality. CT scans are widely used for lung cancer screening; 
however, their manual interpretation is time-consuming and prone to variability. This study introduces 
LungDxNet, a deep learning-based framework that integrates transfer learning to enhance diagnostic accuracy 
and efficiency. Using a large dataset of Low Dose CT (LDCT) scans, the system is built with fine-tuned pre-
trained Convolutional Neural Networks (CNNs) such that feature extraction is reliable though minimal reducing 
radiation exposure. Consequently, LungDxNet involves the integration of component segmentation techniques 
that have been used to isolate the lung regions and discriminate the cancerous nodules from the malignant and 
benign cases. Very rigorous evaluations were performed on the model against both conventional machine 
learning and state of the art deep learning architectures. Results show that there is a substantial reduction of 
false positive and false negative resulting in a superior accuracy (98.88), sensitivity, and specificity. This design 
is to be scaled, robust and clinically applicable, making it a potential real world lung cancer diagnosis tool. 
Deep learning and transfer learning has excellent power to transform lung cancer detection, and this research 
brings awareness of how far we can optimise and integrate into clinical workflow. The model is enhanced for 
future work and adapted for real time diagnostic applications. 
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1. Introduction 

Lung cancer is a significant health issue and remains the primary cause of a large proportion of deaths that occur with this 
illness. Concerning survival, identification is among the most excellent tools because early interventions may even change 
the course of the disease. It is generally agreed that CT scan visioning is the best technique for lung deviations; however, 
there are some time-consuming with subjectively dependent manual diagnoses by radiologists. It reflects the requirement for 
automatic, fixed, and scalable resolutions for clinical experts as they proceed to perform their investigative activities. AI has 
been introduced in medicinal visioning and is proving divergent for many different domains. Deep learning, which 
automatically learns features from large complex datasets by generalization, has caught much attention in the current AI 
community. Among the CNNs belonging to the more prominent family of DL, they are capable of impressive performance 
on image categorization and decomposition tasks [1]. 

On the other hand, the system needs large amounts of explained data to train from scratch, and in much relevance, including 
medical, such annotated datasets are complex to come by. Transfer learning is one of the most potent strategies against these 
challenges above. Transfer learning assists in making use of pre-trained models, which have cultured the general aspects of 
gigantic data like ImageNet. Fine-tuning such models on context-specified data enables the attainment of elevated 
accomplishment with significantly much smaller datasets.  

This research explores the possibility of utilizing DL coupled with transfer learning in the creation of a self-regulated lung 
cancer recognition system. The idea to be introduced here is fine-tuning pre-trained CNNs towards classifying lung low-dose 
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CT scans into cancerous and non-cancerous cases. The identification of lung cancer using deep learning relies on several key 
techniques to enhance accuracy and robustness. The process begins with lung region segmentation, which isolates the lung 
area from medical images, removing irrelevant background structures. This supports the fact that the model concentrates only 
on lung tissues and rises within feature extraction. Then, data augmentation deals with the problem of class imbalance by 
artificially growing the diversity of training instances. In this, techniques like rotation, flipping, and contrast adjustments 
create variations of lung images, so the model is not geared toward dominant classes, and its ability to generalize, among 
other cases, improves. For feature extraction, VGGNet, ResNet, and InceptionNet are used in advanced deep learning 
architecture. The patterns captured by these networks are very complex in medical images. However, given the deep 
convolutional layers of VGGNet, hierarchical features are extracted. ResNet, utilizing residual connections, ensures deeper 
network training without vanishing gradients, making it highly effective for complex image analysis [2]. InceptionNet, with 
its multi-scale feature extraction, captures fine details and structural variations in lung nodules, which is essential for 
differentiating between benign and malignant cases. The main aim would be to produce effective, automatically enhanced 
clinical workflows, thereby avoiding potential diagnostic errors and accelerating efforts made towards its detection from the 
earliest stages. 

1.1.Motivation 

Though medical imaging has seen numerous improvements, conventional methods of lung cancer diagnosis particularly those 
reliant on manual CT scan assessment are still largely encumbered by subjectivity, time consumption, and inter-observer 
variability. These constraints create serious problems in the early detection of lung cancer, where a successful diagnosis can 
make a difference between living and dying. Deep learning (DL) models have been shown to automate these tasks, but a lot 
depends on the availability of large, well-annotated datasets, which are very scarce in the medical field owing to privacy 
issues, labelling complexity, and expert dependency. In order to overcome these limitations, this study proposed a 
LungDxNet, a novel deep learning based deep learning framework that coalesces model fine tuning along with explainable 
AI on lung regions. This directly lowers the false positives/negatives on LungDxNet, improves model interpretability and 
allows the real time deployment in clinical settings while overcome from the gaps indicated in table 1. 

The primary contributions of this work are as follows: 

1. This study developed LungDxNet, an AI-driven system utilizing fine-tuned CNN models optimized for Low-Dose 
CT (LDCT) scan analysis to detect lung cancer at an early stage. 

2. This study introduced a robust lung segmentation technique to isolate the lung region and enhance feature extraction, 
improving classification between malignant and benign nodules. 

3. This study applied explainable AI techniques to improve model transparency and clinical trustworthiness. 

4. This study extensively evaluated proposed model on a large LDCT dataset, demonstrating superior accuracy (98.88%) 
compared to traditional machine learning and recent deep learning approaches. 

5. This study provides a scalable, real-time compatible solution that can be adapted for clinical lung cancer screening 
workflows. 

This paper will be presented as follows: the review of the research gives a summary overview of the present methodologies 
used and highlights the areas this work seeks to bridge. Then, the methodology section extends with a presentation of the 
data processing pipeline, model architectures, and training strategy adopted in this work. Finally, results and discussions 
provide an in-depth analysis of the model's performance in relation to its clinical relevance and integration into the real-world 
setting. 

2. Literature Review  

Thus, low dose computed tomography (LDCT) has become a promising tool for early lung cancer detection with the potential 
to reduce mortalities [3]. Nevertheless, despite this, high false positive rates and dependence on the expertise of radiologists 
have limited its widespread adoption [4-6]. Artificial intelligence (AI) and machine learning (ML) techniques have integrated 
promise to overcome some of these challenges and improve lung cancer screening accuracy and efficiency [7-13]. 

AI could bring a lot to improving patient outcomes in lung cancer screening workflows [14]. With the help of AI-powered 
reconstruction techniques, less radiation can be given, and yet the image quality remains optimal, addressing concerns about 
the radiation exposure of CT scans [15]. One of the interesting uses of the application of AI algorithms, mainly deep learning 
(DL) models, has shown very high accuracy in the detection of lung nodules and classifies them as benign or malignant. For 
example, the accuracy of a 3x3 kernel convolutional neural network in lung nodule detection and classification was 97.56%, 
and the specificity was 98.4% [16]. 

Such integration of AI-driven analysis onto LDCT has multiple advantages compared to existing screening methods, 
including imaged and clinical data analysis and risk stratification. Computer-aided detection (CAD) systems have enhanced 
the automatic detection of potential lung nodules with high sensitivity and reduced the reading time for a concurrent or second 
reader. Furthermore, AI-based approaches facilitate the automatic segmentation and assessment of lesion size, volume, and 
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densitometric features, as well as radiomic feature extraction for comprehensive nodule characterisation [14]. 

At the same time that early-stage lung cancer detection has been increasingly popular using AI leveraging deep learning 
models, the use of such models for this purpose has become commonplace. P. Sathe et al. [17] used TNM (Tumor, Lymph 
Nodes, metastasis) classification to develop a fully automated solution for the screening of lung cancer with a performance 
of 96.4%. In the same vein, N. Gautam et al. [18] developed a hybrid model based on ResNet, DenseNet, and EfficientNet 
(LIDC-IDRI validation dataset), of which the model achieves 97.23% accuracy with 98.6% sensitivity and decreases false 
negatives. 

Additionally, HA Ewaidat and YE Brag [19] used a CNN-based model, YOLOV5, to detect lung nodules in CT images. The 
model was trained on 280 annotated scans of the LIDC-IDRI dataset and achieved a mean average precision of 92.27%. PG 
Mikhael et al. introduced a deep learning-based lung cancer risk prediction model using LDCT imaging [20], and they 
achieved an AUC of 0.92 at one year, which expands on personalised screening. 

Spatial Pyramid Pooling and 3D Convolution Deep Screener (Deep learning method) beat previous state-of-the-art algorithms 
[21] with the area under the curve (AUC) equal to 0.892. Another study introduced a Computer-Aided Detection (CADe) 
system utilising deep learning features and genetic algorithm optimisation, achieving a detection accuracy of 96.25%, 
sensitivity of 97.5%, and specificity of 95% [22]. Additionally, a 3D interpretable hierarchical semantic convolutional neural 
network (HSNet) demonstrated superior diagnostic performance in detecting various aspects of lung nodules, including 
malignancy [23]. 

In further studies, DL models were compared to radiologists. C. Jacobs et al. [24] compared 11 radiologists with high-
performing deep learning systems on LDCT for lung cancer detection and found AUC values of 0.9 for deep learning and 
comparable to the radiologists. Y. Wang et al. [25] developed a radiomics-aided reinforcement learning model for early lung 
cancer analysis among serial LDCT scans with an AUC of 0.88, which is better than that of the model here. 

Furthermore, A. Saha et al. [26] used three of the three transfer learning models to classify lung cancer-based lung cancer CT 
images using a multiclass (Categorisation) and achieved an accuracy of 91%. L. In LDCT imaging to detect lung nodules, 
Song et al. [27] used CapsNet as a feature extractor and integrated it with a 3D CNN, getting a detection rate of 95.19%. J. 
Shao et al. [28] performed the deep learning models’ implementation across 12,360 people in screening by LDCT in China, 
which reached an accuracy of 86.96% in lung cancer risk assessment through using AI. 

Additionally, the concept of transfer learning has been explored to improve lung cancer detection models. R. Anand et al. 
[29], VGG 16, and Inception V3 architecture were applied over the IQ _OThnccd lung cancer dataset, and their classification 
accuracy outcome was 96%. While this is, their study also showed key limitations: the necessity of a lot of labelled datasets, 
biases in the database, and capabilities to adapt pre-trained networks to medical problems. 

Despite a great deal of progress in using AI to analyse LDCT, challenges exist. Refining AI models for lung cancer screening 
is necessary to mitigate high false positive rates. Furthermore, for healthcare centres, DL-based detection models are 
computationally demanding and present difficulties in implementing these technologies. In addition, radiologists' presence is 
essential to compensate for algorithmic bias and clinical validation and improve diagnostic accuracy [4]. 

Moving forward, it will be necessary to continue research and clinical validation of AI-powered LDCT analysis so that it can 
be brought into routine clinical practice. Gaps in data quality, algorithmic bias, and computational efficiency will have to be 
resolved in order to optimise AI for lung cancer screening. Collaboration between AI technology and human expertise could 
be the solution to refining the processes of lung cancer screening and improving patient outcomes [4, 30]. 

Additionally, the existing literature shows how much has been achieved in AI powered LDCT analysis for lung cancer 
detection early. Although deep learning models show notable progress, such as false positive and false negative rates, lack 
of dataset, being interpretable, and yet deploying in a real-time clinical environment, there remain still challenges. Addressing 
such gaps herein is described LungDxNet, a deep learning-based framework that incorporates transfer learning fine-tuned for 
pre-trained CNN architectures in enhanced diagnostic efficiency and accuracy. By leveraging advanced segmentation 
techniques, optimised feature extraction, and explainable AI methods, this research aims to bridge the identified gaps and 
provide a scalable, robust, and clinically applicable lung cancer detection solution. To systematically bridge the gaps 
identified in prior studies, this research formulates key research questions and addresses them through the proposed 
LungDxNet framework. Table 1 presents an overview of the significant research gaps, corresponding research questions, and 
how they are fulfilled in this study. 

Having established the research gaps and their solutions, the following section details the methodology adopted to develop 
and evaluate the LungDxNet model, including data preprocessing, feature extraction, and classification techniques. 
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Table 1. Research Gaps, Corresponding Research Questions, and How They Are Addressed in This Study  

Research Questions Research Gaps How These Questions Were Fulfilled 

How can AI-powered lung cancer 
detection models be improved to 
minimise false-positive and false-
negative rates? 

High false-positive and false-negative 
rates in existing AI-powered lung cancer 
detection models. 

LungDxNet utilises a fine-tuned CNN 
model and transfer learning to improve 
diagnostic accuracy, reducing false-
positive and false-negative rates. 

What strategies can be used to 
enhance the availability and 
quality of LDCT datasets for 
training deep learning models? 

Limited availability of large, high-quality 
annotated LDCT datasets for deep 
learning model training. 

The study leveraged a large LDCT 
dataset, applying augmentation 
techniques to enhance data quality and 
diversity. 

How can AI algorithms be 
optimised to improve the 
differentiation between 
malignant and benign lung 
nodules? 

Challenges in distinguishing between 
malignant and benign lung nodules with 
high accuracy. 

A combination of segmentation 
techniques and deep learning-based 
classification improves differentiation 
between malignant and benign nodules. 

What methodologies can 
facilitate the real-time 
deployment of AI-based lung 
cancer detection models in 
clinical settings? 

Limited real-time deployment of AI-
powered lung cancer detection models in 
clinical settings. 

The model was designed with scalability 
and robustness in mind, enabling real-
time diagnostic applications in clinical 
settings. 

How can the interpretability and 
transparency of deep learning-
based lung cancer detection 
models be enhanced? 

Lack of interpretability and transparency 
in deep learning-based lung cancer 
detection models. 

The study integrated explainable AI 
techniques to improve the transparency 
and interpretability of deep learning-
based decisions. 

What optimisations can be made 
to CNN-based feature extraction 
techniques to improve accuracy 
and efficiency? 

Need for optimisation of CNN-based 
feature extraction techniques for better 
accuracy and efficiency. 

Feature extraction was optimised using 
VGGNet, ResNet, and InceptionNet, 
ensuring improved accuracy 
y and efficiency. 

How can AI models be 
effectively integrated with 
radiologists' expertise to enhance 
lung cancer diagnosis? 

Challenges in integrating AI models with 
radiologists' expertise to enhance 
diagnostic performance. 

The model's decision-making process 
was designed to work in conjunction with 
radiologists, enhancing human-AI 
collaboration. 

What modifications can be made 
to deep learning models to 
improve their applicability in 
resource-constrained healthcare 
environments? 

Limited adaptation of deep learning 
models for resource-constrained 
healthcare environments. 

The proposed methodology reduces 
computational costs by using pre-trained 
models and optimising network 
architectures for efficiency. 

How can the computational cost 
and processing time of deep 
learning-based lung cancer 
detection be minimised? 

High computational costs and processing 
time are required for deep learning-based 
detection approaches. 

By optimising network architectures and 
leveraging efficient training strategies, 
the computational demand and 
processing time were minimised. 

What advancements in transfer 
learning can help enhance the 
performance of deep learning 
models trained on smaller 
datasets? 

Need for improved transfer learning 
techniques to enhance the performance of 
deep learning models with smaller 
datasets. 

Transfer learning techniques were fine-
tuned, enabling the model to achieve high 
performance even with smaller datasets. 

 

3. Methodology  

This section consists of the proposed architecture in Fig.1, which describes the details of the model designed and the detailed 
steps expressed in a consequent manner: 

1. A high-ranking medical radiologist usually conducts this test, and the input of microscopic cell images helps to 
detect and identify features of cancer in the primary phase.  

2. The preprocessing phase describes discolouration and normalisation, which focus on the quality and consistency of 
the images. Noise Reduction eliminates artefacts and distortions unrelated to the actual contents of the image that 
may interfere with model performance, and normalisation equalises the pixel intensity values across images to ensure 
uniformity in the dataset. 



 
Premananda Sahu et al.                                                                                      Sakarya University Journal of Computer and Information Sciences 8 (2) 2025 

188 

3. Feature extraction, in this work, provides the procedure that employs deep convolutional neural networks (CNNs) 
to auto-extract important patterns and features present in the preprocessed images. The three well-established 
architectures are as follows: 

• VGGNet 

• ResNet 

• InceptionNet 

4. The extracted features are fed into classification models to ascertain their likelihood of containing cancer. Three 
classifiers are attempted; these models map the deep features to specific classes primarily based on learned decision 
boundaries, and these are: 

• Fully Connected Neural Network (FCNN) 

• SoftMax Classifier 

• Support Vector Machine 

5. Finally, the prediction result was produced in terms of normal, cancerous, and non-cancerous. 

3.1 Data Processing 

The elimination of any disturbances and normalisation are crucial measures to progress picture excellence and model 
performance in the preprocessing stage of LDCT image lung cancer diagnosis. These types of images frequently cause 
significant levels of disturbances, which compromises image intelligibility. By regulating pixel concentration values 
throughout scans, normalisation improves the toughness of deep learning models. It has been done so that pixel values will 
be scaled onto a standard range; usually, it falls between 0 and 1 or -1 and 1, which makes the deep learning models better in 
terms of their convergence rate and performance. By focusing on important lung cancer attributes by means of noise lessening 
and normalisation, the deep learning model helps to improve nodule classification correctness and primary lung cancer 
diagnosis. Here, the Keras image data generator function was used. 

 
Figure 1: Complete architecture of the proposed LungDxNet framework for automatic 

classification of lung cancer using low-dose CT images. 
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3.2 Feature Extraction  

Progressive CNN architecture is quite essential for feature removal from LDCT image-based lung cancer identification. 
Precise classification is made possible by these networks' instinctive learning of outlines and nodular traits at several 
intellectual levels. Here are some of the most predominantly utilised CNN architectures for feature removal and these are: 

VGGNet (Visual Geometry Group Network)-: Applies several convolutional layers with insignificant kernel size, i.e. 3x3. 
Beginning from boundaries and surfaces, it hierarchically removes features till increasingly intricate lung cancer outlines. 
The innovative layers of VGGNet for identifying spiculated boundaries and compactness disparities play a critical role in 
distinguishing between normal, cancerous, and non-cancerous lungs. 

ResNet—To address the issue of vanishing gradients in deep CNNs, ResNet (Residual Network) introduces skip connections, 
which allow for bypassing certain layers. These connections help information flow within the network without loss, ensuring 
that fine-grained lung nodule characteristics are well captured. Such improvement is due to Resnet's ability to extract texture, 
shape irregularities, and changes of contrast. 

InceptionNet-: To obtain features at different scales at once, InceptionNet employs parallel convolutional layers with varying 
kernel sizes (1×1, 3×3, 5×5). This multi-scale approach enables the network to recognise nodules of differing sizes and 
densities in the LDCT images. These multi-scale approaches guarantee that both small isolated nodules and larger irregular 
tumours are well-defined, ensuring that all cases are effectively classified [31]. 

By mixing the above processes, the model proficiently learns discriminatory lung cancer-related data features, which are 
important to initial and precise lung cancer identification from LDCT images. 

3.3 Classification 

Fully Connected Neural Network (FCNN): An FCNN has individual neurons in a layer associated with each neuron in the 
subsequent layer. This way, a dense network of interconnections is formed. This architecture, therefore, allows the network 
to acquire complex patterns and relations within the data through the operation of weights throughout the training process 
[32]. Moreover, it shows excessive promise in supervised learning contexts such as image organisation, text classification, 
or in any submission where the goal is to allocate input data into one amongst a list of predefined groups. It comprises 3 main 
types, i.e. input, hidden and output layer. 

The input layer gathers unprocessed fresh data. Every neuron in this layer relates to an input characteristic. For example, in 
image classification, the input may be a compressed vector of picture element strengths.   

Hidden layers learn hierarchical, class-specific structures from LDCT data: The initial layers of the network learn to identify 
basic characteristics, including edges and textures, as well as noise patterns within low-dose medical images. The deeper 
layers integrate these basic features to form complex representations that capture details like nodule information. Now, the 
non-linear activation function ReLU enables the network to capture the lung nodules, which can be expressed as: 

f(x)=max (0,x)            (1) 

Where f is a function, x is the input variable, and max returns the maximum value. 

The output layer comprises a single neuron for each class, and the Softmax activation function translates the grooves into 
regularised probabilities. 

For training FCNN, LDCT images with corresponding ground truth labels utilising the cross-entropy function that calculates 
loss function and are expressed as: 

L =  −  1
S

 ∑ ∑ xj,c log�x�j,c�  C
c=1

S
j=1    (2) 

Where L is the loss function, S is the total number of samples, xj,c is the ground truth for specified input with j sample, and 
class c and x  ̂is predicted probability. 

Softmax Classifier: Let's familiarise the softmax classifier collected formerly to precisely classify lung conditions from a 
low-dose CT (LDCT) dataset into three classes: We will inspect how the classifier scrutinises LDCT data to dispersed normal 
conditions from cancerous and non-cancerous cases for lung cancer screening submissions. The softmax function stimulates 
the output layer to produce probability distributions over all three classes. The classification result is made by selecting the 
class that displays the highest probability [34]. The softmax function normalises output layer scores into probabilities during 
classification tasks. The FCNN establishes the neural network structure while the softmax function generates the output 
probabilities in this common combination. It is expressed as: 

Softmax (qc) =  eqc

∑ eqkk
     (3) 

Where qc is the input score for class c, and k is another class. 
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The interior neural network framework of FCNN, where the relationship among laers is fully associated, is depicted in Fig.2. 

Figure 2: Architecture of the Fully Connected Neural Network (FCNN) model 
used for feature-based lung cancer classification in LDCT images [33] 

 

Fig. 3 depicts the detailed softmax transformation and the FCNN pipeline for the visual flowchart. 

Support Vector Machine: The system demonstrates proficiency in classification tasks by identifying the best boundary to 
divide distinct class data points within high-dimensional environments. In lung cancer detection, SVM uses LDCT image-
derived features to accurately classify lung conditions as normal, cancerous, or non-cancerous. While neural networks train 
classified attributes, SVM influences predefined attributes and accomplishes well with a lesser dataset [35]. 

For the novel LDCT sample x, every SVM calculates the decision function expressed as: 

fc(x) =  ∑ mj yj k�xj, x� + bj∈SV         (4) 

Where fc (x) is the decision function with c as class and x is input, xj is the support vector, mj is the Lagrange multiplier with 
jth support vector, yj is the actual output, k is the kernel function, and b is bias. 

The SVM decision-making process clearly classifies the above 3 classes based on the visual flowchart depicted in Fig.4. 

It simplifies the classification of lung cancer in LDCT examinations by projecting image characteristics into an exalted 
dimensional space, identifying optimal hyperplanes to discriminate between normal, cancerous, and non-cancerous groups. 
Its benefit is in dealing with the noise inherent to LDCT and proficiently handling minor datasets, providing a dependable 
and explainable option associated with neural networks for the above groups. 

LDCT and proficiently handling minor datasets, providing a dependable and explainable option associated with neural 
networks for the above groups. 

 

 
Figure 3: Complete architecture of the Fully Connected Neural Network (FCNN) pipeline used for Categorizing 

LDCT Lung Images into 3 Dissimilar Groups: Cancerous, Non-Cancerous, and Normal 
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4. Result and Discussion  

This section represents the implementation steps for the complete methodology for lung cancer classification, which is 
described below. The projected model for lung cancer classification was employed on a computer running Windows 11 OS, 
64 bits as processing speed with 16GB of RAM, Google col-ab with tensor flow, and the Keras library.  

4.1 Dataset 

The detailed image dataset utilised to classify lung cancer using LDCT, i.e. Low Dose Computed Tomography and Projection 
dataset, are provided in this section [36]. By using existing lung cancer statistics and LDCT broadcast trends tailored to the 
Indian background. Indian lung cancer occurrence data and broadcast studies will learn these percentages. The total dataset 
contains 5378 LDCT images. The first class consists of non-cancerous lung cancer images (13%), comprising 592 scanned 
images. The second class includes 2661 cancerous lung cancer images (49%). The third class contains 2231 normal lung 
images (40%), all with dimensions of 512x512 pixels. In this study, 70% of the data is used for training, 20% for testing, and 
10% for validation. 

The assessment is done on the basis of performance matrices such as accuracy, precision, recall and f1 score. Accuracy is the 
description of accurately classified instances out of all cases. Recall measures the true positive occurrences classified out of 
actual positive occurrences [37]. Precision measures the true positive instances out of all positive instances, and they are 
expressed as: 

Accuracy =     TP+TN
TP+TN+FP+FN

     (5) 

Precision = TP
TP+FP

     (6) 

Recall = TP
TP+FN

      (7) 

 

After training from algorithms like FCNN, SoftMax classifier, and SVM, the model's training accuracy and loss, along with 
its validation accuracy and loss, have been determined. The performance metrics table for the above model is depicted in 
Table 2. 

F1 Score = 2∗Precision∗Recall
Precision+Recall

  (8) 
 

 
Table 2. Accomplishment Metrices for Individual Models 

 
 Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) 
SVM 94.54 93.52 93.85 94.01 

SoftMax Classifier 97.42 96.86 97.03 96.78 
FCNN 98.88 97.84 98.81 97.62 

 

The above graphical presentation and table clearly compare each other, and the results are clearly achieved. Here, the authors 
categorised the images into normal, cancerous, and non-cancerous, and after training, the sample image is expressed in Fig.5. 
The following diagram shows examples of low-dose computed tomography scans serving as screening modalities in which 

 
Figure 4: Support Vector Machine (SVM) pipeline for multi-class classification of lung cancer in LDCT 

images. 
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both positive (likely malignant) and negative (likely benign or normal) cases are observed. Each case must include a series 
of axial LDCT slices, all with regions of interest highlighted and the malignancy probability score corresponding. Each row 
contains multiple CT slices of the same case to portray the 3D perspective of either lesion or normal anatomy. All suspicious 
areas are marked with red circles, while white boxes identify the region analyzed for the possibility of malignancy. 

Various performance metrics for the above 3 models are described separately in Table 3, and the corresponding ROC plot is 
illustrated in Fig.6. 

 
Figure 5: Visual examples of lung tumor detection using the proposed LungDxNet model, distinguishing among cancerous, 

non-cancerous, and normal lung CT scans. 

 

Table 3. Multiclass Classification of All the Classifiers 

Model Class Accuracy Precision Recall F1 Score 

FCNN 
Non-cancerous 0.9888 1.0000 0.980 0.987 

Cancerous 0.9888 1.0000 0.990 0.984 
Normal 0.9888 0.9400 0.990 0.957 

Softmax 
Classifier 

Non-cancerous 0.9742 0.9737 0.965 0.9694 
Cancerous 0.9742 0.9286 0.946 0.9469 

Normal 0.9742 0.9615 0.952 0.9569 

SVM 
Non-cancerous 0.9454 0.9424 0.937 0.9396 

Cancerous 0.9454 0.9288 0.922 0.9320 
Normal 0.9454 0.9402 0.933 0.9391 

 
Receiver Operating Characteristic curves for lung cancer detection based on the table the authors have provided need to 
extract the performance metrics, i.e. Accuracy, Precision, Recall, F1 Score) for each model, such as FCNN, SoftMax 
Classifier, and SVM, relative to the three classes: "Non-cancerous," "Cancerous," and "Normal." But ROC curves typically 
need the true positive rates (TPR, also known as Recall or Sensitivity) and the false positive rates (FPR) at multiple thresholds 
[38], [39], Neither of which the authors can obtain directly from the table. 
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After a training activity with the neural networks, the model would yield the values shown below on training and validation 
accuracies and losses, as has been proved above. Interpretation of training and validation accuracies refers to how the model 
has been able to perform on training databases relative to how the same model performs on validation databases [40], [41]. 
On the other note, training and validation losses indicate the fitting quality of the model in correlation with the training set 
and the validation set, respectively. Now, the training loss for all the models has been estimated for 100 epochs [42], as 
expressed in Fig.7. 
 

Table 4 summarises the methodologies, datasets, accuracy, and key metrics from relevant literature to provide a 
comprehensive comparison of previous studies and the proposed LungDxNet model. This comparison highlights the strengths 
and limitations of existing methods and demonstrates the improvements made by the proposed approach. 

 
 
 

 
Figure 6. ROC Curve for the Assessed Classification Models, Demonstrating the Trade-off among True positive 

Rate (Sensitivity) and False Positive Rate (Specificity) over Diverse Threshold Values 
 

 
Figure 7. Training loss curves for FCNN, SoftMax, and SVM models over 100 epochs, showing model 

convergence behavior during lung cancer classification 
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Table 4. Comparison of Deep Learning Approaches for Lung Nodule Detection and Risk Assessment 
 

Study 
Reference Methodology Used Dataset Used Accuracy 

(%) Additional Metrics 

[16] CNN with 3x3 kernel for lung 
nodule detection CT scan dataset 97.56 98.4% specificity in 

classification 

[17] TNM classification using CNN CT scan dataset 96.4 High specificity 

[18] ResNet, DenseNet, 
EfficientNet ensemble LIDC-IDRI dataset 97.23 98.6% sensitivity, 

reduced false negatives 

[19] YOLOV5-based lung nodule 
detection 

LIDC-IDRI dataset (280 
scans) 

92.27 
(mAP) 

Nodule detection 
precision 

[20] Deep learning-based risk 
prediction 

LDCT-based risk 
assessment dataset 

92.0 
(AUC) 

Future risk prediction 
capability 

[21] DeepScreener with 3D 
convolution LDCT scans 89.2 

(AUC) 
Advanced feature 
extraction with 3D CNN 

[22] CADe system with genetic 
algorithm 

LDCT scans with CADe 
annotations 96.25 High sensitivity (97.5%) 

and specificity (95%) 

[24] Comparison of DL models with 
radiologists 

LDCT dataset (radiologist 
comparison) 

90.2 
(AUC) 

Comparable performance 
to radiologists 

[25] Radiomics-based reinforcement 
learning Serial LDCT scans 88.0 

(AUC) 
Superior early diagnosis 
prediction 

[26] Hybrid transfer learning with 
multiclass classification CT scan dataset 91.0 Multiclass categorisation 

[27] 3D CNN with CapsNet Low-dose CT imaging 
dataset 95.19 High cancer 

identification rate 

[28] Mobile LDCT-based deep 
learning model 

Mobile-based LDCT 
dataset 86.96 Optimised for resource-

constrained settings 

[29] Transfer learning using VGG-
16 and Inception V3 IQ-OTHNCCD dataset 96.0 Challenges in dataset 

bias and fine-tuning 
Proposed 

LungDxNet 
Model 

Fine-tuned CNN with transfer 
learning, segmentation, and 
optimised feature extraction 

Large LDCT dataset (5378 
images) 98.88 

High sensitivity, 
specificity, and reduced 
false positives/negatives 

 
Based on the comparative analysis in Table 4, it is evident that while prior studies have made significant strides in AI-driven 
LDCT analysis, challenges such as high false-positive rates, dataset biases, and limited real-time applicability persist. The 
following section details the methodology of the proposed LungDxNet model, designed to address these gaps through 
advanced deep learning techniques and optimised feature extraction. Figure 9 presents a comparative analysis of the accuracy 
achieved by various deep learning-based lung cancer detection models from the literature alongside the proposed LungDxNet 
model. The results indicate that while prior studies have reported notable performance improvements, the proposed method 
achieves the highest accuracy of 98.88%, surpassing existing approaches. This enhancement is attributed to the integration 
of optimised CNN architectures, transfer learning techniques, and advanced feature extraction methods. The figure visually 
reinforces the effectiveness of LungDxNet in minimising false positives and negatives, making it a promising tool for real-
world lung cancer screening applications. 

5. Conclusion 

Investigation on lung cancer recognition using advanced machine learning and deep learning techniques like fully connected 
neural networks (FCNNs), SoftMax classifiers, and support vector machines has shown substantial advancement in 
classifying low-dose CT (LDCT) images into the classes of "normal," "cancerous," and "non-cancerous." The research, 
directed both image and text data mimicking the features of Indian LDCT, discloses excellent performance for all of the 
models, with an FCNN attaining the uppermost accuracy of 98.88%, precision, recall, and F1 scores, trailed by SoftMax and 
SVM. These consequences highlight the potential of AI-based models to advance primary detection, which is critical to 
improving existence in India, where growth in lung cancer occurrence can be credited to tobacco use, air pollution, and 
tuberculosis-related findings. Mixing these models with LDCT screening challenges the issue of late-stage analysis. It 
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provides a mechanism through which humanity may be condensed and the effective distribution of resources may be 
optimised in a resource-poor setting. 

The new and unexplored area in contemporary and future scope is the application of quantum computing with AI in the area 
of lung cancer exposure. With quantum algorithms, feature extraction from LDCT images may be exponentially faster, 
allowing real-time access and analysis of vast datasets regarding genetic and environmental factors peculiar to India. This 
will disrupt personalised risk assessment by surpassing the current deep learning limitations dealing with noisy, low-dose CT 
data, probably enabling large-scale screening programs at a reasonable cost. 
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