
SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES

VOL. 1, ID. SAUCIS-4-2018, APRIL 2018

Developer-oriented Web Security by Integrating Secure SDLC into

IDEs

Emin İslam TATLI

Emin İslam Tatlı; Corresponding Author; emin.tatli@stm.com.tr; 0 (312) 266 3550

STM, Director of Cyber Security and Big Data

Received 17 March 2018; Accepted 30 March 2018; Published online 2 April 2018

Abstract

Enterprises and organizations have difficulties to protect their web-based services against cyber-attacks. Due to

increasing number of cyber-attacks, critical data including customer data, patient data etc. are leaked and critical

services like online banking become unavailable for long period of time. The studies of Gartner, OWASP, SANS

and similar organizations have shown that today’s cyber-attacks target mostly application layer. This means that

application developers design and implement insecure web applications and black-hat hackers exploit these

security weaknesses to get unauthorized accesses to critical databases. Insecure development of web developers

is still a big challenge to solve. The top one risk “SQL Injection” from OWASP Top 10 list can be given as a

concrete example. This vulnerability was discovered 20 years ago, but web developers are still mostly unaware of

its prevention methods. The weak communication between web developers and security experts is one of the main

reasons of insecurely developed applications. Even though security experts have the knowledge of all preventions

methods for all types of security vulnerabilities, they are insufficient to transfer this knowledge to web developers.

Secure software development lifecycles methodologies like Microsoft SDL, OpenSAMM, BSIMM have been also

proposed in order to integrate required security activities into all phases of software development. But the security

activities required by these methodologies are not integrated within development environments and therefore

secure coding awareness of developers cannot be efficiently achieved. In this paper, we suggest new methods and

discuss open academic research issues for integration of secure SDLC activities including secure coding practices

and secure architecture patterns into development IDEs (Integrated Development Environments). Providing this,

web developers can access to secure coding procedures and best-practices directly within their IDEs, increase

their security awareness and develop more secure applications. As a result, the numbers of security vulnerabilities

would drastically decrease and critical data leakages can be prevented.

Keywords: secure coding; secure software development; secure SDLC

1. Introduction

Information security is one the most critical and difficult challenges in the Internet era. Organizations

and enterprises providing services through web applications have difficulty to secure their IT systems

and sensitive data against cyber-attacks. Every day several enterprises become victim of cyber-attacks

(Hackmageddon 2018) by which sensitive data (e.g. customer data of ecommerce companies, patient

data at hospitals, employee data, etc.) are seized or critical services (e.g. online banking, online shopping

etc.) become unavailable for very long time. All these attacks and data breaches result into financial lost

and damage to customer trust. Gartner estimates that 70% of cyber-attacks target the application layer.

That means developers design and implement insecure web applications, black-hat hackers find

vulnerabilities within such applications and exploit them to get unauthorized access to databases and

servers. The reason why developers produce insecure web applications is a big dilemma. For example,

SQL injection, the most critical web security vulnerability according to OWASP (Open Web

Application Security Project) Top 10 project (OWASP-Top10 2017), was discovered more than 15 years

ago. Even though SQL injection and its prevention methods are known since then, today many

developers are unaware of them and their applications are vulnerable to SQL injection attacks.

The dilemma of insecure applications is that there is a huge gap between security experts and web

developers. Security experts know every type of vulnerabilities in detail as well as tools, libraries, best-

mailto:emin.tatli@stm.com.tr

Sakarya University Journal of Computer and Information Sciences

Emin İslam Tatlı

37

practice coding methods, secure configurations etc. as the solutions, but they are very unsuccessful to

transmit their knowledge to be utilized by web application developers.

In this paper, a developer-oriented web security model that integrates secure SDLC activities into IDEs

is proposed. Exploiting this model, developers can be involved with the lifecycle of secure software

development easily, apply security policies and requirements during coding more accurately, exploit

secure architecture design best-practices and technology-dependent methods for secure coding more

efficiently, understand the details of security vulnerabilities identified by penetration testers and have a

better knowledge and capability to fix the identified security vulnerabilities. The proposed model

combines practical development experiences with academic research aspects of security and software

engineering and offers solutions for real-life development projects to make the Internet a more secure

place.

The paper is organized as follows: Section 2 explains the problems and challenges of secure software

development from the perspectives of web developers. Section 3 lists and explains the requirements for

secure SDLC integration into IDEs. Open issues for academic research regarding secure SDLC

integration into IDEs are explained in Section 4. This section highlights possible new topics for security

researchers. Section 5 discusses the related works. Section 6 concludes the paper.

2. The Problems of Secure Software Development

Web applications have become very popular in the Internet era since they can be developed very rapidly

and are accessible through all browsers of any operating systems. Security, on the other hand, is a big

headache for web applications. OWASP Top 10 project lists the most critical security risks relating to

web applications since 2004. The number one risk “Injection” allows attackers to send untrusted data to

a targeted interpreter (e.g. SQL, LDAP, XPath interpreters) and manipulate the interpreter’s code

execution. For example, attackers performing SQL injection attacks can get unauthorized access to

critical databases and even manipulate table entries.

Since the beginning of 2000s, security researchers have analyzed web application flaws and proposed

solutions. But today there are still many web developers who have not heard about SQL injection and

have no idea how to prevent it. Being unaware of the security risks, developers design and implement

insecure applications which expose sensitive data to hackers and threaten the businesses of their

organizations and enterprises. The main reason of this dilemma is that security experts are insufficient

to transmit their experiences to developers. This dilemma can be explained further with the following

key issues:

 Most organizations do not have sufficient number of security professionals that are responsible

for application security tasks. Besides, the existing secure SDLC methodologies (e.g.

OpenSAMM, BSIMM etc.) are too complex and heavy for such organizations to apply. A

lightweight SDLC should be designed and developed.

 Organizations and enterprises having a security management system in place require their

developers to perform certain activities based on their secure software development lifecycle

(SSDLC). But developers are mostly not trained about the SSDLC process of their organizations,

do not know which security activities must be performed at each development phase and how to

perform. Therefore, they ignore the SSDLC process.

 Organizations and enterprises define their security rules and publish them within a security policy

document. But these security policies remain untouched within the policy document and are not

taken into consideration by web developers during coding. They are not supported by security

experts to understand the security policies and apply them during development. They ignore

security policies too.

 It is expected that threat analysis is performed especially for confidential, integrity-critical or/and

availability-critical classified systems. Threat analysis shows all possible threats from the

Sakarya University Journal of Computer and Information Sciences

Emin İslam Tatlı

38

perspectives of different attackers and entry points. Considering all threats, the required security

controls are identified, implemented and enforced. But web developers are not familiar with

threat analysis and many critical threats are ignored too.

 Web framework developers are not sufficiently qualified to integrate security controls within their

frameworks. Providing this security integration, many critical flaws could be automatically

prevented without any interaction of application developers utilizing these frameworks.

 Developers are occupied with many text-based documents about secure coding, security policies,

secure software development lifecycles, penetration testing reports etc. Instead, checklist-based

tools can help them to understand the security requirements better and perform their tasks more

easily and efficiently.

 Mostly automatic web application scanner (WAS) tools are used for security testing. Manual

testing and developer trainings are mostly ignored. But it is overlooked that WAS tools are not

able to detect business logic errors (BLV 2015).

 Penetration testers perform black-box and white-box security checks and generate pdf reports

which explain their findings and the countermeasures to fix them. Web developers getting a pdf

report do not understand many countermeasure details and are not able to fix the vulnerabilities.

3. Requirements for Developer-oriented Web Security

Since security must be considered “as a process rather than a product” (Schneier 2000) it is vital to

integrate security activities into each phase of software development. This means web developers should

consider and perform certain security activities at each phase of software development. Considering this

fact, several methodologies (e.g. (OpenSAMMv1.5 2017; BSIMMv8 2017; Microsoft SDL 2010) etc.)

have been proposed in the past. These methodologies are called as Secure Software Development

Lifecycles (SSDLC). Figure 1 illustrates the main architecture of OpenSAMM which requires

performing security activities of twelve security practices that are categorized under four business

functions. Each security practice consists of three maturity levels and each maturity level consists of

several security activities.

Figure 1 Business Functions and Security Practices of OpenSAMM

Examining the twelve security practices of OpenSAMM, it is realized that security activities related to

security trainings, security policies, SSDLC methodology, threat analysis, security requirements,

security architecture, design review, black-box and white-box security testing, environment hardening,

vulnerability management and operational documentation are required to be performed during software

development. It is certain that web developers cannot understand and follow such a complicated process

easily. In order to help web developers by secure development, their IDE platforms should be equipped

with supporting tools, supporting processes and training materials.

In the following, the requirements of secure SDLC integration into IDEs are discussed in detail:

Sakarya University Journal of Computer and Information Sciences

Emin İslam Tatlı

39

i. Development of a lightweight secure SDLC

Due to lack of security experts at most organizations, existing secure SDLC methodologies (e.g.
OpenSAMM, BSIMM etc.) are too complex and heavy for these organizations to apply. A new
lightweight methodology that is developed from web developers’ perspective is needed. This new
methodology should be optimized and contain only the most important and relevant security activities
with new optimized maturity levels.

ii. Integration of secure SDLC process into development environments

It is required that an organization’s secure SDLC process is integrated into development process and

environment. This integration is very crucial for all other security practices of SDLC. Providing this,

web developers and development project members can directly access their secure SDLC process and

get detailed information about each security activity they need to perform at each development phase.

They can access supporting tips and tools for each security activity including secure design requirements

and coding best-practice examples. This integration should be project management oriented. That means

a project manager can assign roles and tasks to project members and see all performed secure SDLC

activities. Project members can set status of each assigned security activity and follow status of their

overall security tasks within the project in a more structured way.

iii. Enhanced management of requirements and threats

There exist several requirements (e.g. legal, security policy and best-practice aspects) that need to be

considered during development. But web developers have difficulty in extracting security requirements

from text documentation. Therefore, legal, security policy and best-practice design and implementation

requirements as check-lists should be integrated into development environments. This aspect is relevant

for Security Requirements, Security Architecture, Policy&Compliance, Threat Assessment and Design

Review security practices.

Providing this, web developers can easily access the security requirements for each development phase

(e.g. design, implementation, test) and understand their tasks via additional hints. Special check-lists

should be provided for different project roles like system administrator, database administrator,

penetration tester, project manager, etc. The requirement check-lists should be created according to

information classification (i.e. confidentiality, integrity and availability parameters).

iv. Technology-specific support during coding

Web developers should access directly technology or framework specific best-practice examples during

coding. This aspect is relevant for Secure Architecture and Design Review security practices. Providing

this, web developers can be provided with any necessary information on the fly during coding. As an

example, a web developer implementing in Java can access PreparedStatement Java code example

directly within the IDE to learn how to prevent SQL injection.

v. Manageable vulnerability management process

Rather than focusing on pdf reports, an enhanced process should be provided to web developers for

dealing with and fixing vulnerabilities in a more efficient way. This aspect is relevant for Security

Testing and Vulnerability Management security practices. Providing this, vulnerabilities identified in

Sakarya University Journal of Computer and Information Sciences

Emin İslam Tatlı

40

penetration tests can be presented to developers as online accessible check-lists rather than as pdf

reports. Web developers can get more structured information about each vulnerability and understand

fixing instructions easily. Organizations having thousands of web applications can analyze their

vulnerabilities in detail and manage fixing process more efficiently.

vi. Exploiting framework security features

Web developers and system administrators are not familiar with which security features and

configurations web frameworks support. Easy access to security features and configurations of web

development frameworks (e.g. Spring, Struts, JSF, .NET etc.) should be possible to activate and use

them more efficiently. This aspect is relevant for Secure Architecture and Environment Hardening

security practices. Providing this, framework security features can be integrated into development

environments and become accessible by web developers easily and more efficiently.

vii. Enhanced security code review

Manual security code review is required especially for security-sensitive classified applications. Mostly

search functions of IDEs are used during code review. But this is not a safe method since a reviewer

alone is not eligible to memorize all critical classes and methods. Therefore, an enhanced method with

a tool which presents code reviewers the critical classes and methods of different technologies to check

should exist. This aspect is relevant for Code Review security practice. Providing this, using this new

tool, code reviewers can know exactly which classes and methods are critical to check.

viii. Detecting business logic flaws

Web Application Vulnerability Scanner tools are not able to detect business logic flaws. Academic

research needs to be carried out to close this gap. Business logic flaws can be categorized and scanning

methods can be developed to search weaknesses within certain categories of business logics. For

example, negative price by e-commerce applications is a typical type of business logic errors. Price

parameters can be checked automatically for negativity. This aspect is relevant for Security Testing

security practice.

4. Open Issues for Academic Research

Considering the requirements explained in the previous section in detail, open research topics that need

to be analzyed and matured in the academia further are discussed in this section. Despite its importance

and impact, secure SDLC related academic research has been so far carried out very limited in the

academia. Table 1 lists possible open research topics of secure SDLC for academic research. It shows a

roadmap for security researchers that are interested in secure development.

Table 1. Open Research Topics for Developer-oriented Web Security Framework

Task Open Research Topics

Development of a lightweight

secure SDLC
 Existing secure SDLC methodologies need to be studied,

analyzed and compared in detail.

 The most required security practices and activities from the

secure SDLC methodologies need to be identified.

Sakarya University Journal of Computer and Information Sciences

Emin İslam Tatlı

41

Task Open Research Topics

 Unessential security practices and activities need to be

eliminated.

 The maturity levels (between 1-3) need to be re-organized

accordingly.

Integration of secure SDLC

process into development

environments

 The main architecture for integration needs to be designed by

studying its features and integration aspects.

 The requirements and best methods need to be investigated to

integrate each security practice of secure SDLC into IDEs.

 IDEs (e.g. Eclipse, NetBeans, Visual Studio etc.) need to be

analyzed in detail for this integration. Especially, usability

issues need to be considered for the integration since there is

a trade-off between usability and security.

 Moreover, each organization has its own customized secure

SDLC. It should be examined how to achieve a flexible

architecture in order to integrate and support any type of

secure SDLC process.

Enhanced management of

requirements
 It should be investigated how and which existing security

requirements are relevant for secure coding and how they can

be integrated into IDEs.

 Security policies include legal and organizational

requirements in addition to technical requirements. It should

be analyzed how legal and organizational requirements can

be integrated into IDEs.

 It should be analyzed how information classification process

and maturity levels are covered within integration process.

 It should be investigated how requirement check-lists for

different roles and for different development phases can be

created and integrated.

Improvement and integration of

threat assessment
 Existing threat assessment methods (e.g. Attack-tree (Saini et

al. 2008), Attack-Protection tree etc.) and tools need to be

analyzed from the perspectives of web developers. An

improved methodology needs to be developed and integrated

into IDEs.

Technology-specific secure

coding support
 It should be analyzed which technology and framework

specific secure coding examples and patterns can be

integrated into IDEs while considering usability trade-off.

Enhanced vulnerability

management process
 Vulnerability management including task assignment, fixing

and reporting processes should be analyzed.

 An enhanced vulnerability management system should be

developed and integrated into IDEs.

Exploiting framework security

features
 Existing web frameworks (e.g. Spring, Struts, Django, Zend,

AngularJS, EmberJS etc.) should be studied to identify and

compare supported security features and configurations.

Sakarya University Journal of Computer and Information Sciences

Emin İslam Tatlı

42

Task Open Research Topics

 It should be examined how supported framework security

features can be integrated into IDEs.

 Moreover, it should be analyzed which new types of security

features can be integrated into each studied web framework

to prevent cyber-attacks automatically.

Enhanced security code review  Code review tools need to be equipped with the list of critical

classes and methods from the security perspective.

 Critical classes and methods for different technologies (e.g.

Java, dotNET, PHP etc.) need to be identified.

 It should be then investigated how to integrate security code

review functional into IDEs.

 Tatlı and Urgun developed a manual security code review

tool namely ccrawl (Tatlı and Urgun 2013) as an initial

version of such a required tool.

Detecting business logic flaws  Business logic flaws should be studied in order to identify

different categories of business logic flaw types.

 Methods for scanning weaknesses within the identified

categories should be developed.

 Tools implementing these detection methods should be

developed and integrated into IDEs.

5. Related Work

There are several academic works that aim to support secure SDLC processes at the beginning of

requirements or design phases. Talukder et al. developed a self-alone tool that can be exploited for

different tasks within secure SDLC (Talukder et al. 2009). Using the tool, asset lists with information

classification can be created, abuse-case and attack tree diagrams can be created and several testing tools

can be accessed. This tool was not developed from the perspective of developers. It only provides GUIs

for existing threat analysis methods and gives references for several existing test tools.

Zenah and Aziz developed a web-based training tool for developers which contain several exercises

based on OWASP Top 10 and SANS 25 (SANS 2011) lists (Zenah and Aziz 2011). Thuraisingham and

Hamlen discuss challenges and future directions of secure software development regarding formal

methods and secure service modelling (Thuraisingham and Hamlen 2010). Bilge and Dumitras

performed a benchmark analysis and showed the time difference between discovery time and fixing

time of vulnerabilities (Bilge and Dumitras 2012).

SecureUML (Lodderstedt et al. 2002) and UMLSec (Jürjens 2004) introduce model-driven security

engineering methods and enable integration of security requirements (e.g. authentication, authorization,

etc.) within different UML diagrams. Mouratidis and Giorgini propose an approach called Security

Attack Testing (SAT) for testing the security of a software system during design (Mouratidis and

Giorgini 2007). SAT helps developers to understand the goals of possible attackers based on possible

attack scenarios.

Adebiyi et al. propose a neural-network based tool to evaluate the security of software design at the

design phase of SDLC (Adebiyi et al. 2012). Othmane et al. propose a new method that integrates

security engineering activities into the agile software development process (Othmane et al. 2014).

Sakarya University Journal of Computer and Information Sciences

Emin İslam Tatlı

43

Considering all related works, the proposed project offers practical as well as theoretical contributions.

The related works propose mostly solutions for a limited part of a secure SDLC process. This makes

them inapplicable for real-life development projects since they overlook the big picture regarding all

security activities of secure SDLC process.

6. Conclusion

Most web application developers are not experts for secure development and coding. As a result, most

web applications today contain critical security vulnerabilities. Security experts know already the

solutions to prevent these security vulnerabilities, but the knowledge transfer between web developers

and security experts is today very problematic. In order to close this gap, we suggest that secure SDLC

methodologies are integrated into developers’ IDE platforms. Secure SDLC requires that several

different security activities should be performed in all phases of software development (i.e. requirement,

plan, design, implementation, testing, and operation). In this paper, we have proposed a model to enable

this integration. The requirements as well as the open issues for academic researches are explained and

discussed for the proposed model in the paper in detail.

References

Adebiyi, A., Arreymbi, J., Imafidon, C. 2012. "Applicability of Neural Networks to Software Security",

14th International Conference on Computer Modelling and Simulation, 19-24.

Bilge, L., Dumitras, T. 2012. “Before We Knew It: an Empirical Study of Zero-Day Attacks in the Real

World”, Proceedings of the 2012 ACM Conference on Computer and Communications Security -

- CCS’12, 833–844.

BLV, “Business logic vulnerability”. https://www.owasp.org/index.php/Business_logic_vulnerability,

August 2015.

BSIMM (The Building Security In Maturity Model) v8, https://www.bsimm.com/, September 2017.

Hackmageddon – Cyber Attacks Timelines and Statistics, http://hackmageddon.com, 2018.

Jürjens, J. 2004. Secure Systems Development with UML. Springer-Verlag.

Lodderstedt, T., Basin, D.A., Doser, J. 2002. "SecureUML: A UML-Based Modeling Language for

Model Driven Security," In Proceedings of the 5th International Conference on the Unified

Modelling Language, 426-441.

Microsoft SDL, https://www.microsoft.com/en-us/sdl, 2010.

Mouratidis, H., Giorgini, P. 2007. "Security attack testing (SAT)- testing the security of information

systems at design time", Information Systems, Vol. 32, 1166-1183.

OpenSAMM (Software Assurance Maturity Model) v1.5, http://www.opensamm.org/, 13 April 2017.

Othmane, L.B., Angin, P., Weffers, H., Bhargava, B. 2014. "Extending the Agile Development

Approach to Develop Acceptably Secure Software", Dependable and Secure Computing, IEEE

Transactions on , vol.PP, no.99, 497 - 509.

OWASP-Top10 Project, https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project,

2017.

Saini, V., Duan, Q., and Paruchuri, V. 2008. “Threat modeling using attack trees”. Journal of

Computing Sciences in Colleges (APRIL), 124–131.

SANS, “25 Most Dangerous Software Errors v3”. https://www.sans.org/top25-software-errors/, June

2011.

Schneier Bruce, “The Process of Security”,

http://www.schneier.com/essays/archives/2000/04/the_process_of_secur.html, April 2000.

Talukder, AK., Maurya, V.K., Santhosh, B.G., Jangam, E., Muni, S.V., Jevitha, K. P., Saurabh, S., Pais,

AR. 2009. "Security-aware Software Development Life Cycle (SaSDLC) - Processes and tools,"

Wireless and Optical Communications Networks.

Tatli Emin İslam and Urgun Bedirhan, Ccrawl-a thick client helping security static code review

processes, https://github.com/agguvenligi/ccrawl, October 2013.

Thuraisingham, B., Hamlen, K.W. 2010. "Challenges and Future Directions of Software Technology:

Secure Software Development", IEEE Computer Software and Applications Conference

https://www.owasp.org/index.php/Business_logic_vulnerability
https://www.bsimm.com/
http://hackmageddon.com/
https://www.microsoft.com/en-us/sdl
http://www.opensamm.org/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.sans.org/top25-software-errors/
http://www.schneier.com/essays/archives/2000/04/the_process_of_secur.html
https://github.com/agguvenligi/ccrawl

Sakarya University Journal of Computer and Information Sciences

Emin İslam Tatlı

44

(COMPSAC), 17-20.

Zenah, N.H.Z., Aziz, N.A 2011. "Secure coding in software development," Software Engineering

(MySEC) 5th Malaysian Conference, 458-464.

