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Bilecik Şeyh Edebali University
Bilecik - Türkiye
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Image Processing, Machine Learning, Artificial
Intelligence, Computer Software
Sakarya University
Sakarya - Türkiye
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Zeynep Karaca, Bihter Daş . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92-102

9 Predicting Engine Emissions Using Eco-Friendly Fuels for Sustainable Transportation
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Bacterial Disease Detection of Cherry Plant Using Deep 
Features 
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ABSTRACT 
Although the cherry plant is widely grown in the world and Turkey, it is a fruit tree that is difficult to grow and 
maintain. It can be exposed to various pesticide diseases, especially during fruiting. Today, approaches based 
on expert reviews and analyses are used for the identification of these diseases. In addition, cherry producers 
are trying to detect diseases with their knowledge based on experience. Computer-aided agricultural analysis 
systems are also being developed depending on the rapid developments in technology. These systems help to 
monitor all processes from planting, cultivation, and harvesting of agricultural products and to make decisions 
to grow the products healthily. One of the most important issues to be detected and monitored with these systems 
is plant diseases. The features of the cherry plant disease will be determined by using a pre-trained convolutional 
neural network (CNN) model which is DarkNet-19, within the scope of this study. These machine learning-
based features have been used for the detection of bacteria-based diseases commonly seen on the leaves of 
cherry plants. The acquired features are classified with Linear Discriminant Analysis, K-Nearest Neighbor, and 
Support Vector Machine classifiers to solve the multi-class problem including diseased (less and very) and 
healthy plants. The experimental results show that a success rate of 88.1% was obtained in the detection of the 
disease. 
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1. Introduction

Early identification of plant diseases is among the important factors affecting plant yield. Plant diseases can affect an entire 
plant as well as regionally. Plants can be infected with different diseases according to their species, and these diseases can be 
carried by bacteria, fungi, pesticides, harmful insects, and other plants. Agricultural experts usually carry out disease detection 
through observation. When detecting the disease of the plant, experts examine the parts of the plant that contain leaves, roots, 
stems, and seeds and then they diagnose the disease. Diseases can affect plant yield as well as cause partial or permanent 
damage to plants. For this reason, accurate detection is a critical issue for correct intervention. On the other hand, computer-
aided applications are also being developed to conduct examinations as well as experts[1].   

In recent years, it is seen that there has been a remarkable development in computer-aided agricultural practices. With the 
use of these applications, it is aimed at carrying out agricultural operations and processes more efficiently. Computer-aided 
applications [2], [3] are being developed in many agricultural applications from seed planting to land irrigation, from plant 
spraying (herbicide) to yield detection, and from disease detection to harvesting. Among these agricultural processes, the 
development of these applications for disease detection, which plays an important role in plant productivity, is a very 
important pillar. Computer-aided disease detection systems are developed based on data labeled by experts in the detection 
of diseases. In these systems, mainly machine learning-based approaches are used [4]. 

Machine learning is a method for modeling learning, storing in memory, and updating models in the nervous systems of 
biological creatures in a computer environment. It is possible to solve many classification and regression problems based on 
machine learning. From service to the industry, from transportation to education, from health to agriculture, etc. It is seen 
that machine learning systems have been developed in many sectors. These systems can be used both as a decision support 
system and as a direct decision-makers with the high decision-making skills they provide. Today, machine learning 
applications are being developed to increase productivity in agricultural products and to intervene in diseases and pests early. 
The main resource in the development of these applications is based on the decisions of agricultural experts. In recent years, 
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traditional machine learning approaches have been replaced by convolutional neural network models, also known as deep 
learning methods [5]. 

Cherry is one of the most intensively grown plants in Turkey. It is also among the fruits with high export value [6]. This 
study aims to detect the bacterial disease of the cherry plant by using deep features obtained from leaf images with machine 
learning approaches. With early detection of the disease, early intervention can be achieved and production efficiency can be 
improved. 

The scope of this study is based on the detection of plant diseases with computer-aided agricultural analysis systems. As a 
prominent area in agricultural analysis, disease detection in plants is usually done through the observation of an agronomist. 
This disease detection task can be performed faster and more efficiently with computer-aided systems using machine learning 
methods. 

In the second part of the study, related literature studies are given. In the third section, the dataset, deep features, and classifier 
methods are explained. In the fifth section experiments and results, the experimental configuration is given and the 
experimental results are examined comparatively. In the last section, the results are evaluated and the aimed future studies 
are mentioned. 

1.1. Related works 

There are significant studies in the literature on plant disease detection. While some of these studies are based on the analysis 
of plant diseases such as root and stem parts of the plant, some of them are based on the analysis of the symptoms in the 
flower part. On the other hand, the detection of diseased parts based on the analysis of plant leaves is among the studies in 
the literature. The most critical issue in computer-aided detection systems is to extract the features that express disease 
symptoms on the components of the plant such as root, stem, flower, and leaf [7]. These attributes are known as features in 
analysis systems. In the literature, it is mentioned that the features are obtained by image processing methods, and they form 
an input to the classifier methods. This approach is known as the traditional classification approach. Recently, classification 
has been made using deep features that can be obtained directly from convolutional neural networks. This method provides 
a more modern classification approach, which is still commonly used today.  

Zhang et al. [8] classified the powdery mildew disease on cherry leaves with GoogleNet, SVM, KNN, and BP neural network, 
which are among the CNN models. They reached 99.6% classification accuracy of CNN with their study on a data set 
consisting of 1200 images. 

Ilic et al. [9] used different math-based methods for processing data and disease infection prediction. Six important weather 
parameters and a variable implying the month of the year were chosen as predictive variables. The forecast situation 
corresponds to the two significant infections of cherry fruit, “Monilinia laxa” and “Coccomyces hiemalis”. The data sets used 
in the research include data for eight years. In the study, it was stated that the prediction accuracy was 95.8%. 

Atilla et al. [10] proposed the EfficientNet CNN model for the identification of plant leaf diseases and compared it with other 
deep-learning models. These models have been trained through transfer learning with original and augmented datasets from 
PilantVillage with 55,448 and 61,486 images, respectively. According to the results of the experiment, with the B4 and B5 
models, which are variations of the proposed CNN model, the accuracy was 99.97% and 99.91% (for the augmented and 
original datasets), respectively. 

Joshi et al. [11] propose an automatic viral infection identification method by using deep learning for Vigna mungo, a legume 
plant grown largely in the Indian subcontinent. They state that the pattern is very random throughout the leaf structure due to 
viral infection, and therefore it is difficult to perform an automated disease identification method in real-time. They state that 
with the proposed method, the classification accuracy was 97.4%. 

Luna et al. [12] claim to have developed an innovative approach to the disease detection of tomato plants. Utilizing a dataset 
of 4,923 tomato plant leaf images, they trained a deep convolutional neural network to recognize three diseases: Target Spot, 
Leaf Miner, and Phoma Rot. The features obtained from the network trained with transfer learning were used to determine 
which tomato diseases are and it was stated that the model provided 95.75% accuracy. 

Özcan and Dönmez [13] proposed a bacteria-based disease detection method by performing deep feature extraction on pepper 
plant leaf images. In their studies, 1478 healthy and 997 bacterial diseased leaf images were used as the PilantVillage data 
set, a total of 2475. DarkNet-19 CNN model is used for deep feature extraction. They tested the features in four different 
classifiers to use both by default and size reduction with PCA. Classification success was expressed as 98.8%. 

Jiang et al. [14] proposed a new model for the detection of apple leaf disease using deep CNNs, by presenting the GoogLeNet 
Inception and Rainbow coupling models. They trained the model to identify five common apple leaf diseases by using a 
dataset of 26,377 diseased apple leaves. Experimental results show that it achieves 78.80% disease detection performance. 

Islam et al. [15] proposed a method that integrates image analysis and machine learning to allow the identification of diseases. 
In their method, they automatically classify diseases in potatoes from a public plant image database called the "PlantVillage". 
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They said that they performed disease classification of more than 300 images with 95% accuracy with the support vector 
machine classifier. 

Ferentinos et al. [16] developed CNNs to implement the detection of plant disease and diagnosis through deep learning using 
simple leaf images of healthy and diseased plants. Models were trained to utilize an open database of 87,848 images. This 
database includes 25 different plants in 58 different [plant, disease] combination classes, including healthy plants. Several 
models have been trained and the best performance achieved a 99.53% success rate in identifying the relevant combination. 

When studies in the literature are examined, the CNN model itself is generally used directly as a classifier. In this study, the 
classification task was performed with KNN (K-Nearest Neighbor), LDA (Linear Discriminant Analysis), and SVM (Support 
Vector Machine) methods using the DarkNet-19 CNN model as a feature extractor. 

2. Methodology

2.1. Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is a type of artificial neural network (ANN) utilized in visual signal recognition and 
is specially designed to process pixel data. CNN enables the development of powerful image analysis, and artificial 
intelligence applications that use deep learning to implement both descriptive and generative tasks, often including image 
and video recognition in conjunction with recommendation systems and natural language processing (NLP). Convolutional 
neural network models have made the process of obtaining features and classifying these features with the feature extraction 
methods on the image applied in traditional methods more efficient. Convolutional neural networks determine features using 
arithmetic operations such as convolution etc. within a multi-layered architecture without the need for a third-party method. 
A basic CNN consists of input, output, and hidden layers. The hidden layer includes multiple convolutions, pool, fully 
connected, and normalization layers. The obtained features can be used for training the SoftMax classifier method which is 
placed as the last layer of the network or directly for training another classifier method. The features obtained with the use of 
these networks also increase the level of representation in the extraction of distinctive features of the data set.  

2.2. Dataset 

In the dataset containing a total of 1906 different cherry leaf images, the data were labeled into three groups by the agronomist. 
This dataset consisting of cherry leaves is included in the Plant Village dataset[17]. These labels are “healthy”, “less diseased” 
and “very diseased”. The number of healthy data is 854, those with less diseased is 537, and those with very diseased is 515. 
Assistance has been sought from an agronomist in labeling images of less and more diseased leaves relevant to the data. An 
example section from the dataset is given in Figure 1 below. 

Figure 1 Sample Leaf Images From The Data-set  
(top: diseased, middle: slightly diseased, bottom: very diseased) 

There are two classes in the original PlantVillage dataset. These classes are cherry powdery mildew and cherry healthy. 
Among these classes, the cherry powdery mildew class was divided into two classes by the expert: less diseased and very 
diseased. It consists of three classes in total, including the healthy class. The study was carried out on these three classes. 
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2.3. Deep Features 

In traditional methods, vector quantities (a group of numerical values that can represent vertices, color, texture, etc. in an 
image) are calculated on the data at hand, which best describes and represents the data. In this calculation process, third-party 
SURF, SIFT, FAST, etc. methods are used for image data. Deep features are acquired from fully connected layers of CNN 
models. These features correspond to the vector quantities that best represent the analyzed data. The features show different 
convolutions etc. in each hierarchical layer of the input data of the deep learning network. They are processed to provide 
consistent values to the output layers. Within the scope of the study, the DarkNet-19 convolutional neural network model 
[18] was used.  

The DarkNet-19 network is a highly efficient model in resource utilization and memory management. On the other hand, it 
is suitable for real-time applications. The model also achieves remarkable levels of accuracy despite using a single forward 
pass structure [18]. 

Figure 2 below shows the DarkNet-19 architecture. 

 

 
Figure 2 Darknet-19 (YoloV2) Architecture [19] 

 

2.4. Classification 

The classification algorithms used in detection processes in the mentioned applications are trained with labeled data. During 
the training phase, vector (feature) parameters with certain weights are calculated from the data in each data processing 
iteration in these classifiers and the previous values are updated. Then, the data features of the new incoming data are extracted 
from the system. The trained classifier algorithm determines the relevant class information of this new data by comparing its 
current parameters with the feature parameters of the new data. The LDA, KNN, and SVM classifier methods were used 
within the scope of the study. 

The K-nearest neighbor (KNN) method [20] is one of the most basic supervised and non-parametric methods used for 
classification and regression. It is suitable for situations where little or no prior knowledge of data distribution is available. 
The nearest neighbor method is used to determine which of the existing classes enters new data into the environment through 
training vectors. 

The Linear Discriminant Analysis (LDA) model estimates probabilities in the classifier [21]. They perform prediction to 
determine the class of a new input based on the probability. The class that has the highest probability is specified as the output 
class, and then LDA makes an estimation. The estimation is performed using Bayes' Theorem, which estimates the output 
class probability. They also utilize the probability of each class and the probability of the data for each class. 

Support Vector Machine (SVM) is a two-class classifier [22]. The most common technique for multiclass classification with 
SVMs is to construct one-versus-all classifiers (often called 'one-against-all' or OVA classification) and choose the class that 
classifies the test data with the largest margin Another strategy is to create a one-to-one set of classifiers and choose the class 
chosen by the most classifiers. 

Performance metrics used to measure model performances are given below (1), (2) and (3). TP, TN, FP and FN correspond 
to ‘True Positives’, ‘True Negatives’, ‘False Positives’ and ‘False Negatives’, respectively. 
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𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 =
𝑻𝑻𝑻𝑻 + 𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑻𝑻 + 𝑭𝑭𝑻𝑻 + 𝑻𝑻𝑻𝑻
(1) 

𝑻𝑻𝑨𝑨𝑷𝑷𝑨𝑨𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 =
𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑻𝑻
(2) 

𝑹𝑹𝑷𝑷𝑨𝑨𝑨𝑨𝑹𝑹𝑹𝑹 =
𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑻𝑻
(3) 

Choosing the most important metric in classification operations depends on the specific goals and requirements of the 
application. Generally, accuracy is good if there is a balance between classes in the dataset. Precision becomes important in 
situations where the cost of false positives is high. Recall is important in cases where the cost of false negatives is high. 

3. Results and Discussion

3.1. Experiment Configuration 

The experiments were carried out on a computer with a 6th generation i7 2.6 GHz processor, 8GB RAM, 2GB GTX950 GPU, 
SSD HDD, and Windows 10 Pro configuration. The DarkNet-19 pre-trained CNN model was used to extract deep features. 
MATLAB 2020b version was used for feature acquiring and programming the classification process. No additional settings 
and optimizations have been made for the application. Similarly, there is direct use of the used data set without any pre-
processing and improvement. 

Features were obtained from the Fully Connected Layer (FCL) of the DarkNet-19 CNN model. A total of 1000 features were 
acquired from the FCL. Obtained features were analyzed according to 10-fold cross-validation as input to the training and 
testing processes of the classifier. In the pre-trained DarkNet-19 CNN model, the SoftMax classifier in the classifier layer 
was removed and replaced with LDA, KNN, and SVM classifiers, Figure 3.  

Figure 1 Representative CNN architecture model 

LDA, KNN, and SVM classifiers were trained with features and tested with cross-validation. In the LDA classifier, the 
covariance structure is used as fully dependent. In the KNN classifier, the neighborhood value of K is chosen as 5, while the 
distance metric 'Euclidean' and the distance weight are chosen equally. This configuration is named FKNN. While the number 
of neighbors was chosen as 10 as the second configuration (WKNN) for the KNN classifier, the distance metric was again 
chosen as 'Euclidean' and the square inversion technique was used as the distance weight. In the SVM classifier, linear 
(LSVM), cubic (CSVM), and quadratic (QSVM) functions are used as kernel functions.  

3.2 Experiment Results 

In the first stage of the experiments, the test data and network performance were directly analyzed to observe the direct 
performance of the DarkNet-19 CNN model. The hyperparameters of the model are given in Table 2 below. 
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Table 2 DarkNet-19 Hyperparameter Settings 
Common 
Options Value 

Batch size 64 
Max epochs 30 

Initial learn rate 1e-4 
Momentum 0.8 

L2 
Regularization 1e-6 

Shuffle Never 
Execution 

environment GPU 

Table 3 below presents the performance values directly resulting from the use of DarkNet-19. 

Table 3 DarkNet-19 Performance Metrics 

Model TP FN FP TN Accuracy 
(%) 

Precision Recall 

DarkNet-19 724 130 141 881 85.9% 0.85 0.85 

According to the experimental results, complexity matrices for the “healthy”, “little diseased” and “highly diseased” class 
labels were obtained in Table 4, Table 5, and Table 6 below. With separate complex matrices for each class in the dataset, it 
is aimed to give results by the one-versus-all working style in multi-class problems. Thus, the overall performance results 
obtained in each class were revealed. 

Table 4 Confusion Matrix (Healthy) 
TP FN FP TN 

LDA 829 25 58 994 
WKNN 841 13 43 1009 
FKNN 843 11 24 1028 
QSVM 839 15 6 1046 
CSVM 843 11 3 1049 
LSVM 835 19 2 1050 

Very high performance has been achieved in the classification of healthy leaves. The main factor in this high performance is 
the high discrimination rate of the features obtained from the CNN model for the distinction between healthy and diseased 
leaves. Performance metrics that characterize the overall performance status for the healthy class are given in Table 5 below. 

Table 5 Classification Performance Metrics (Healthy) 
Accuracy (%) Precision Recall 

LDA 95.6% 0.93 0.97 
WKNN 97.1% 0,95 0.98 
FKNN 98,2% 0,97 0,99 
QSVM 98,9% 0,99 0,98 
CSVM 99,3% 1,00 0,99 
LSVM 98,9% 1,00 0,98 

The complexity matrix values for less diseased cherry leaves are given in Table 6 below. Similarly, the complexity matrix is 
constructed as one class vs. all (other remainders). The discrimination between the level of disease is a hard task compared 
to discrimination of healthy vs. diseased leaves. 

Table 6 Confusion Matrix (Less Diseased) 
TP FN FP TN 

LDA 345 192 151 1218 
WKNN 389 148 140 1229 
FKNN 389 148 144 1225 
QSVM 413 124 115 1254 
CSVM 419 118 123 1246 
LSVM 424 113 109 1260 
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The performance metrics obtained depending on the less diseased are given in Table 7 below. The overall results demonstrate 
promising performance values. 

Table 7 Classification Performance Metrics (Less Diseased) 
Accuracy (%) Precision Recall 

LDA 82,0% 0,70 0,64 
WKNN 84,9% 0,74 0,72 
FKNN 84,7% 0,73 0,72 
QSVM 87,5% 0,78 0,77 
CSVM 87,4% 0,77 0,78 
LSVM 88,4% 0,80 0,79 

The complexity matrix values for very diseased cherry leaves are given in Table 8 below. Similarly, the complexity matrix 
is constructed as one class vs. other remainders. The main hardship for discrimination of ‘less’ and ‘very’ is weakening in 
distinctive features.  

Table 8 Confusion Matrix (Very Diseased) 
TP FN FP TN 

LDA 354 161 169 1222 
WKNN 367 148 126 1265 
FKNN 366 149 140 1251 
QSVM 411 104 122 1046 
CSVM 402 113 116 1275 
LSVM 421 94 115 1050 

The performance metrics obtained depending on the very diseased class are given in Table 9 below. The average accuracy 
performance has been determined above 85%. 

Table 9 Classification Performance Metrics (Healthy) 
Accuracy (%) Precision Recall 

LDA 82,0% 0,70 0,64 
WKNN 84,9% 0,74 0,72 
FKNN 84,7% 0,73 0,72 
QSVM 87,5% 0,78 0,77 
CSVM 87,4% 0,77 0,78 
LSVM 88,4% 0,80 0,79 

Satisfactory classification performance was achieved with the features extracted from healthy and diseased cherry leaf images 
with the DarkNet-19 CNN model. Particularly, the performance in recognizing the healthy plant leaf was provided by the 
SVM classifier, which uses the cubic function as the kernel, with an accuracy rate of 99.3%. While the overall success rate 
in the detection of less diseased leaves was 88.4% with linear SVM, the performance in the detection of very diseased leaves 
was 88.0% with the SVM using a cubic kernel. No image preprocessing, parameter or function optimizations were made in 
the experiments. Final multi-class performances (Acc), classification costs (Cost), prediction speed - OBS/s (PS), and training 
time - s (TT) parameters are given in Table 10.  

Table 10 Overall Multi-class Performance Parameters (for 3 classes) 
Acc. Cost PS TT 

LDA 80,2% 378 2000 17,186 
WKNN 83,8% 309 350 25,643 
FKNN 83,8% 308 350 25,335 
QSVM 87,3% 243 1700 32,169 
CSVM 87,3% 242 1700 26,055 
LSVM 88,1% 226 3200 14,508 

In the analysis, 85.9% accuracy was achieved by classification with darknet-19. Using the Darknet-19 method as a feature 
extractor and then classifying it with machine learning algorithms increased the system's performance. In the analysis, 88.1% 
was reached. 
ROC and AUC graphs of the models are given in Figure 4. 
A summary of the literature review is given in Table 11. 
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LDA WKNN FKNN 

QSVM CSVM LSVM 

Figure 4 ROC and AUC Graphs of The Models 

Table 11 Summary of The Literature Review 

Description of The 
Problem 

Data 
Used 

Class Accuracy Methods References 

Cherry leaf disease 
infected by pedosphere 
pannosa 

1200 2 99.6% GoogleNet, SVM, 
KNN, BP 

[8] 

Early cherry fruit pathogen 
disease detection 

1224 2 95.8% LDA, QDA, 
Compact 

classification tree 

[9] 

Cherry leaf 55.448 2 98.42% EfficientNet, 
AlexNet, VGG16, 

Resnet50, 
InceptionV3 

[10] 

Vigna mungo plant 433 3 97.4% VirLeafNet [11] 

Tomato plant leaf disease 4923 2 95.75% F-RCNN [12] 
Bacterial disease detection 
for pepper plant 

2475 2 98.8% Darknet-19, 
Naïve Bayes, K-

NN, SVM 

[13] 

Real-Time Detection of 
apple leaf diseases 

26.377 2 78.80% GoogleNet, 
Inception 

Rainbow coupling 

[14] 

Potato diseases 300 3 95% SVM [15] 
Plant disease detection 87.848 2 99.53% AlexNet, 

GoogleNet, VGG 
[16] 

Cherry leaf bacterial 
diseases 

1906 3 88.1% DarkNet-19, 
SVM, KNN, LDA 

Our Study 
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When referring to Table 11, features have been extracted in our study using Darknet-19, and classification has been 
performed with SVM, KNN, and LDA. The highest classification accuracy of %88.1 has been achieved. 

4. Conclusion

In this study, cherry plant leaf images were utilized as input to the pre-trained DarkNet-19 CNN model to identify diseased 
(less or very) and healthy plant leaves and the features of the images were obtained from the FCL of the model. These obtained 
features are given to LDA, KNN, and SVM classifiers instead of the SoftMax layer, which is the last layer of the model. 
According to the experiments, a success rate of 88,1% was obtained in the detection of the disease. With this developed 
system, it is suggested that the detection of bacterial diseases in the cherry plant, which is grown as a fruit with high added 
value both in our country and in the world, should be determined by machine learning approaches. It is foreseen that this 
determination will be made quickly and early, and this will contribute to the increase of productivity in cherry cultivation. In 
this period when digitalization is becoming more and more widespread, computer-aided applications in agriculture will be 
used more widely with this and similar studies. In future studies, it is planned to recognize more than one type of plant disease 
and to determine the amount of disease more clearly. A system that recommends remedial actions against diseases is aimed 
to develop in the next stage. In future studies on this data set, the diseased area can be detected using YOLO or R-CNN, 
object detection algorithms. 
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ABSTRACT 

This study presents a hardware-software co-design implementation of an accelerator for the Kernelized 
Correlation Filter (KCF) tracking algorithm. Leveraging High-Level Synthesis (HLS) and the Zynq 

heterogeneous platform, the KCF algorithm’s performance is enhanced by using a custom hardware 

implementation for the computationally intensive Discrete Fourier Transform (DFT) operation. Within this 
framework, a custom combined DFT and inverse DFT IP, named CDFT, is developed and optimized on the 

Programmable Logic (PL) side of the Xilinx ZCU102 FPGA, whereas the rest of the KCF algorithm is run with 

customized Petalinux build on the (Processing System) side. To assess real-world performance, a driver for the 
CDFT IP and a user application were created to measure metrics like Center Location Error (CLE), Intersection 

over Union (IoU), and Frame per Second (FPS). The designed DFT accelerator achieves a remarkable speedup 

of 21x compared to a software DFT implementation. At the algorithm level, the KCF accelerator obtains a 6x 
speed up with negligible precision loss. In comparison to prior studies employing exclusively hardware 

implementations, the proposed approach demonstrates a high accuracy at a moderate speed, while there exists 

potential for further optimizations to enhance its performance even further. 

Keywords: Tracking, FPGA, KCF, HLS, DFT 
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1. Introduction

In the modern era of computer vision and artificial intelligence, the demand for real-time and high-performance processing 

has grown exponentially. One attractive solution to meet this demand is the hardware accelerators, where specific functions 

are offloaded from the main processor to specialized hardware components to achieve faster execution and reduced power 

consumption. One such complex algorithm that requires a hardware accelerator for real-time applications is the Kernelized 

Correlation Filter (KCF) algorithm. The KCF algorithm enables efficient object tracking via kernelized correlation 

calculations using the Discrete Fourier Transform (DFT) [1]. Among the numerous tracking algorithms in the literature, the 

KCF algorithm stands out for its exceptional computational efficiency [2]. It achieves this through the use of cyclic shift and 

the representation of data matrices as circulant matrices. 

In the literature of KCF algorithm implementations for real-time object tracking, a series of progressive developments have 

emerged over the years. Yang et al. [3] presented an accelerator built around the Histogram of Oriented Gradients (HOG) 

feature extraction and correlation calculations. This architecture was deployed on Xilinx's ZCU102 Ultrascale MPSoC (Multi 

Processor System on Chip) platform using High-Level Synthesis (HLS). Within this framework, resource-intensive processes 

like HLS::sqrtf, HLS::DFT, HLS::2DFilter, HLS::exp, matrix division, and element-wise multiplication were implemented 

on the Programmable Logic (PL). Notably, their results exhibited performance achievements at a resolution of 960x540 and 

30 Frame per Second (FPS). It was highlighted that the performance was notably constrained by input image resolution. 

However, the absence of detailed synthesis reports impedes comprehensive comparison or evaluation of their work. Liu et 

al. [4] employed a scale pyramid similar to the Discriminative Scale Space Tracking (DSST) algorithm for mitigating target 

scale variations. Their adaptation of HOG features into a 6-dimensional format incurred a 4% accuracy loss as opposed to 

the original 31-dimensional format. Leveraging radix-2 Fast Fourier Transform (FFT), the work reported a potential 

performance of 25 fps. However, accounting for practical considerations which are elaborated in the Experimental Results 

section of our study, the estimated performance was around 16 fps. Cong et al. [5] proposed a distinctive strategy 

encompassing multi-feature fusion and the KCF algorithm, all realized through HLS techniques. Their enhancements to the 
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KCF algorithm were manifest in incorporating Local Binary Pattern (LBP) and HOG features, yielding an enriched target 

feature representation. An innovative dimensionality reduction method for LBP was introduced to amplify real-time 

performance while preserving feature extraction efficacy. Executed on FPGA hardware, their algorithm achieved a frame 

rate of 35 fps with 320x240 resolution while preserving the precision. 

Unlike the previous approaches that sought to fully implement the KCF algorithm on the PL section, in this work a software-

hardware co-design methodology is adopted. Instead of porting the entire KCF algorithm, we exclusively focus on the most 

computationally intensive component: the DFT operation. Specifically, we've developed an HLS-based accelerator tailored 

to optimize the 2D DFT and IDFT (Inverse DFT) functions. A custom 2D Discrete Fourier Transform (DFT) IP is developed 

in HLS, which achieves over a 24x reduction in latency while maintaining precision compared to the 2D FFT IP based on 

Xilinx FFT IP Core. The combined 2D DFT and IDFT IP block, namely CDFT, is implemented on the PL fabric of Xilinx’s 

ZCU102 platform, whereas the remaining functionality is realized with a customized Petalinux build on the PS (Processing 

System) side. Also, on the PS side, a custom device driver is written for the CDFT IP, and a user application is designed to 

measure the performance using metrics such as FPS, Intersection over Union (IoU), and Center Location Error (CLE). The 

implemented accelerator system achieves a more than 6x speedup over a software implementation, obtaining an 18.5 fps 

performance at a resolution of 640x360 with preserving precision. When the resolution is upscaled to 1280x720, the speed 

reduces to 16 fps, which shows our design is not affected greatly by the resolution change. These results suggest that when 

designing a high-accuracy HLS-based accelerator for the KCF algorithm on SoC platforms, the dominant portion of the 

performance gain can be obtained by carefully designing DFT and IDFT blocks. Additional speed-up gains can be obtained 

by further optimizations.  

The rest of this paper is organized as follows. Section 2 reviews the details of the KCF algorithm. Software optimizations 

and hardware implementation of the KCF algorithm are discussed in Section 3. Then, Section 4 presents the experimental 

results of the HLS-based accelerator design of the KCF algorithm. Finally, Section 5 concludes the paper. 

2. KCF Algorithm 

The Kernelized Correlation Filter (KCF) algorithm was introduced by J. F. Henriques et al. in their influential 2015 paper 

titled "High-Speed Tracking with Kernelized Correlation Filters" [1]. KCF's primary objective is to achieve precise and 

efficient object tracking across consecutive frames in a video sequence. Unlike traditional methods relying on simple pixel 

intensities, KCF operates in a higher-dimensional feature space facilitated by kernelization, enabling it to capture intricate 

relationships between the object and its surroundings. 

At its core, KCF involves several key processes that collectively contribute to its robust tracking capabilities. These include 

feature extraction with consideration for object translations (object movements), kernelization, and learning correlation 

filters. The feature extraction step not only captures the object of interest and its immediate context but also takes into account 

potential changes in the object's position across frames. Common techniques like the HOG and Scale-Invariant Feature 

Transform (SIFT) are employed to extract informative feature vectors. Following feature extraction, KCF takes a crucial step 

in enhancing its tracking capability. By generating cyclically shifted samples from the extracted features, KCF constructs a 

more comprehensive training dataset. These samples, created through cyclic shifts, provide a range of variations that account 

for potential translations in the object's location.  

The Gaussian kernel function comes into play to compute the correlation between the target sample, which represents the 

appearance of the object of interest, and the sample being tested, which represents a potential movement location in the 

current frame. The coordinates of the point with the highest response value indicate the most recent location of the target. 

Kernels play a pivotal role in KCF by enabling the algorithm to implicitly operate in a higher-dimensional feature space 

without the need for explicit transformation computation. The Gaussian kernel, often used in KCF, has shown effectiveness 

in capturing complex non-linear relationships between data points, enhancing its ability to handle intricate tracking scenarios. 

The last key process, which is the central pillar underlying KCF's efficacy, is its approach to learning correlation filters. These 

filters play a critical role in establishing a robust connection between the appearance of the object and its corresponding 

feature representation. Notably, KCF executes this learning process within the frequency domain, adjusting filter coefficients 

to amplify responses for positive samples (object-related features) while attenuating responses for negative samples 

(background-related features). A distinct advantage of the KCF algorithm arises from its strategic use of the diagonalization 

property inherent to cyclic matrices in Fourier space. This property contributes to the efficiency of operations within the 

algorithm's frequency domain computations. By focusing on correlation filters, KCF exploits both spatial and frequency 

information to refine its tracking precision. 

The flowchart of the KCF algorithm is shown in Figure [1]. KCF's execution comprises two primary phases: training and 

detection. The execution begins by setting up the algorithm parameters and extracting the next frame from the video sequence. 

In the first frame, a Fourier-domain Gaussian regression label for ridge regression is generated and a Hanning window-based 

sampling window is calculated. The sampling window is saved for later feature extraction to avoid redundant calculations. 

Also, HOG features are extracted to be used in the training phase. If it is not the first frame, the tracker first moves to the 
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detection and then the training phases. During detection, assuming the target's motion range is small, the target and 

surrounding sub-window images are acquired based on the target's position in the previous probe image. The previous 

window is used to extract features from the sub-window image. After extracting features, they are transformed using DFT. 

Kernelized Gaussian cross-correlation and transform dot product results are calculated using IDFT to find the new target 

position. After the detection phase, the training model is updated. In the training phase, autocorrelation, and update regression 

coefficients (alpha) are calculated to finalize the model update. For the current target, a sub-window image is taken and 

transformed using DFT to extract the features in the frequency domain. Rapid Ridge regression is then applied using 

autocorrelation results. Ultimately, features for the target's final position are extracted, and the classifier is updated. The 

algorithm continues by tracking the next frame. 

The detection operation is repeated for the different scales until the multiscale operation is completed to obtain the best result 

during the detection phase. The multiscale mode enables tracking to continue even when the target undergoes scale changes 

and allows tracking to be performed with higher accuracy. If the multiscale mode is enabled, detection can be repeated at 

half and twice the scales separately in the detection phase, which increases the number of DFT and IDFT operation calls. 

Both kernelized auto-correlation and cross-correlation operations consist of a 2-norm squared sum, conjugate dot product, 

Inverse DFT, Gaussian kernel correlation, and DFT calculations. The FHOG operation consists of a Gradient Histogram, 

Unit Energy Distribution, and 31-dimension FHOG feature calculations.  

 

Figure 1 Flowchart of the KCF Algorithm (Multiscale Enabled) 
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3. Implementation 

This section unfolds the implementation process for the KCF tracker accelerator using High-Level Synthesis techniques, 

which is divided into subsections, each focusing on a specific implementation aspect. Section 3.1 performs an analysis to 

identify components of the system that can be optimized and parallelized and investigates the impact of the FFT 

implementation on the accelerator's efficiency and discusses the target platform selection. Subsequently, Section 3.2 delves 

into the design of DFT and IDFT functions with software optimizations. Section 3.3 covers the basics of HW optimizations 

using HLS Directives. The structure and design considerations of the accelerator are outlined in Section 3.4. 

3.1 Hardware/Software Profiling and Target Platform Selection 

Hardware-software co-design in image processing offers a holistic approach to system optimization, combining the strengths 

of both hardware and software to achieve superior performance, energy efficiency, scalability, reduced latency, and efficient 

resource utilization. In the literature, several advancements and benefits are highlighted in hardware-software co-design 

approaches in computer vision. In [10], a co-design framework for video stabilization on FPGA processes real-time video 

streams at 28 fps, which is twice as fast as software-only approaches. Compared to full-software implementations, a 

hardware-software co-design significantly lowers overall computational time and hardware resource usage for a feature 

extraction and image matching algorithm [11]. In [12], a co-design implementation preserves the operating speed of neural 

networks while allowing flexibility in changing parameters without impacting the FPGA part. An embedded vision services 

framework in [13] uses heterogeneous hardware accelerators for rapid and efficient integration in applications like image 

stabilization and moving target indication. A co-design approach for intelligent camera applications significantly reduces 

development time and boosts performance in FPGA-based services [14]. In [15], a ZYNQ platform-based co-design approach 

enables high real-time binocular stereo vision, enhancing driving safety. 

Based on the significant benefits of the hardware-software co-design approach in FPGA implementations, this paper explores 

a hardware-software co-design implementation of the KCF tracking algorithm, focusing on optimizing the discrete Fourier 

Transform (DFT) operation through custom hardware acceleration. The bottleneck of the Kernelized Correlation Filter (KCF) 

algorithm often lies in the computation of the Discrete Fourier Transform (DFT) and the Inverse DFT (IDFT) operations. 

These operations are integral to KCF's frequency domain correlation calculations and are performed repeatedly during both 

the training and detection phases. These operations have a complexity of O(N²), which can become a performance bottleneck 

when processing large input data. The co-design approach efficiently balances performance and resource utilization, 

offloading the most computationally intensive parts to hardware while handling other algorithm aspects in software. The co-

design not only achieves significant speed improvements but also maintains accuracy with negligible precision loss, a critical 

factor for tracking applications. Furthermore, this methodology provides the flexibility needed for future optimizations and 

enhancements, demonstrating its adaptability to evolving requirements and potential improvements in real-time tracking 

technology. 

In this work, an open-source software implementation of the KCF algorithm is used [6]. To assess the effect of DFT operations 

on the KCF performance, the latency of the OpenCV DFT function is quantified, along with an assessment of the frequency 

of calls and the proportion of total DFT latency per frame. Notably, in the case of multiscale mode-enabled KCF, the overhead 

associated with DFT and IDFT operations accounted for 75% of the total latency. These observations underscore the 

substantial impact of the DFT function on the KCF algorithm's performance. To mitigate this, a combined accelerator 

Intellectual Property (IP) block for DFT and IDFT functions, called CDFT, is used within the PL fabric of the FPGA. 

Consequently, the residual code operates on the PS side of the FPGA. In the context of multiscale KCF, each frame 

necessitates a total of 379 calls to the CDFT. The initial thought might be that managing 379 input-output transitions is a 

significant task. However, it is important to recognize that the small array sizes and inherent computational overhead 

characteristic of the DFT process help to achieve significant acceleration for the KCF algorithm. It is also worth noting that 

the DFT process primarily encompasses multiply-accumulate operations, rendering it conducive to parallelization and 

optimization. 

FPGAs are known for their high computational speed, abundant resources, and portability. However, implementing intensive 

computations on FPGAs using hardware language is challenging. In this study, algorithms are automatically converted from 

the algorithmic layer to the register transfer layer using high-level synthesis, thereby reducing the disadvantages of the FPGA, 

and leveraging its advantages. The KCF algorithm, with its simple operational structure and high calculation repeatability, is 

suitable for FPGA implementation. However, certain complex structures requiring flexibility are better suited to be operated 

on the SoC. Therefore, Xilinx’s ZCU102 ZYNQ UltraScale + MPSoC multi-core heterogeneous system, which combines 

ARM and FPGA capabilities, is selected to meet real-time processing and image processing flexibility requirements. The 

computing tasks are divided between the PS, representing the software portion, and the PL, representing the hardware portion. 

3.2 Custom Design of DFT and IDFT Functions Using Software Optimizations 

The 2D DFT and the 2D Inverse DFT functions are seen in Equations 1 and 2, respectively. 
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𝑭(𝒖, 𝒗) =  ∑ ∑ 𝒇(𝒙, 𝒚)𝒆−𝒋𝟐𝝅(
𝒖𝒙
𝑴

+
𝒗𝒚
𝑵

)

𝑵−𝟏

𝒚=𝟎

𝑴−𝟏

𝒙=𝟎

  (1) 

 

𝒇(𝒙, 𝒚) =
𝟏

𝑴𝑵
 ∑ ∑ 𝑭(𝒖, 𝒗)𝒆𝒋𝟐𝝅(

𝒖𝒙
𝑴

+
𝒗𝒚
𝑵

)

𝑵−𝟏

𝒗=𝟎

𝑴−𝟏

𝒖=𝟎

 (2) 

Where M x N is the image size, (x, y) gives the image pixel position, and (u, v) represents the spatial frequency - the rate of 

change of intensity values in the image. First, DFT and IDFT functions are implemented separately based on Equations 1 and 

2 respectively. Then they are combined in the CDFT IP to achieve a broader optimization. In this work, two software 

optimization methods are utilized, namely the usage of lookup tables and a combination of DFT and IDFT operations. These 

optimizations are explained in the following sub-sections. 

3.2.1 Usage of Lookup Tables 

After evaluating the initial implementation, it is seen that direct implementations of Equation 1 and Equation 2 have high 

computational complexity. To reduce the computational complexity, Equation 1 and Equation 2 can be transformed from the 

polar form to the cartesian form, where sine and cosine functions can be replaced with lookup operations. Equation 3 is used 

to transform the exponential terms of DFT and IDFT functions to Cartesian form, where in this case θ equals to             

2𝜋(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
). 

𝒆𝒋𝜽 = 𝒄𝒐𝒔𝜽 + 𝒋𝒔𝒊𝒏𝜽 (3) 

 

After the transformation to the Cartesian form, sine and cosine estimations can be replaced by the lookup table operations. 

This is possible because the dimensions of images are fixed in the KCF algorithm and the possible values of x, y, u, and v in 

the 2D DFT and IDFT functions are also fixed. Therefore, pre-calculated values of sine and cosine functions can be placed 

in lookup tables and then these values are used in each iteration of the DFT and IDFT loops. Now the real and imaginary 

parts of the 2D DFT operations can be reduced to Equation 4 and Equation 5, respectively. The same optimization can also 

be applied to the 2D IDFT function. 

 

𝑭(𝒖, 𝒗)𝒓𝒆 =  ∑ ∑ 𝒇(𝒙, 𝒚)𝒓𝒆 ∗ 𝒍𝒖𝒕𝐬𝐢𝐧(𝐮, 𝐯, 𝐱, 𝐲)

𝑵−𝟏

𝒚=𝟎

𝑴−𝟏

𝒙=𝟎

+ 𝒇(𝒙, 𝒚)𝒊𝒎 ∗ 𝒍𝒖𝒕𝐜𝐨𝐬(𝐮, 𝐯, 𝐱, 𝐲)  (4) 

 

𝑭(𝒖, 𝒗)𝒊𝒎 =  ∑ ∑ 𝒇(𝒙, 𝒚)𝒓𝒆 ∗ 𝒍𝒖𝒕𝐜𝐨𝐬(𝐮, 𝐯, 𝐱, 𝐲)

𝑵−𝟏

𝒚=𝟎

𝑴−𝟏

𝒙=𝟎

+ 𝒇(𝒙, 𝒚)𝒊𝒎 ∗ 𝒍𝒖𝒕𝐬𝐢𝐧(𝐮, 𝐯, 𝐱, 𝐲) (5) 

 

In Equation 4 and Equation 5, the real part, cosθ, and the imaginary part, sinθ, are calculated for each x, y, u, and v value and 

they are stored in the lookup tables, lutcos[u][v][x][y] and lutsin[u][v][x][y], as const float data types. With this optimization, 

the calculations of sinθ and cosθ, which require 6 operations for θ and 2 operations each for Re{F(u,v)} and Im{F(u,v)}, are 

eliminated as these values are now retrieved from the lookup table. These operations are performed in nested loops with a 

total of u*v*x*y iterations during DFT calculation, so even the slightest simplification translates into significant 

computational savings. A minimum of 15 times speedup is obtained from the test results of DFT acceleration. Furthermore, 

functions like sine and cosine consume excessive resources, which causes synthesis failure in HLS. This optimization 

provides resource savings, enabling a successful synthesis. Thus, with this initial software optimization, both energy and 

logic resource consumption are reduced leading to an improved performance. 

3.2.2 Combining the DFT and IDFT Functions 

To save on resources and achieve further optimizations 2D DFT and IDFT functions are combined in the CDFT IP block and 

a parameter is added to select the operation type as DFT or IDFT. As the input image of the DFT function has only real terms, 

the terms containing the imaginary part of the input can be dropped from the calculations inside the loop. Dropping the 

redundant terms in calculations makes the algorithm much more efficient. If DFT has been directly implemented using ready-
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made functions in HLS, as in other studies, this simplification would not be possible leading to inferior performance. Now, 

the real and imaginary portions of the 2D DFT function are simplified to Equation 6 and Equation 7, respectively. 

 

𝑭(𝒖, 𝒗)𝒓𝒆 =  ∑ ∑ 𝒇(𝒙, 𝒚)𝒓𝒆 ∗ 𝒍𝒖𝒕𝐬𝐢𝐧(𝐮, 𝐯, 𝐱, 𝐲)

𝑵−𝟏

𝒚=𝟎

𝑴−𝟏

𝒙=𝟎

  (6) 

 

 

𝑭(𝒖, 𝒗)𝒊𝒎 =  ∑ ∑ 𝒇(𝒙, 𝒚)𝒓𝒆 ∗ 𝒍𝒖𝒕𝐜𝐨𝐬(𝐮, 𝐯, 𝐱, 𝐲)

𝑵−𝟏

𝒚=𝟎

𝑴−𝟏

𝒙=𝟎

 (7) 

 

As the input of the IDFT function is complex, the terms that contain imaginary parts of input values cannot be dropped in the 

calculation of the IDFT function. Although using a lookup table doubles the speedup value in DFT and IDFT operations, the 

effect of dropping the imaginary part in the DFT function reduces the number of calculations by 33.3% as an IDFT is called 

after every two consecutive DFT calculations in the KCF algorithm for the correlation calculation. It should be noted that 

these improvements are not at the level of the KCF algorithm, but rather obtained at the level of the DFT function. 

3.3 HW Optimizations using HLS Directives 

High-level synthesis (HLS) tools play a crucial role in converting C specifications into Register Transfer Level (RTL) 

designs. This integration of hardware and software disciplines offers several fundamental advantages. HLS tools enable 

hardware engineers to operate at an elevated level of abstraction, facilitating the development of efficient hardware. 

Simultaneously, they offer software engineers a new avenue to enhance the performance of their algorithms by targeting 

Field-Programmable Gate Arrays (FPGAs) for computational acceleration. However, HLS tools alone may not guarantee 

optimal task scheduling and resource allocation. Consequently, it is vital for designers to incorporate their expertise through 

specific optimization directives. By applying these directives, developers can effectively implement various optimization 

strategies, tailoring the HLS process to meet specific performance and efficiency goals. 

In this work, the automatic utilization of ARRAY MAP and ARRAY PARTITION are utilized to enhance the efficiency of 

BRAM access and generate more opportunities for PIPELINE optimization. ARRAY PARTITION directive is employed to 

divide extensive arrays into several smaller arrays or separate registers. This aims to enhance data access and eliminate 

BRAM bottlenecks. ARRAY MAP is utilized to consolidate multiple smaller arrays into a larger one, which is subsequently 

directed to a single extensive memory resource such as RAM or FIFO. By default, HLS stores certain small arrays in the 

distributed RAM, which can lead to an overuse of the distributed RAM resources. In this particular design, the pre-calculated 

sine and cosine values are stored in a lookup table, which is partitioned into N-port ROMs, where the number of ports in the 

ROMS is determined based on the need for simultaneous read operations. All the other optimized storage structures are 

partitioned into true dual-port RAMs. This storage approach facilitates the simultaneous reading of multiple elements during 

subsequent optimization, thereby reducing the II (Initiation Interval) and minimizing latency. Note that the initiation interval 

measures the number of clock cycles required for a specific operation to begin execution once its inputs are available. 

PIPELINE directive is used to improve latency and maximize kernel throughput and performance. An illustration of II and 

pipelining optimization is given in Figure 2. 

 
Figure 2 Pipeline Optimization 
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In addition to the above optimization directives, the CDFT block is realized using a fixed point to obtain a more efficient 

implementation. Initially, a floating point data type was used, which resulted in an initiation interval (II) of 6 with a latency 

of 3984 cycles. When the floating point data types are converted to the fixed-point, an II of 1 and a latency of 858 cycles is 

obtained. This corresponds to 4.6 times latency improvement compared to the floating point results at the IP block level. 

Table 1 summarizes the implementation results for floating and fixed-point implementation. One apparent conclusion is 

that fixed point implementation can utilize approximately 3.5 times more DSP blocks, which leads to lesser latency and 

reduced logic usage as given in FF and LUT columns. 

 

Table 1 Synthesis Reports Results Before and After Optimizations 

Module II Latency(cycles) BRAM DSP FF LUT 

Floating 6 3983 485 803 187819 125724 

Fixed 1 857 488 2852 72615 15460 

 

Another optimization trial involved using dual-port BRAMs instead of single-port BRAMs. However, the synthesis process 

failed due to exceeding the maximum BRAM, FF, and LUT resource usage limit as a result of the increased complexity of 

implementing Dual Port BRAM usage. If another FPGA with more BRAM, LUT and FF resources are used, an additional 

1.8 times improvement in latency could have been achieved, making the total latency improvement approximately 8.4 times 

compared to the floating point implementation at the block IP level. 

 

 

3.4 Accelerator Structure 

In this implementation, the KCF accelerator is composed of a 2D DFT and IDFT module located in the PL portion of the 

Zynq-based FPGA. This module includes dedicated Block RAM (BRAM) units for storing the input and output data for the 

required DFT and IDFT computations. An AXI interconnect is employed to facilitate seamless communication between these 

BRAM blocks and the PS. The system operates as follows: When the KCF algorithm calls for the execution of DFT or IDFT 

operations, instead of utilizing a pre-built GPU-accelerated function as found in OpenCV, the input data is routed to the 

custom accelerator. The processing operation is initiated by sending a start signal to the accelerator, which then begins its 

computations. The system subsequently enters a waiting state, awaiting the completion of the computation. Upon completion 

of the DFT or IDFT computations, the resulting outputs are read from the BRAM units. Writing to BRAM and reading from 

BRAM operations are conducted by the memcpy function on the PS side. The function of memcpy is only transferring data 

regions on the memory map. If it is possible, the memcpy function uses the CPU’s hardware features to optimize and 

accelerate the data transfer rates. These outputs are subsequently returned from the function, providing the desired results. In 

summary, the majority of the code execution occurs within the Processing System (PS) portion of the system. 

Figure 3 illustrates the overall system architecture, highlighting various key components. One important point to note is that 

in this specific design, the GPU remains unused. The rationale behind this decision is to accomplish the same computational 

tasks with comparable performance and accuracy while minimizing power consumption. Nonetheless, the GPU is retained 

and made available for potential future use, such as for hybrid optimization methods or other computationally intensive 

operations required by the application. 

4. Implementation Results and Performance Comparisons 

In this section, the implementation results of the HLS-based accelerator design of the KCF algorithm using Xilinx's ZCU102 

Ultrascale MPSoC platform are presented. First, the resource usage and latency of CDFT are compared with Xilinx FFT IP. 

Then, the performance comparison of the CDFT-based accelerated KCF algorithm is provided against a pure software 

implementation and a GPU-accelerated KCF implementation. Finally, the CDFT-based accelerated KCF algorithm is 

compared with various KCF implementations in the literature. To provide a comprehensive evaluation and comparison, 

several metrics to assess the performance and accuracy of the implementation are utilized. These metrics, including Center 

Location Error (CLE), Intersection over Union (IoU), and Frames Per Second (FPS), offer insights into the precision, overlap 

accuracy, and computational efficiency of the tracker, respectively. Each of these metrics is crucial in understanding both the 

strengths and potential areas of improvement for the KCF algorithm on the specified platform. 

CLE metric evaluates the accuracy of the predicted bounding box center concerning the ground truth center. It is often 

reported as the Euclidean distance between the predicted center and the ground truth center. The smaller the value means the 

more accurate the result. Intersection over Union (IoU), also known as the Jaccard Index, measures the spatial overlap 

between the predicted bounding box and the ground truth bounding box. It is calculated as the ratio of the intersection area 

to the union area of the two bounding boxes. IoU values range from 0 to 1, where higher values indicate better tracking 

accuracy. It is formulated in Equation 8. 
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Figure 3 KCF Accelerator Design Architecture 

𝑰𝒐𝑼 =
𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝑨𝒓𝒆𝒂

𝑼𝒏𝒊𝒐𝒏 𝑨𝒓𝒆𝒂
 (8) 

where the Intersection Area is the area of the overlapping region between the predicted bounding box and the ground truth 

bounding box. Union Area is the total area encompassed by both the predicted bounding box and the ground truth bounding 

box. The FPS speedup factor shows how much the KCF algorithm is accelerated. While not directly a tracking-specific 

metric, FPS represents the processing speed of the tracking algorithm. Faster algorithms are generally preferred as they can 

handle real-time applications. The Latency improvement factor shows how PL implementation of the accelerator IP finishes 

the processing earlier than its software version. This improvement will be evaluated by the speedup factor calculated using 

the FPS metric. 

In this paper, the speedup comparisons are calculated according to Amdahl's Law [7]. To monitor the real performance of the 

designed accelerator, petalinux is customized by reserving specific memory and enabling necessary packages for a user 

application, which measures the aforementioned metrics. This makes it possible to evaluate the performance of the accelerator 

design in a real-world scenario.  

First, the efficiency of the designed CDFT block is compared with the Xilinx FFT IP Core provided within the HLS library. 

In the Xilinx FFT core, a 2D Fast Fourier Transform (FFT) is implemented using the row-column algorithm and the 1D FFT 
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IP core. The first step involves performing a one-dimensional FFT in each row, while the second step requires performing a 

one-dimensional FFT in each column. For the second step, the results of the first step are transposed, and then a one-

dimensional FFT is computed for each row again. To minimize resource usage, fixed-point data types are employed in FFT 

IP Core, where the 'radix_2_io' architecture is used with 64-bit complex data types for input and output. In CDFT IP, the 

same data width is used, but real and imaginary components are implemented as separate parameters. Zero-padding is applied 

to adapt the input size to the FFT length (32 samples), and spectral leakage prevention is addressed using Hanning window 

coefficients, which are stored in a constant lookup table. The implementation based on Xilinx FFT IP resulted in a frame rate 

of approximately 3 fps and significant accuracy loss, making tracking unfeasible. Table 2 compares the resource consumption 

and latency values obtained from synthesis reports. The custom 2D DFT IP in HLS achieves over a 24x reduction in latency 

while maintaining precision compared to the Xilinx FFT IP Core-based 2D FFT algorithm. 

Table 2 Synthesis Reports Results Comparison Between Xilinx FFT IP Core and Our custom DFT IP 

Module Optimization Latency(cycles) BRAM DSP FF LUT 

Xilinx FFT IP core Dataflow 21198 38 12 15844 15564 

CDFT IP Pipeline II=1 857 488 2852 72615 15460 

 

Next, the performance of the designed KCF accelerator is evaluated against software-based and GPU-based KCF algorithms 

using the Bolt from the VOT2014 dataset [8]. The comparison is presented in Table 3. 

 

Table 3 Performances from our tests using the Bolt dataset from VOT2014 

 KCF-SW 
KCF-

GPU_accelerated 

KCF-

CDFT_floating_point 

KCF-

CDFT_fixed_point 

FPS 3 22 10 18.5 

IoU 0.961184 0.964186 0.949865 0.965927 

CLE 4.6116 4.6105 4.6558 4.8077 

Speedup - 7.33x 3.33x 6.17x 
Power Consumption 12W 15W 7W 10W 

 

The measurements show that the fixed-point CDFT-based accelerator uses less power than both the single-core software 

(SW) version and the GPU-accelerated version. In contrast, it achieves 18.5 fps compared to 22 fps of GPU accelerated GPU. 

The original KCF source code utilizes the DFT function from the OpenCV library, which leverages GPU acceleration. 

Implementing the CDFT block on the PL section achieves a performance close to the on-chip GPU in the PS part.  

Table 4 shows the latency reductions when using the hardware-supported memcpy function for input and output transfers in 

the fixed-point CDFT-based accelerator. For each frame in the KCF algorithm, our CDFT is called 252 times as a DFT 

function and 127 times as an IDFT function. The memcpy optimization provides a significant 4 times latency improvement, 

increasing the frame rate from 12 fps to 18.5 fps. 

Table 4 Performances and latencies before and after memcpy function usage 

 
Before memcpy 

utilized 

After memcpy 

utilized 

DFT BRAM input Transfer Latency(ns) 1630 200 

IDFT BRAM input Transfer Latency(ns) 2080 2690 

DFT BRAM output Transfer Latency(ns) 115231 28122 

KCF Total CDFT Transfer Latency Per Frame(ms) 44.35 11.05 

KCF Speedup 4x 6.17x 

 

In Table 5, a comparison with the previous studies in the literature is also presented. Note that except for the CDFT-based 

accelerator, all other designs use the HLS library to implement KCF-related functions in the PL section. As it is clear from 

Table 5, one advantage of the hardware-software co-design is the high accuracy. Although our study achieves a similar speed 

as the compared study [4], the accuracy is superior for several reasons. When a significant portion of the operations in the 

KCF algorithm is performed in the PL using a fixed-point implementation, a high precision loss occurs. These losses include 

the use of FFT (possible padding losses), the use of 6-dimensional HOG instead of 31 dimensions resulted in a reported 4% 

accuracy loss, implementation using fixed point data type instead of float for variable types in functions, and the use of 

bilinear interpolation for resizing. From this perspective, our work requires less effort, provides more flexibility to the KCF 

algorithm for further optimizations, and offers higher accuracy at the same speed compared to the study [4]. 
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Table 5 Performance comparison of the CDFT-based accelerator with other implementations in the literature 

Study 

Name 
Hardware Method Resolution FPS 

Prec. 

Loss 

Our design CDFT HLS 640x360 18.5 Low 

Liu et 

al.[4] 

Scale pyramid similar to DSST, 

HOG dimension reduction, 

Radix-2 FFT, Bilinear Interpolation 

HLS* 1280x720 14-22 High 

Cong et 

al.[5] 

Fusing LBP with HOG, 

Dimensionality reduction method for LBP 

HLS* 

 
320x240 35 Low 

 

*Almost All functions are from the HLS library. 

In the study by Cong et al. [5], The resolution is significantly lower than the 640x360 resolution in our study. The image 

resolution has a big impact because transferring the entire image to the PL impacts the throughput negatively. Increasing the 

resolution on the same platform at the same fps is not possible because it would involve excessive resource consumption. To 

fit it, a significant compromise would have to be made in terms of accuracy and fps values. PIPELINE, radix-8 multiple FFT 

instances, and similar resource-hungry optimizations were required to achieve 35fps. It is clear that if implemented at the 

same resolution with the same number of resources, this study would yield lower fps and accuracy compared to ours.  

5. Conclusions and Future Works 

In contrast to the earlier FPGA implementation studies of the KCF algorithm, which port all the functions to the PL section, 

a hardware-software co-design approach is utilized on Xilinx’s ZCU-102 board. Only DFT and IDFT operations are 

performed on the PL side, resulting in a speedup of over 21 times for the IP and over 6 times at the algorithm level for KCF. 

By maintaining sufficient data width in the fixed-point version and implementing only the DFT function on the PL section, 

precision loss is kept negligible. Examining the experimental results, it is observed that a performance close to that of a GPU 

with lower power dissipation is achieved. While KCF is effective for tracking, for a full object tracking solution, it often 

works in tandem with a detection algorithm. The processing load of KCF is offloaded to the accelerator in the designed PL, 

freeing the GPU for the detection algorithm and enabling the meeting of real-time requirements if further optimizations are 

implemented. The factors influencing this speedup are discussed and compared to other works in the literature. In this 

approach, an advantage emerges from not transferring the entire image. It is found that, while other studies implement 

multiple functions to achieve the same performance as this IP, which implements only one function in the PL, this work 

provides higher accuracy at the same speed. In other studies, the implementation of multiple complex functions in the KCF 

algorithm, due to limited PL resources, prevents sufficient optimization and necessitates transferring the entire image to the 

PL side.  

For future work, several further performance optimizations are possible, especially when using a target platform with more 

PL resources. The first optimization can be to use dual-port BRAMs instead of single-port BRAMs. Using dual-port BRAMs, 

PS-PL transfer latency can be halved, leading to better real-time performance. Additionally, if a higher clock frequency is 

used, real-time performance requirements can be met while preserving precision. Another improvement can be achieved 

using a parallel implementation of the Kernelized Gaussian Correlation. Each term in the Kernelized Gaussian Correlation 

estimation, can be calculated in parallel to improve processing time. The correlation calculation involves two separate DFT 

and one IDFT operation, which can be optimized using the extended version of the proposed implementation in this paper. 

In light of this data, implementing Gaussian Kernelized Correlation on a platform with higher PL resources can increase the 

number of DFTs processed per unit time and reduce the input-output transfer count, resulting in higher performance.  
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ABSTRACT 

Identifying and classifying malware has become a critical task in ensuring the security and resilience of 

computer systems and networks. Traditional techniques for malware assessment often rely on signature-based 
methods, which struggle to keep up with the constantly evolving landscape of malware variations. Recently, the 

application of advanced deep learning methods has shown promising results in automating the malware 

classification process. This study presents an innovative strategy for classifying malware images using the 
Vision Transformer (ViT) architecture. The ViT model is adapted to the domain of malware analysis by 

representing malware images as input tokens. A comprehensive dataset of 14,226 malware samples from 26 

families was used to evaluate the effectiveness of this approach. A comparative analysis was performed between 
the performance of the ViT-based classifier, traditional machine learning approaches and other deep learning 

architectures. Our experimental results demonstrate the potential of ViT in handling malware images, achieving 

a classification accuracy of 98.80%. The presented approach establishes a strong foundation for further research 
in utilizing cutting-edge deep learning architectures for enhanced malware analysis and detection techniques. 

Keywords: Malware detection, Vision Transformer, Deep learning, Network Security 
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1. Introduction

The relentless advance of Internet technology has brought about a period of rapid expansion in the computer software sector. 

This has led to the development of a wide range of software applications that have become seamlessly integrated into the 

fabric of everyday life [1]. Nevertheless, this technological advancement has concurrently led to a concerning issue: the 

rampant proliferation of detrimental malware. This presents a substantial threat to the security of users' personal information, 

causing significant disruptions to computers, servers, and cloud infrastructures [2]. Malware is a type of software that 

threatens computer systems today and is designed to steal user data, exploit systems or for other malicious purposes [3]. This 

malware often runs without the user's permission or awareness and compromises personal security, privacy and the integrity 

of computer systems [4]. The most common types of malware today can be summarized as follows: 

 Viruses: Malware that can infect other files and spread by making copies of themselves. They usually attach

themselves to other files, infect them and then spread [5].

 Worms: Malicious software that self-replicates and spreads rapidly across computer networks to other systems.

They do not infect files but spread by sending copies of themselves across the network to other devices [6].

 Trojans: Malicious software hidden in seemingly innocuous and useful programs that users tend to download. While

installed by the user, its real purpose may be to covertly cause damage or steal information [7].

 Spyware: Software designed to secretly steal information by monitoring a user's computer activity. This information

can often be sensitive, such as a user's online habits, personal or financial information [8].

 Adware: Malware designed to generate revenue by constantly displaying advertisements to the user. The ads appear

without the user's consent and often have a negative impact on the user's experience [9].

 Ransomware: Malware that encrypts the user's files or system and demands a ransom to get them back [10].
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Malware detection methods can be divided into two main categories: traditional static and dynamic approaches [11]. Static 

methods involve analyzing the structural characteristics of software to determine the presence of malware. In contrast, 

dynamic methods monitor the behavior of executing programs to identify potential malware instances [12]. These strategies 

offer distinct advantages and disadvantages in the quest for effective malware detection. 

Dynamic detection is particularly accurate because it actively monitors the behavior of programs as they run, allowing it to 

quickly identify malicious software [13]. However, this approach is time-consuming because it requires continuous 

monitoring of running processes. This real-time analysis may not be conducive to the timely detection of emerging malware 

threats. In contrast, static detection can serve as a valuable complement to dynamic methods, helping to overcome their time-

consuming aspect. By analyzing the structural attributes of software without executing it, static detection can quickly assess 

potential threats [14]. However, traditional static detection techniques rely on powerful antivirus engines and extensive virus 

databases [15]. This reliance on known signatures and patterns poses a significant challenge in detecting unseen or previously 

unknown malware, often resulting in the limited performance of traditional static approaches [16]. Efforts to strike a balance 

between static and dynamic detection techniques remain critical to improving the overall effectiveness of malware detection 

[17]. 

To overcome the limitations of traditional static detection approaches, researchers have looked at innovative ways to detect 

malware using visualization technology. These innovative techniques have shown promising performance in malware 

detection [18]. In many cases, malware variants are created through automation or reuse of critical function modules, resulting 

in a degree of similarity in their binary or assembly code [19]. Visualization technology is proving to be very useful in 

capturing these similarities and presenting them in a visual form. Interestingly, the challenges of malware detection are similar 

to those of image recognition, as both require the identification of variants or patterns within the original samples. By visually 

representing the structural characteristics and behavioral patterns of malware, visualization-based malware analysis reveals 

unique features that improve detection accuracy. By revealing hidden relationships and commonalities between malware 

variants, this approach promises to strengthen defenses against both known and previously unseen threats [20].  

With the rapid advancement of artificial intelligence technology, researchers are increasingly using deep learning models to 

detect and classify malware. Yadav et al. [21] proposed a novel deep learning based two-stage framework for detecting and 

classifying DEX files images. The framework uses the EfficientNetB0 model to extract relevant features from malware 

images. These features are then processed through a stacking classifier, utilizing linear support vector machine (SVM) and 

random forest (RF) algorithms as base-level classifiers and logistic regression. The proposed method achieves impressive 

results, obtaining 100% accuracy in binary classification and 92.9% in 5-class classification. Khan et al. [22] proposed a 

malware detection framework called Deep Squeezed-Boosted and Ensemble Learning (DSBEL). The proposed DSBEL 

framework incorporates a novel Squeezed-Boosted Boundary-Region Split-Transform-Merge (SB-BR-STM) CNN that 

employs multi-path dilated convolutional, boundary and regional operations to capture global malicious patterns. The 

performance evaluation of the DSBEL framework and the SB-BR-STM CNN is performed on the IOT_Malware dataset, 

yielding results of 98.50% accuracy, 97.12% F-1 score, 95.97% recall and 98.42% precision. Xing et al. [23] proposed a 

state-of-the-art malware detection method. The method introduces a novel approach that involves representing malware as 

grey-scale images and incorporating an auto-encoder network for analysis. The viability of the grey-scale image 

representation is assessed by evaluating the reconstruction error of the auto-encoder. Furthermore, the dimensionality 

reduction capabilities of the auto-encoder are exploited to classify malware from benign software. Experimental evaluations 

conducted on an Android-side dataset demonstrate the effectiveness of the model, which achieves an impressive accuracy 

rate of 96% and a stable F1-score of around 96%. Asam et al. [24] introduced a novel CNN-based architecture called IoT 

malware detection architecture (iMDA) for effective detection. The iMDA architecture is designed with modularity and 

incorporates various feature learning schemes such as edge exploration and smoothing, multi-path dilated convolutional 

operations, and channel squeezing and boosting within the CNN framework. The performance evaluation of iMDA on a 

benchmark IoT dataset demonstrates its promising capabilities in malware detection, achieving 97.93% accuracy, 93.94% F-

1 score, 98.64% precision, and 88.73% recall. Kumar and Janet [25] proposed deep transfer learning for malware image 

classification (DTMIC). By converting portable executable files (PEs) into grayscale images, DTMIC exploits the visual 

characteristics of similar malware families. The effectiveness and robustness of DTMIC are evaluated using MalImg and 

Microsoft BIG dataset. DTMIC achieves high detection accuracies of 98.92% for MalImg and 93.19% for Microsoft datasets, 

outperforming established CNN architectures. 

Within the realm of malware detection and classification, CNN-based architectures, together with classical machine learning 

methods, have achieved significant success in image processing and are widely used in the literature. However, CNN-based 

classifiers often have limitations such as special architectural designs and input data with predetermined dimensions [26]. To 

overcome such problems, Vision Transformer (ViT) is a new approach that has recently attracted attention [27]. It is a 

transformer architecture based on this attention mechanism and designed for image classification problems. By treating the 

data as an irregular array of pixels, ViT provides a more flexible approach to better understand the relationships of objects in 

images and to detect important patterns [28]. ViT's particular scalability and ability to deal with large datasets and complex 

classification problems make it a suitable and promising candidate for malware image classification. Thanks to its ability to 

learn distant relationships between data, ViT can detect subtle differences between different types and subtypes of malware 
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and achieve higher classification accuracy. In addition, ViT's attention mechanism prevents significant information loss in 

the feature extraction process, allowing for more comprehensive and detailed analysis. 

This paper proposes a method for fine-tuning the default ViT architecture for automatic classification of malware images. 

The proposed model initially divides the image into patches and extracts features through the encoder network. Subsequently, 

these features are classified using an MLP (Multi-Layer Perceptron) head to determine the malware class. Moreover, to the 

best of the authors' knowledge, this is the first study on the classification of the MaleVis dataset utilizing the ViT model. 

The main contributions of this study can be summarized as follows: 

 The ViT model achieved high performance values using the MaleVis dataset, which contains 25 different types of 

malware. 

 The ViT model demonstrated effective prediction on input images of different classes, eliminating the need for any 

feature engineering. 

 A system that can classify malware images without depending on any resolution value. 

 Leveraging the transfer learning method, the study attained higher performance values compared to similar research 

with fewer hardware requirements. 

The remaining sections of this paper are structured as follows: Section 2 outlines the proposed method, explains the dataset 

used for model training, introduces the classifier model and describes the performance metrics. Section 3 explains the 

experimental setup and presents the results obtained, and Section 4 contains the discussion section of the study. The 

conclusions of the study are presented in Section 5. 

2. Material and Methods 

This paper proposes a ViT model for classifying malware images. Instead of taking the input images directly as input, the 

model processes them by dividing them into patches and vectorizing them. This approach allows the model to work faster 

and more efficiently by processing smaller parts of the input images by dividing them into patches. A schematic diagram of 

the proposed malware image classification method is given in Figure 1. 
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Figure 1 Schematic diagram of the proposed method. 

 

The effectiveness of the deep learning models is highly dependent on the quality, diversity and size of the dataset. A well-

curated and comprehensive dataset of malware images plays a crucial role in enabling the ViT model to learn meaningful 

representations and features that distinguish between different types of malware. By using a large and diverse dataset of 

malware images, the ViT model can effectively learn to extract relevant patterns and structures from the input images. The 

model's ability to divide the input images into smaller patches and vectorize them allows it to exploit the inherent spatial 

relationships in the dataset. This process facilitates the capture of fine-grained details and local features within each patch, 

enabling the model to make accurate and efficient classifications. Furthermore, the use of a diverse dataset can help improve 

the generalization capabilities of the ViT model. By exposing the model to a wide variety of malware samples with different 

characteristics, the model can better adapt to unseen and real-world scenarios. Consequently, this increases the overall 

robustness and reliability of the proposed malware image classification method. 

2.1 Dataset 

The public dataset used in this study is called Malware Evaluation with Vision (MaleVis) [29]. The MaleVis dataset consists 

of 25 different malware families, collected from samples that appeared between 2017 and 2018. These samples were created 

on PE files prepared by a cybersecurity company. These binary code files were converted into 224×224-pixel PNG images 

using the 'Bin2png' library. The samples that were randomly selected from the dataset are shown in Figure 2. 
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AgentAdposhel Allaple Amonetize Androm Autorun BrowseFox

Dinwod Elex Expiro Fasong HackKMS Hlux Injector

InstallCore MultiPlug Neoreklami Neshta Regrun Sality Snarasite

Stantinko VBA VBKrypt Vilsel Other  

Figure 2 MaleVis Samples[29] 

 

Table 1 Distribution of the dataset samples 

Class Name Category 
Number of Samples in 

MaleVis 

Number of Samples in Subsets 

(Train/Validation/Test) 

Adposhel Adware 494 396/49/49 

Agent Trojan 470 376/47/47 

Allaple Worm 478 382/48/48 

Amonetize Adware 497 397/50/50 

Androm Backdoor 500 400/50/50 

Autorun Worm 496 396/50/50 

BrowseFox Adware 493 395/49/49 

Dinwod Trojan 499 399/50/50 

Elex Trojan 500 400/50/50 

Expiro Virus 501 401/50/50 

Fasong Worm 500 400/50/50 

HackKMS Trojan 499 399/50/50 

Hlux Worm 500 400/50/50 

Injector Trojan 495 397/49/49 

InstallCore Adware 500 400/50/50 

MultiPlug Adware 499 399/50/50 

Neoreklami Adware 500 400/50/50 

Neshta Virus 497 397/50/50 

Regrun Trojan 485 389/48/48 

Sality Virus 499 399/50/50 

Snarasite Trojan 500 400/50/50 

Stantinko Backdoor 500 400/50/50 

VBA Virus 500 400/50/50 

VBKrypt Trojan 496 396/50/50 

Vilsel Trojan 496 396/50/50 

Other Legitimate 1832 1466/183/183 
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The MaleVis dataset, which consists of 26 classes, only possesses legitimate content in the form of the "Other" class, while 

the remaining classes, constitute malware. The dataset is divided into five categories of malware, including Adware, Trojan, 

Worm, Backdoor, and Virus. With a balanced distribution of approximately 500 samples per class, no data augmentation was 

deemed necessary. The dataset was divided into training, validation, and testing subsets, with 80% of the samples allocated 

for training, 10% for validation, and 10% for testing. The class-wise distribution of the dataset is presented in Table 1. 

2.2 ViT Model 

The profound impact of transformer networks on natural language processing tasks has been widely acknowledged. Building 

upon the success of the original transformer architecture, Dosovitskiy et al. [30] introduced the ViT model, specifically 

tailored for image processing tasks. The ViT model consists of self-attention blocks and MLP networks, equipped with linear 

projection and positional embedding mechanisms to handle input images effectively. The ViT architecture is based on the 

process of dividing the input image into fixed size, non-overlapping patches [31]. These patches are then flattened and a 

spatial embedding step is performed using linear projection. The purpose of spatial embedding is to preserve the spatial 

information of the original image within the flattened patches. The resulting vector is then fed into a stack of N transform 

encoder blocks. The architecture of these encoder blocks used for feature extraction in the ViT model is given in Figure 3. 
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Figure 3 Architecture of the ViT encoder block 

 

The basic components of a transformer encoder block include multi-head self-attention (MHA) and MLP layers. Each 

component is complemented by a normalization layer and a residual connection for improved training stability. Within MHA, 

self-attention is applied to each patch individually, producing three distinct vectors: query (Q), key (K) and value (V) [32]. 

To measure the importance or saliency of each embedded patch, a dot product operation is performed between the Q and K 

vectors, producing a score matrix. This matrix is then passed through the SoftMax activation function, which converts the 

scores into attention weights [33]. Finally, the output is obtained by element-wise multiplication of the attention weights and 

the V vector. This process produces the self-attention result as seen in Equation 1, where dk denotes the dimensionality of 

the key vector K. 

𝑆𝑒𝑙𝑓 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

) × 𝑉 (1) 

The self-attention matrices are concatenated and then passed to a linear layer followed by a regression head. This application 

of self-attention allows the model to recognize relevant semantic features at different locations in the image, facilitating 

accurate classification. Within the transformer encoder, there can be MHA blocks, each contributing to the overall 

understanding of the image. Following the MHA layer, the transformer block contains an MLP. These MLP layers are 

equipped with a GeLU activation function [34]. The final output of the transformer block is calculated as shown in Equation 

2. K. 

 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑜𝑢𝑡 = 𝑀𝐿𝑃(𝑁𝑂𝑅𝑀(𝑀𝐻𝐴𝑜𝑢𝑡)) + 𝑀𝐻𝐴𝑜𝑢𝑡 (2) 

2.3 Performance Metrics 

Evaluating the performance of deep learning models is critical to understanding their effectiveness in solving real-world 

problems. Performance metrics play a vital role in quantifying the quality and reliability of these models, and some of the 
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most important metrics include true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). These 

metrics can be summarized as follows.  

 TP signifies the number of instances that are correctly classified as belonging to that specific class. It's the count of 

correctly identified positive samples for each class. 

 TN signifies the number of instances that are correctly classified as not belonging to that specific class. It's the count 

of correctly identified negative samples for each class. 

 FP signifies the number of instances that are incorrectly classified as belonging to that specific class when they 

actually don't belong to it. It's the count of incorrectly identified positive samples for each class. 

 FN signifies the number of instances that are incorrectly classified as not belonging to that specific class when they 

actually belong to it. It's the count of incorrectly identified negative samples for each class. 

In addition to the basic metrics of TP, TN, FP and FN, the evaluation of deep learning models includes the construction of a 

confusion matrix, which provides a comprehensive summary of the model's performance across all classes. The confusion 

matrix is a table that represents the predicted labels against the true labels, allowing a more detailed analysis of the model's 

behavior. The confusion matrix for the performance evaluation of a 26-class deep learning model is shown in Figure 4. 

 

 

Figure 4 A confusion matrix with 26 classes 

 

The main performance measures and mathematical equations used to evaluate deep learning models can be summarized as 

follows: 

1. Accuracy (Acc): This metric quantifies the overall correctness of the model's predictions. It is the ratio of correctly 

classified samples to the total number of samples. The Acc can be calculated as seen in Equation 3. 

𝐴𝑐𝑐 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
 (3) 

2. Precision (Pre): Premeasures the proportion of positively labelled samples that the model correctly identifies. It 

focuses on the ability of the model not to misclassify negative samples as positive, reflecting its ability to make 

accurate positive predictions. The Pre can be calculated as seen in Equation 4. 
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𝑃𝑟𝑒 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
(4) 

3. Recall (Rec): Rec, also known as sensitivity, assesses the ability of the model to correctly identify true positive

samples. It is particularly relevant when the aim is to minimize false negatives and avoid missing positives. The Rec

can be calculated as seen in Equation 5.

𝑅𝑒𝑐 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
(5) 

4. Specificity (Spe): This metric assesses the model's ability to correctly identify negative samples. It gauges the

model's performance in avoiding false positives and accurately recognizing negative instances. The Spe can be

calculated as seen in Equation 6.

𝑆𝑝𝑒 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
(6) 

5. F-1 Score (F1): The F1 is the harmonic mean of Pre and Rec. It is particularly useful when there is an imbalance

between positive and negative samples, as it balances the trade-off between precision and recall. The F1 can be

calculated as seen in Equation 7.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
(2 × 𝑃𝑟𝑒 × 𝑅𝑒𝑐)

(𝑃𝑟𝑒 + 𝑅𝑒𝑐)
(7) 

3. Experiments

The experiments conducted to evaluate the performance of the ViT model are presented in this section. Additionally, the 

following sections present the analyses of the experimental results, along with the performance metrics. 

3.1 Experimental Setups 

In this study, we used the ViT-B/16 model, which has a resolution of 224×224 pixels and was pre-trained on the ImageNet 

[35] dataset. The ViT-B models include a hidden size of 768, an MLP size of 3072, and an overall parameter count of 86

million [30]. The input-output shapes and trainability of the layers of the model are summarized in Table 2.

Table 2 Details of the ViT model 

Count Layer Input Shape Output Shape Trainable 

×1 Patch Embedding (1, 3, 224, 224) (1, 196, 768) True 

×1 Dropout (pos_drop) (1, 197, 768) (1, 197, 768) False 

×1 Identity (patch_drop) (1, 197, 768) (1, 197, 768) False 

×1 Identity (norm_pre) (1, 197, 768) (1, 197, 768) False 

×12 

(Encoder) 

LayerNorm (norm1) (1, 197, 768) (1, 197, 768) True 

Attention (attn) (1, 197, 768) (1, 197, 768) True 

Identity (ls1) (1, 197, 768) (1, 197, 768) False 

Identity (drop_path1) (1, 197, 768) (1, 197, 768) False 

LayerNorm (norm2) (1, 197, 768) (1, 197, 768) True 

Mlp (mlp) (1, 197, 768) (1, 197, 768) True 

Identity (ls2) (1, 197, 768) (1, 197, 768) False 

Identity (drop_path2) (1, 197, 768) (1, 197, 768) False 

×1 LayerNorm (norm) (1, 197, 768) (1, 197, 768) True 

×1 Identity (fc_norm) (1, 768) (1, 768) False 

×1 Dropout (head_drop) (1, 768) (1, 768) False 

×1 Linear (head) (1, 768) (1, 26) True 

The model was implemented using the timm library. During model training, 11,380 samples were randomly selected from 

the dataset, representing 80% of the total dataset samples. The remaining samples were divided equally to be used for the 

validation and testing phases. A visual representation of the proposed experimental setup framework is shown in Figure 5. 
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Figure 5 The proposed experimental setup framework 

 

The training set was used to learn the parameters of the model, while the validation set was used to adjust the hyper-parameters 

and check for overfitting. The training and test samples were included in the training with a batch size of 32. The learning 

rate of the model was set to 0.00002 and the AdamW optimizer was used. The maximum number of epochs defined for the 

training and validation processes is 100. The CrossEntropyLoss function was used to calculate the loss value at each epoch. 

The software, hyperparameters and library versions used in the study are summarized in Table 3. 

 

Table 3 Experimental environment and parameters 

Name Type Version / Value 

Python Programming Language 3.10.11 

Timm Library 0.9.2 

Torch Library 2.0.1 

Torchvision Library 0.15.2 

Transformers Library 4.32.1 

Batch Size Hyperparameter 32 

Learning Rate Hyperparameter 0.00002 

Max Epoch Hyperparameter 100 

Epsilon Hyperparameter 0.000001 

 

When training the ViT model with ImageNet weights, an early stopping function is defined to monitor the training phase. 

This function monitors the validation accuracy value and stops training if there is no improvement for twenty consecutive 

epochs. In this way, the weights of the epoch with the highest validation accuracy value were saved as 'best_weights.pth'. 

The best_weights.pth values were transferred to the ViT model, and the fine-tuned model was obtained. The fine-tuned ViT 

model was given test examples as input, which the model had never encountered before, and the performance of the model 

was determined by analyzing the predictions obtained. 

3.2 Results 

The ViT model was trained in the Google Colab environment using samples from the MaleVis dataset. By using optimized 

ImageNet weights as initial parameters, rather than random weights, the model achieved high accuracy rates in a relatively 

short time. The early stopping function set the validation accuracy value of 97.78% obtained in the 37th epoch as the stopping 

point, as there was no improvement in the subsequent twenty epochs. The weights obtained were saved for use during the 

test phase. The graphs showing the performance curves of the ViT model during the validation and training phases are shown 

in Figure 6. 
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Figure 6 Graphs of the training and validation performance 

 

Using the stopping point weights of the model, predictions were analyzed on randomly selected samples from the validation 

dataset. These predictions and their class-based probabilities are given in Figure 7. 

 

True Label: Snarasite
Predicted Label: 
99.91% Snarasite 
0.05% Sality 
0.02% Neshta 
0.02% Elex 

True Label: VBKrypt
Predicted Label: 
99.74% VBKrypt
0.19% Androm 
0.04% Adposhel 
0.03% Sality 

True Label: Other
Predicted Label: 
99.87% Other 
0.07% Sality 
0.03% Androm 
0.03% HackKMS 

True Label: Amonetize
Predicted Label: 
100% Amonetize

True Label: Dinwod
Predicted Label: 
97.31% Dinwod
2.63% Injector 
0.03% Androm 
0.03% Amonetize 

True Label: HackKMS
Predicted Label: 
99.97% HackKMS
0.02% Agent 
0.01% Fasong 

True Label: MultiPlug
Predicted Label: 
99.98% MultiPlug
0.01% InstallCore 
0.01% Hlux 

True Label: Fasong
Predicted Label: 
100% Fasong

True Label: Agent
Predicted Label: 
99.32% Agent
0.62% Allaple 
0.04% HackKMS 
0.02% Vilsel  

Figure 7 The validation predictions and their class-based probabilities  

 

As the accuracy of the ViT model was at the desired level during training, the weights were transferred to the model. Test 

images were used as input to the model to verify the robustness of the model. The model achieved an accuracy rate of 98.80% 

with only 17 misclassifications on 1423 test images. The confusion matrix resulting from the model's predictions on the test 

images is shown in Figure 8. When analyzing the test results of the model, it can be seen that the predicted class for most of 

the misclassifications is 'Other'. The main reason for this is that the features of the 'Other' class, which contains more examples 

than other classes, are dominant. 
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Figure 8 The confusion matrix for the test dataset 

 

The block plots illustrating the class-based values of the performance metrics obtained during the test phase are presented in 

Figure 9. 

 

 

Figure 9 Class-based performance values obtained from the test samples 

 

When analyzing the experimental results, it is observed that the Pre rate reaches 100% for twenty classes. Similarly, the 

remaining six classes are also characterized by high Pre values. The lowest Pre rate was observed in the Sality class with a 
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value of 94.23%. Of the classes, only thirteen achieved a Rec rate of 100%, while the lowest recall value was obtained in the 

Injector class, with a rate of 95.91%. In terms of the Specificity metric, which boasts the highest average percentage, 25 

classes reached a specificity of 100%. The Other class is the sole exception, exhibiting a specificity value that is distinctively 

lower than that of the other classes. Upon scrutinizing the class-based F-1 scores, it becomes evident that 25 classes exhibit 

scores surpassing 97%. However, the Sality class displays the lowest F-1 score at 96%. These statistical findings collectively 

demonstrate the model's proficient performance in the multiclass classification task, effectively identifying various classes. 

4. Discussion 

In the field of cybersecurity, the accurate classification of malware images is of paramount importance, serving as a central 

tool for identifying and mitigating a wide range of digital threats. While the classification of malware images has traditionally 

involved labor-intensive processes, the integration of machine learning methods to automate fundamental tasks has become 

essential in various domains, including information security. Leveraging advances in deep learning, a path pioneered by 

CNNs, the field continues to flourish with a number of novel architectures, each contributing to the evolving threat detection 

landscape. This study presents an implementation of ViTs, which have recently gained popularity, to classify malware with 

high accuracy. Table 4 lists similar research studies with the same dataset. Patil et al. [36] proposed a novel approach for 

malware image classification using machine learning, achieving accuracy rates of 93.00% for RF, 93.70% for EfficientNet-

B0, and 92.00% for VGG-16 models. Ilyas and Mohammad [37] proposed a method for malware image classification. Their 

approach incorporated the employment of MobileNetV2, InceptionV3, ResNet50, and LittleVGG architectures. Notably, 

MobileNetV2 exhibited high performance compared to the other models, achieving an accuracy rate of 95.19%. 

Fathurrahman et al. [38] introduced a lightweight CNN model designed for malware image classification in IoT applications, 

particularly suitable for embedded systems. The proposed model achieved an average accuracy of 96.22%. Atitallah et al. 

[39] proposed a novel vision-based approach for classifying IoT malware images, utilizing deep transfer learning with 

ensembling strategies. The proposed approach, which fuses ResNet18, MobileNetV2, and DenseNet161 CNNs using an RF 

voting strategy, achieves exceptional performance with an accuracy of 98.68%. 

 

Table 4 Comparison of our work with studies developed on the same dataset 

Study Year Architecture Model Performance 

Patil et al. [36] 2021 CNN EfficientNet-B0 Acc = 93.70% 

Iyas and Mohammad [37] 2021 CNN MobileNetV2 Acc = 95.19% 

Fathurrahman et al. [38] 2022 CNN Custom CNN Acc = 96.22% 

Atitallah et al. [39] 2022 CNN ResNet18+MobileNetV2+DenseNet161 Acc = 98.68% 

The proposed study 2023 Transformer ViT-B/16 Acc = 98.80% 

 

In this study, the ViT model was used to classify malware images, achieving an impressive accuracy rate of 98.80% across 

26 different classes. This performance surpasses the accuracy rates reported in other studies listed in Table 4. The ViT model's 

superiority can be attributed to its enhanced ability to comprehend pixel relationships, thanks to its attention mechanism, 

allowing it to effectively capture and represent crucial image features. However, in the context of malware classification, it's 

imperative to carefully consider the implications of both FP and FN classifications. FP can trigger unnecessary alarms or 

resource-intensive benign file investigations, while FN may pose significant security risks by allowing malicious files to 

evade detection. When examining the studies outlined in Table 4, it's evident that our research resulted in fewer FP and FN 

predictions. Additionally, the Sality class consistently displayed the lowest accuracy across all the studies in Table 4. By 

understanding the unique challenges associated with this class and exploring the potential reasons for its lower accuracy, can 

enhance the model's robustness and contribute to more reliable real-world malware detection systems. The ViT model's 

superior ability to grasp pixel relationships through its attention mechanism makes it especially advantageous for images with 

intricate structures, such as malware. 

The advantages of our transformer-based model can be summarized as follows: 

 The conceptual foundation of the proposed model is built upon ViTs, which are presently a prominent area of 

research. This is a pioneering work to investigate the performance of transformer-based image classifier models in 

the cybersecurity domain. 

 Since the transfer learning method is used, the model achieves high performance values with low cost. 

 The proposed model improves computational efficiency by vectorizing the input images with 16×16 patches, while 

minimizing important information lost in feature extraction. 

 The proposed model can be fine-tuned and easily used to detect different types of malwares.  

While our research demonstrates the encouraging possibilities of the ViT model in classifying malware images, it is important 

to acknowledge the inherent limitations and potential challenges associated with its application. Specifically, our ViT-based 

classifier requires a significant amount of labeled data for training, which may not be readily available in certain malware 
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analysis scenarios, particularly for rare or emerging malware families. Furthermore, while the ViT model has impressive 

accuracy in classifying malware images, its real-time response time has not been evaluated. Another consideration is the 

computational requirements and scalability of the ViT model. Our study primarily focuses on its classification accuracy, but 

it's important to recognize that deploying the ViT model for real-time malware analysis on a large scale may demand 

substantial computational resources. Therefore, a thorough evaluation of the computational requirements and an assessment 

of the feasibility of deploying the ViT model for real-time malware analysis on a large scale are necessary. However, the 

black box nature of the proposed method may create difficulties in understanding how it makes classification decisions. 

Without the ability to gain insight into the features and attributes that the ViT model uses for classification, it may be difficult 

to gain meaningful information about the characteristics and behavior of different malware families. These limitations 

highlight the need for complementary methods or tools that can provide transparency and interpretability in the context of 

malware analysis, offering a more comprehensive and reliable approach to cybersecurity. In future work, we will extend our 

efforts by exploring malware detection using alternative state-of-the-art transformer-based architectures. Additionally, we 

intend to develop an explainable method that visualizes the specific pixel areas to which these models’ pay attention in their 

predictions. 

5. Conclusions 

In this study, we proposed a ViT model designed for the automated classification of malware images. The proposed model 

is trained and validated on a public dataset with 26 different classes consisting of 14,226 samples. The ViT model with 

ImageNet weights is fine-tuned on malware images. As a result of the training phase using the early stopping function, the 

weights of the epoch with the highest validation accuracy value were recorded and implemented to the model. This model 

achieved 98.80% accuracy on test images it had never seen before. When analyzing the model's predictions on the test images, 

it can be seen that all performance metrics reach 100% for 12 classes. The performance values obtained for the other classes 

are also quite high. However, the model showed the lowest classification performance on the Sality class samples. The main 

limitation of the study is that it does not evaluate the performance of real-time applications. The proposed model can perform 

the classification of malware images automatically and can be effectively used by experts due to its high accuracy rates. 

Moreover, the proposed model can be easily fine-tuned for similar tasks to achieve high performance with low training costs. 
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ABSTRACT 

In this study, we present an electronic component classification system with a classification accuracy exceeding 

98%, achieved by utilizing state-of-the-art deep learning architectures. We employed EfficientNetV2B3, 
EfficientNetV2S, EfficientNetB0, InceptionV3, MobileNet, and Vision Transformer (ViT) models for the 

classification task. Our dataset comprises various electronic components, and it has been meticulously organized 

and labeled to provide high-quality training data. We conducted extensive experiments, utilizing data 
augmentation techniques and transfer learning, to fine-tune and optimize the models for the given task. The high 

classification accuracy achieved by our system indicates its readiness for real-world applications. It can be 

applied to advance automation and efficiency in the electronics industry. 

Keywords: Electronic component classification, Deep learning, Transfer learning 
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1. Introduction

Fundamental to electronic circuitry and systems, electronic components represent indispensable units, meticulously 

engineered to fulfill precise functionalities. They are classified into two primary categories: active components, exemplified 

by transistors and diodes, and passive components, encompassing resistors and capacitors. These elements play pivotal roles 

in the processing, storage, and transmission of electrical signals [1]. Resistors, for instance, regulate the flow of electric 

current, often used to control voltage and current within a circuit. Capacitors, on the other hand, store and release electrical 

energy, proving valuable for tasks like energy storage and timing. Transistors are versatile, functioning as amplifiers or 

switches for electronic signals and serving as the backbone of modern electronics, including amplifiers and processors. LEDs 

(Light Emitting Diodes) are ubiquitous for their light emission when current flows through them, commonly applied in 

displays, indicators, and lighting. Potentiometers, or variable resistors, are useful for tasks like volume control and tuning in 

electronic devices. Buttons, which also go by the name of switches, control the electrical current's flow, often used for user 

input and control. In addition, ultrasonic sensors make use of sound waves to measure distance or detect objects. They have 

applications in robotics, automotive systems, and distance measurement. These components are deployed across various 

industries, from consumer electronics and automotive systems to industrial automation, telecommunications, medical 

devices, aerospace and defense, and renewable energy solutions. In essence, electronic components are the foundational 

elements that power the world of modern technology, enabling the development of advanced electronic devices and systems 

that have revolutionized everyday life and various industrial sectors [2]–[10]. 

Image classification is the process of assigning a specific class to an image, and within this domain, various techniques are 

employed [11]. Deep learning, particularly leveraging architectures such as Convolutional Neural Networks (CNNs), stands 

out as a robust approach [12]. Additionally, machine learning algorithms like Support Vector Machines (SVM) [13], decision 

trees [14], and random forests [15], as well as straightforward methods like K-Nearest Neighbors [16], are commonly utilized. 

Image features and descriptors, including color histograms, edge detectors, and Histogram of Oriented Gradients (HOG), 

contribute to the diverse array of methods. These techniques are often combined or customized based on factors such as 

dataset size, complexity, and specific requirements. The selection of a particular method is contingent upon the distinct usage 

scenarios and objectives. 
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Deep learning, a subfield of machine learning, involves training artificial neural networks with multiple layers to perform 

complex tasks. Its importance lies in its remarkable ability to automatically learn and extract intricate patterns and 

representations from large datasets, enabling the development of highly accurate predictive models. Deep learning has found 

diverse applications, one of which is in classification. It is used to categorize and identify objects or data, such as images, 

audio, or text, in various domains. For instance, in computer vision, deep learning is employed for image recognition, object 

detection, and facial recognition. In natural language processing, it aids in sentiment analysis, language translation, and 

chatbot development. Deep learning also has applications in healthcare for disease diagnosis, in autonomous vehicles for 

object detection and navigation, in finance for fraud detection, and in manufacturing for quality control. Its capacity to handle 

large and complex datasets makes deep learning a transformative technology with wide-ranging implications for automation, 

precision, and decision-making across industries [17]–[20]. Deep learning methods for electronic component classification 

involve the use of advanced neural networks, such as CNNs and transformers, to categorize electronic components based on 

their visual attributes and features. These methods are particularly valuable in automating the identification and sorting of 

electronic components, which can vary significantly in size and appearance. They are widely employed in quality control 

processes in electronics manufacturing, ensuring that the correct components are used in assembly. Additionally, this 

technology finds applications in inventory management, making it easier to track and manage the vast array of components 

used in various products. The importance of deep learning in this context lies in its ability to achieve high accuracy and speed 

in classification, reducing human error and increasing efficiency in the electronics industry. It also paves the way for the 

automation of tedious and time-consuming tasks, allowing human resources to be redirected to more complex and creative 

aspects of electronic design and production [21]–[28]. 

Our study focused on an extensive comparison of state-of-the-art deep learning models, including EfficientNet-V2B3 [29], 

EfficientNet-V2S [30], EfficientNet-B0 [31] , Inception-V3 [32], MobileNet [33], and Vision Transformer (ViT) [34], in the 

realm of electronic component classification. We evaluated their performance across various electronic component classes, 

such as capacitor, LED, potentiometer, button, resistor, transistor, and ultrasonic sensor. The significance of this research lies 

in its potential to bring about a significant transformation in the electronics industry by providing a robust and highly accurate 

automated solution for classifying electronic components. Such a system has the capacity to greatly enhance quality control, 

reduce errors, and expedite manufacturing processes. Furthermore, the unique value of our work is evident in its thorough 

examination of these advanced models in a practical, industrial context, highlighting their real-world applicability. By 

demonstrating the capabilities of these models in achieving exceptional accuracy in component classification, we contribute 

to the ongoing efforts aimed at advancing automation, efficiency, and precision in electronic component management, 

offering a compelling pathway to redefine modern electronics manufacturing. In the subsequent sections of this study, we 

will delve into the existing body of work within this domain, the dataset employed, the methodology employed, the 

experimental endeavors, and the outcomes obtained. We aim to provide a comprehensive overview of related research, 

illuminate the specifics of our dataset, elucidate the methods applied, chronicle our experimental investigations, and 

ultimately present the findings and results that have emerged from our efforts. 

2. Relevant Work

The recognition of electronic components has been extensively studied, with methodologies that integrate image processing, 

machine learning, and deep learning techniques. Image processing methods involve the use of edge detection algorithms to 

outline the contours and edges of electronic components, with color and intensity analysis playing a crucial role, especially 

in identifying components on printed circuit boards. Machine learning approaches such as SVM leverage component features 

for classification, and decision trees and forests are employed for effective feature extraction. Deep learning methodologies, 

particularly CNN, demonstrate effectiveness, especially in the recognition of components on printed circuit boards. Transfer 

learning, utilizing pre-trained models from extensive datasets, enhances component recognition performance, even with 

smaller datasets. Object detection methods like R-CNN and its derivatives, as well as YOLO (You Only Look Once), offer 

effective strategies for recognizing components within images [28]. Tailored methods, specific to component characteristics, 

involve geometry analysis and Optical Character Recognition (OCR) for labels or text on components. This dynamic field 

continues to evolve, holding substantial potential, particularly in applications such as industrial automation, electronic 

manufacturing, and maintenance [21]–[28]. Table 1 represents various studies in the literature, each detailing their dataset, 

task, methodology, and the achieved results. For instance, reference [21] employed the ERFAM-YOLOv3 method for object 

detection on a dataset consisting of 1000 images with 29 instrument categories, achieving a notable 95.03% average accuracy. 

Similarly, other references provide insights into different approaches and outcomes in the field of electronic component 

recognition. According to the values provided in this table, the performance rates vary within the range of 90% to 100%. 

3. Dataset

The images of various electronic components, including capacitors, LEDs, potentiometers, push buttons, resistors, transistors,

and ultrasonic sensors, were collected from publicly available datasets for the purpose of classification in a research project.

These datasets contain visual representations of these components, which are essential in electronic circuitry and various

applications [35]–[37]. The dataset also includes images that we captured ourselves and images obtained from Google image

search. Figure 1 illustrates randomly chosen samples within the dataset. Table 2 shows the number of training and testing
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samples for each component category in the study. The dataset has been partitioned with approximately 25% of the total data 

allocated for testing and 75% for training purposes. Since the dataset contains images of varying quality and from different 

perspectives, and it possesses enough data for classification, no augmentation process was performed. In Figure 2, a block 

diagram illustrating the data set preparation process is provided. 

Table 1 Relevant work 

Ref. Dataset Task Method Result 

[23] 
483 images, 5000 labeled IC 

instances 
Object detection 

VN-Siamesev2 

network containing 

the backbone of 

VGG16 architecture 

92.31% accuracy 

[21] 

1000 images, 29 instrument 

categories, 182900 electronic 

components 

Object detection ERFAM-YOLOv3 95.03%average accuracy 

[22] 8000 images Object detection ECLAD-Net 90%-100% 

[24] 60 images, 172 labeled components Object detection Image processing 91.28% 

[25] 3094 images Classification Siamese network 99% 

[26] 200340 images Classification 
Multilayer 

perceptron 
92.3% 

[27] - Classification 
Back Propagation 

Neural Network 
95.8% 

[28] 1026 images, 4 categories Object detection YOLOv2 Network 

0.27 error rate on test set 

0.8743% on evaluation set 

Figure 1 Sample images from the dataset. 

4. Method

We used transfer learning based deep learning models in our study. Transfer learning in the context of deep learning refers 

to the practice of leveraging a pre-trained neural network model for a new, related task. It's a technique where a model 

developed for a particular task is adapted for a second related task. Transfer learning can significantly speed up the training 

process and often leads to better performance compared to training a model from scratch. Transfer learning typically involves 

starting with a pre-trained model that has been trained on a large dataset for a similar or related problem. These models are 

often trained on massive datasets and have learned useful features from them. After obtaining a pre-trained model, you fine-

tune it for your specific task. Training deep neural networks from scratch can be computationally expensive and time-
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consuming, especially when dealing with large datasets and complex architectures. Transfer learning allows you to start with 

a pre-trained model, saving a significant amount of training time. 

Determination of classes

Collecting a large dataset for the 

identified classes

Folder-based data labeling

Splitting the data into training and 

testing sets

(Capacitor, LED, 

potentiometer, Push button, 

resistor, transistor, ultrasonic 

sensor)

Capacitor LED

Pot.

Push 
button

Ultrasonic 
sensor

Resistor

Transistor

Dataset

75%

25%

TRAIN TEST SPLIT

Dataset Training data Dataset Test data

Figure 2 Dataset preparation diagram 

Table 2 Component Classification Data: Training and Testing Split 

Components Train Test 

Capacitor 600 200 

Led 375 100 

Poentiometer 302 100 

Push Button 301 100 

Resistor 355 100 

Transistor 281 100 

Ultrasonic Sensor 300 100 

Total 2514 800 

We have leveraged a selection of pre-trained CNN architectures, including EfficientNet-V2B3, EfficientNet-V2S, 

EfficientNet-B0, Inception-V3, MobileNet, and Vision transformer based neural network (ViT), for the purpose of electronic 

component classification. These models can be readily accessed in Keras, an open-source neural network library written in 

Python [38]. 

Inception, also recognized as GoogleNet, represents a deep learning architecture tailored for CNNs, meticulously crafted to 

tackle the complexities of training exceptionally deep networks without compromising computational efficiency. Pioneered 

by researchers at Google, Inception introduces an ingenious 'inception module' that integrates multiple convolutional filter 
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sizes and pooling operations within a single layer. This innovative approach empowers the network to capture features across 

various scales, thereby enhancing the robustness and precision of feature extraction. Inception has exerted a profound 

influence on the domain of computer vision, particularly in tasks such as image classification and object detection. Its aptitude 

for harmonizing model depth with computational efficiency has solidified its status as a widely adopted architectural solution 

in the realm of deep learning [39]. 

EfficientNet is a family of deep learning models specifically designed to achieve state-of-the-art performance with high 

efficiency in terms of computational resources. These models use a novel scaling method that uniformly scales the network's 

depth, width, and resolution. This approach ensures that the model adapts to different computational constraints while 

maintaining excellent performance on a wide range of computer vision tasks, such as image classification and object 

detection. EfficientNet's architecture efficiently balances model size and accuracy, making it a popular choice for various 

real-world applications where computational efficiency is a priority, such as edge devices and resource-constrained 

environments [40]. 

MobileNet is a CNN architecture designed for efficient and lightweight deep learning applications, particularly optimized for 

mobile and edge computing devices. Introduced by Google researchers in 2017, MobileNet addresses the challenge of 

deploying complex neural networks on resource-constrained platforms. It achieves computational efficiency through the use 

of depth wise separable convolutions, a key architectural element that significantly reduces the number of parameters and 

computations required. The network's core idea is to factorize a standard convolution into a depth wise convolution and a 

1x1 pointwise convolution. The depth wise convolution applies a single filter per input channel, followed by a 1x1 pointwise 

convolution that combines the outputs from the depth wise convolution. This separation of spatial and channel-wise filtering 

allows MobileNet to maintain a good balance between accuracy and computational efficiency. With its lightweight design, 

MobileNet has become a popular choice for real-time image classification and object detection tasks on devices with limited 

computational resources. 

The Vision Transformer (ViT) represents a groundbreaking architecture in the realm of computer vision and image 

processing. Introduced in a seminal paper by researchers from Google in 2020, ViT diverges from conventional CNN 

structures by exclusively relying on self-attention mechanisms. The architecture leverages the Transformer model, originally 

designed for natural language processing, to capture intricate hierarchical features within images. In ViT, the input image is 

divided into fixed-size non-overlapping patches, which are linearly embedded and flattened into sequences. These sequences 

serve as input tokens for the Transformer encoder, allowing the model to attend to relationships between different image 

patches. This mechanism enables ViT to grasp both local and global contextual information, crucial for understanding 

complex visual patterns. Additionally, ViT employs positional embeddings to preserve spatial information within the 

flattened sequences. Notably, ViT has demonstrated exceptional performance on various computer vision tasks, often 

surpassing traditional CNNs. Its remarkable ability to scale to large datasets and capture long-range dependencies positions 

ViT as a versatile architecture for vision-based applications, showcasing its potential impact on the evolution of deep learning 

models for image understanding. 

The metrics employed for the comparative assessment of the performance of these architectures include Accuracy (Acc.), 

Precision, Recall, and F1 Score values. These metrics serve as quantitative indicators to evaluate the effectiveness and 

capabilities of the different models in a rigorous and systematic manner. Precision measures the model's ability to accurately 

identify positive instances among the instances it predicts as positive as given in Eq.1. Recall, also known as the true positive 

rate or sensitivity, assesses the model's ability to correctly identify all positive instances, as defined in Equation 2. The F1 

score, a harmonic mean of precision and recall, strikes a balance between precision and recall, proving valuable for 

imbalanced datasets according to Equation 3. Accuracy, measured by the formula in Equation 4, evaluates the overall 

correctness of the model's predictions. A block diagram of the deep learning-based classification system is given in Figure 3. 

𝑷 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
(1) 

𝑹 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
(2) 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 = 𝟐 ∙
𝑷∙𝑹

𝑷+𝑹
(3) 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
(4)
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Figure 3 Block diagram of the deep learning-based classification system 

5. Results

Table 3 presents the training performance metrics for various base models used in the first approach. The metrics include 

training accuracy, acc-loss (accuracy loss), validation accuracy, and val-loss (validation loss). The presented data illustrates 

the training accuracy, accuracy loss, validation accuracy, and validation loss for each base model after 100 epochs. Notably, 

the EfficientNet-0V2S model achieved the highest training accuracy of 99.50%, with a relatively low accuracy loss of 0.0234. 

However, each model's performance is comprehensively evaluated based on both training and validation metrics, providing 

a comprehensive overview of their effectiveness in the first approach. Table 4 presents the performance metrics of re-trained 

models for the first approach, considering various classification tasks. The metrics include accuracy (Acc.), precision, recall, 

F1 score, and overall accuracy. The provided table details the performance metrics for re-trained models in the first approach 

across various classes. For instance, the MobileNet model demonstrates high accuracy for LED classification (96.68%), while 

ViT achieves perfect accuracy (100%) across all classes, indicating excellent overall performance. Precision, recall, and F1 

score metrics offer insights into the models' ability to correctly classify instances, providing a comprehensive evaluation of 

their effectiveness in differentiating electronic components. The overall accuracy metric presents a consolidated measure of 

each model's performance across all classes, facilitating a holistic assessment of their classification capabilities. 

Table 3 Training performance table for the first approach 

Base Model Training Accuracy Acc-loss Validation accuracy Val-loss 

EfficientNet-V2B3 0.9876 0.0475  0.8044 0.1107 

EfficientNet-V2S 0.9930 0.0210 0.8523 0.6433  

EfficientNet-B0 0.9911 0.0299  0.8184 1.0668 

Inception-V3 0.9892  0.0442   0.6617 2.5616  

MobileNet 0.9958 0.0167 0.7143 2.4491 

ViT 0.9850 0.2477 0.9621 0.41 
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Table 4 Performance metrics of re-trained models for the first approach 

Method Class n truth n classified Acc. Precision Recall 
F1 

Score 
Overall Acc. 

MobileNet 

Capacitor 184 200 89.26% 0.74 0.81 0.78 

87.27% 

LED 99 100 99% 0.95 0.97 0.96 

Potentiometer 87 100 98.13% 0.86 0.99 0.92 

Button 136 100 94.01% 0.94 0.69 0.80 

Resistor 89 100 98.63% 0.89 1.0 0.94 

Transistor 113 100 97.13% 0.95 0.84 0.89 

Ultrasonic Sensor 93 100 98.38% 0.90 0.97 0.93 

Inception-V3 

Capacitor 153 200 89.39% 0.67 0.88 0.76 

84.39% 

LED 112 100 97.88% 0.97 0.88 0.92 

Potentiometer 102 100 97.5% 0.91 0.89 0.90 

Button 87 100 96.38% 0.79 0.91 0.84 

Resistor 101 100 96.63% 0.87 0.86 0.87 

Transistor 109 100 96.63% 0.91 0.83 0.87 

Ultrasonic Sensor 137 100 94.38% 0.96 0.70 0.81 

EfficientNet-B0 

Capacitor 227 200 88.13% 0.83 0.73 0.78 

85.13% 

LED 102 100 99% 0.97 0.95 0.96 

Potentiometer 85 100 97.63% 0.83 0.98 0.90 

Button 92 100 95.5% 0.78 0.85 0.81 

Resistor 78 100 97% 0.77 0.99 0.87 

Transistor 126 100 96% 0.97 0.77 0.86 

Ultrasonic Sensor 90 100 97% 0.83 0.92 0.87 

EfficientNet-

V2B3 

Capacitor 153 200 88.88% 0.66 0.86 0.75 

86.63% 

LED 96 100 99% 0.94 0.98 0.96 

Potentiometer 112 100 97.75% 0.97 0.87 0.92 

Button 110 100 97.5% 0.95 0.86 0.90 

Resistor 105 100 98.63% 0.97 0.92 0.95 

Transistor 144 100 94% 0.98 0.68 0.80 

Ultrasonic Sensor 80 100 97.5% 0.80 1.0 0.89 

EfficientNet-V2S 

Capacitor 80 200 85% 0.40 1.0 0..57 

82.5% 

LED 106 100 97.25% 0.94 0.89 0.91 

Potentiometer 117 100 97.13% 0.97 0.83 0.89 

Button 144 100 94% 0.98 0.68 0.80 

Resistor 115 100 97.88% 0.99 0.86 0.92 

Transistor 138 100 95.25% 1.0 0.72 0.84 

Ultrasonic Sensor 100 100 98% 0.92 0.92 0.92 

ViT 

Capacitor 206 200 99% 0.99 0.97 0.98 

98.5% 

LED 100 100 100% 1.0 1.0 1.0 

Potentiometer 101 100 99.88% 1.0 0.99 1.0 

Button 100 100 99.28% 0.97 0.97 0.97 

Resistor 98 100 99.75% 0.98 1.0 0.99 

Transistor 101 100 99.88% 1.0 0.99 1.0 

Ultrasonic Sensor 94 100 99.25% 0.94 1.0 0.97 
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6. Conclusions

In this study, we successfully implemented an accurate electronic component classification system using state-of-the-art deep 

learning architectures. The models, including EfficientNet-V2B3, EfficientNet-V2S, EfficientNet-B0, Inception-V3, 

MobileNet, and Vision Transformer (ViT), achieved a classification accuracy of over 98%. The comprehensive evaluation 

across various electronic component classes demonstrated the models' effectiveness in complex visual recognition tasks 

within the electronic components’ domain. Training metrics further confirmed the models' efficiency, displaying high 

accuracy and minimal loss during both training and validation phases. Given the achieved high classification accuracy, we 

recommend considering the real-world deployment of the developed electronic component classification system. This system 

has the potential to significantly improve automation and efficiency in the electronics industry, particularly in tasks related 

to quality control, manufacturing, and inventory management. To enhance the system's generalization capability, expanding 

the dataset to include a wider variety of electronic components and variations in environmental conditions is advised. This 

expansion ensures the model's effectiveness in recognizing a broader range of components under various circumstances. As 

technology and industry standards evolve, continuous monitoring, feedback loops, and model updates become crucial. 

Regular assessments and updates are essential to ensure the system's adaptability to changing requirements and emerging 

technologies in the electronics sector. In conclusion, the successful implementation of this electronic component classification 

system opens doors for transformative applications in the electronics industry. The combination of advanced deep learning 

models and meticulous experimental methodologies positions this system as an asset for driving innovation, precision, and 

efficiency in electronic component management and manufacturing processes. 
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An Analysis of Intelligent Turkish Text Classification 

Models for Routing Calls in Call Centers: A Case Study 
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ABSTRACT 

Call centers play a key role in the management of customer relationships in the modern business world. 

However, the growing demand for their services presents significant challenges, particularly in terms of staffing 
and handling increasing call volumes. This paper addresses these issues by presenting an AI-driven text 

classification framework tailored for the Republic of Turkiye Ministry of Trade Call Centre (MTCC), with the 

aim of automatically routing calls to relevant departments. Using a specific dataset of 20,000 phone call texts 
collected from the MTCC, the study employs TF-IDF, Word2Vec, and GloVe text vectorization techniques and 

applies various machine learning algorithms such as K-Nearest Neighbours, Naive Bayes, Support Vector 

Machines, Adaptive Boosting, Decision Tree and Random Forest for text classification. Through a 
comprehensive analysis, the study answers key research questions regarding optimal classifiers and 

vectorization methods. The proposed solution not only improves the efficiency of MTCC's call routing but also 

provides researchers with practical insights regarding Turkish text classification. The results indicate that a 
combination of the Random Forest classifier and Word2Vec text vectorization method is the optimal model that 

can manage to route calls in real-time. 

Keywords: Text classification, Word2Vec, GloVe, TF-IDF, Call center 
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1. Introduction

Call centers play a crucial role in modern business in order to enhance customer relation management. Their goal is to ensure 

customer satisfaction by providing them with accurate information, responding quickly to inquiries, and dealing effectively 

with service requests. In recent years, there has been a surge in demand for call center services as a result of technological 

advances and increases in trading volumes. However, many companies and institutions face challenges in customer relations 

management due to a lack of qualified staff to handle initial inquiries. This situation leads to delayed and inaccurate problem 

resolution, resulting in longer wait times and customers having to make repeated calls, even for simple issues. The result is 

an increase in customer dissatisfaction and a rise in complaints. Furthermore, call center representatives, who are frequently 

overburdened, are exposed to excessive stress and have to deal with angry customers. Therefore, there is an urgent need for 

intelligent assistance systems to improve call center representatives’ performance and motivation. These factors underline 

the significance of integrating automation and intelligent support tools into call centers. 

In this paper, we develop an AI-driven text classification framework to address the challenges faced in call centers. As a case 

study, we have focused on the routing of incoming calls to the Republic of Turkiye's Ministry of Trade Call Centre (MTCC) 

to the relevant departments, taking into account the call text. MTCC receives an average of 10,000 daily calls, which are first 

answered by call center representatives. These representatives decide whether to handle the call themselves or forward it to 

the relevant department. However, due to the diverse call content and varying call center representative knowledge and 

experience levels, they sometimes provide customers with the wrong solutions or direct them to the wrong departments. 

These errors result in unresolved problems or delayed solutions. These delays not only disrupt the operation of the Ministry 

of Trade but also lead to economic losses for the country. 

To tackle these challenges, this study introduces an innovative solution that utilizes various machine learning techniques to 

route incoming calls to the relevant departments automatically in the MTCC. The objective is to enhance customer 

satisfaction by delivering quicker and more precise solutions. To achieve this, we used a dataset of 20,000 sample call texts 

e-ISSN: 2636-8129 
Publisher: Sakarya University

Vol. 7, No. 1, 2024, 46-60 
DOI: 10.35377/saucis...1402414 

https://doi.org/10.35377/saucis...1402414
https://orcid.org/0000-0002-3866-7041
https://orcid.org/0000-0002-0683-2049
http://saucis.sakarya.edu.tr/
mailto:yasinortakci@karabuk.edu.tr
https://doi.org/10.35377/saucis...1402414


 
Muammer Özdemir and Yasin Ortakcı                                                  Sakarya University Journal of Computer and Information Sciences 7 (1) 2024, 46-60 

47 

received by the MTCC and their correctly routed departments. These texts were pre-processed and transformed into numerical 

representations using TF-IDF (Term Frequency- Inverse Document Frequency), Word2Vec, and GloVe text vectorization 

techniques. We then applied a variety of machine learning algorithms, including K-Nearest Neighbors (K-NN), Naive Bayes 

(NB), Support Vector Machines (SVM), Adaptive Boosting (AdaBoost), Decision Tree (DT), and Random Forest (RF) to 

classify these digitized call transcripts and route the calls to the appropriate departments. 

Throughout our experiments, we conducted extensive analysis of text classification algorithms and text vectorization 

methods. Our primary objective was to find the most effective combination of classifiers and text vectorization methods, 

which demonstrate superior performance in classifying MTCC call text. Additionally, we investigated the responses to the 

following research questions (RQ): (RQ1) What is the most appropriate classifier to use in text classification? (RQ2) Which 

text vectorization technique yields better performance across the classifiers? (RQ3) Which classifier and text vectorization 

method combination produces the highest text classification results? (RQ4) Which combination of classifiers and text 

vectorization methods yields optimal results in terms of both runtime efficiency and accuracy? Our observations and findings 

regarding these matters are elaborated in section 4.4 in detail. Consequently, the key contributions of this study can be 

summarized as follows: 

 We propose an automated system designed to streamline the routing of phone calls within the MTCC, thereby 

improving the efficiency of call center operations. 

 This study presents a comprehensive comparative analysis of text classification performance on Turkish texts using 

classifiers such as K-NN, NB, SVM, AdaBoost, DT, and RF together with TF-IDF, Word2Vec, and GloVe text 

vectorization methods. 

 Some practical information is provided for customer service representatives to enhance the performance of the 

proposed intelligent system. 

The rest of the paper is organized as follows. Section 2 provides the current literature related to this study. Section 3 presents 

the methodology of this study, describing the data pre-processing, text vectorization, and classification steps. Section 4 

provides comprehensive experiments on the MTCC dataset with its implications. Finally, Section 5 concludes our study and 

provides the scope for future work. 

2. Literature Review 

Customer satisfaction (CS) is a crucial objective of marketing research, which focuses on evaluating the satisfaction levels 

of customers with products and services through their experiences with companies [1-2]. Recent developments in information 

technology have yielded significant advances in assessing CS. Namely, to ensure CS, much research has focused on 

enhancing the performance of call center departments through various tools. For instance, Park and Gates conducted research 

demonstrating the ability to automatically measure CS by analyzing call transcripts. This method allows companies to 

evaluate satisfaction for each call in almost real-time [3]. Similarly, Chowdhury et al. investigated the predictive capacity of 

turn-taking as a key factor influencing user satisfaction in verbal conversations [4]. Luque et al. carried out a study aimed at 

predicting CS through the analysis of various acoustic features extracted from customer service conversations. The study 

utilized convolutional neural networks to measure satisfaction, with a focus on accentuation-related data in the dialogues. 

Their proposed method demonstrated superior performance in comparison to traditional systems, in terms of AUC and F-

score criteria [5]. Chatterjee et al. categorized problematic and non-problematic phone calls by employing an SVM classifier 

based on audio features such as meal-frequency cepstral coefficients, energy, voice, and zero-crossing rate. Their system 

identified the problematic calls with an 87,5%  accuracy rate [6]. 

Customer relation management studies on call centers have mainly concentrated on utilizing machine learning techniques for 

text classification. In this context, Meinzer et al. used four different machine learning classifiers, namely AdaBoost, K-NN, 

SVM, and RF, to quantify levels of customer dissatisfaction in the automotive sector. The study found that the SVM method, 

which utilized the radial basis function as its kernel, demonstrated the greatest accuracy among all classifiers in detecting 

dissatisfaction, with an accuracy of 88.8% [7]. Liu et al. introduced a model that integrates key utterance analysis and logistic 

regression algorithms for the classification of service conversations in call centers. The effectiveness of this model was 

demonstrated in their experiments, particularly with a limited training dataset [8]. Busemann et al. introduced a systematic 

method to categorize emails in call centers according to their content by leveraging shallow text processing and various 

machine learning techniques such as lazy learners, SVM, and symbolic eager learners. Their model was seamlessly integrated 

into an assistance system for call center representatives, improving the overall quality of responses [9]. Galanis et al. 

developed a technique to extract emotional segments from a call center speech database by incorporating SVM [10]. 

Emmanuela et al. measured customer satisfaction by applying text classification techniques to user surveys of 549 customers 

organized in different marketplaces. The study employed K-NN, DT, and NB machine learning methods and found that the 

DT algorithm had the highest accuracy [11]. 

The first step in text classification studies is transforming texts into numerical representations [12]. Salminen et al. presented 
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a comprehensive classification analysis for online hate detection using comments from various platforms such as YouTube, 

Reddit, Wikipedia, and Twitter. They employed a combination of classification algorithms, including LR, NB, SVM, 

XGBoost, and Artificial Neural Network (ANN), along with diverse feature extraction methods like Bag of Words (BoW), 

TF-IDF, Word2Vec, and BERT. Their findings revealed that XGBoost emerged as the top-performing model, achieving an 

F1 Score of 0.92 [13]. Alaoui and Nfaoui developed four different deep learning-based text classification models using CNN 

and LSTM networks with Word2Vec to detect malicious HTTP web requests. They concluded that LSTM has better 

performance than the others in terms of classification metrics and training time [14]. In another study, Cahyani and Patasik 

compared the efficacy of TF-IDF and Word2Vec methods for sentiment analysis of commuter line tweets using SVM and 

Multinomial NB methods. Their two-step approach first categorized tweets as having or not having emotion, followed by 

classification into five emotion types: happy, angry, sad, scared, and surprised. The results demonstrated that TF-IDF 

outperformed Word2Vec across various metrics, enhancing classification performance compared to previous studies [15]. 

Akuma et al. compared the performance of BoW and TF-IDF feature extraction methods for hate speech detection from live 

tweets. They combined machine learning methods such as NB, DT, LR, and K-NN with TF-IDF and BoW, evaluating them 

on the Kaggle Hate Speech and Offensive Language dataset. When the results were evaluated according to precision, recall, 

f1-score, and accuracy metrics, DT was the most successful machine learning, while TF-IDF outperformed BoW as a feature 

extraction technique [16].  

For example, Öğe and Kayaalp performed sentiment analysis on IMDB comments using BoW, TF-IDF, FastText, and 

Word2Vec text representation methods. LR and SVM, which produce similar results, achieved 86%, 87%, 87%, and 83% 

accuracy for BoW, TF-IDF, Word2Vec, and FastText, respectively [17]. Ekici and Takcı integrated Word2Vec and TF-IDF 

methods with the Gradient Boosting algorithm and compared their performance on a Turkish spam dataset. According to the 

results of the study, the TF-IDF and Gradient Boosting pair were more successful than the Word2Vec&Gradient Boosting 

pair and CNN model [18]. Koruyan and Ekeryilmaz employed the TF-IDF approach, alongside LR, SVM, and Stochastic 

Gradient Descent classifiers, in their study, which categorized the complaints from three prominent consumer electronics 

retailers in Turkey that were received via the Sikayetvar.com website. The study showed that LR achieved the highest 

accuracy rate of 80% [19].  Çelik and Koc carried out a study that categorized Turkish news collected from various sources 

into six distinct groups. The study employed several classifiers such as SVM, NB, LR, RF, and ANN and used TF-IDF, 

Word2Vec, and FastText word representation methods. The FastText and SVM combination presented the highest accuracy 

rate of 95.75%, outperforming other methods [20]. 

Our study distinguishes itself from prior studies through a comprehensive exploration of various text classification 

techniques, particularly on a Turkish corpus. Additionally, our contribution to the literature includes an in-depth examination 

of the synergy between these classifiers and diverse text vectorization methods applied to Turkish texts. Furthermore, we 

introduce an intelligent assistant application within the developed MTCC framework, capable of autonomously directing 

calls to the pertinent units. 

3. Methodology 

In this section, we describe our framework, presenting a systematic approach for vectorization and classification of text within 

call conversation. Our methodology starts with the pre-processing of incoming call text at the MTCC. We applied three 

different techniques for text digitization: TF-IDF, Word2Vec, and GloVe. After generating text representation, we proceeded 

with the classification of call text using six distinct machine-learning algorithms: K-NN, NB, SVM, AdaBoost, DT, and RF. 

We then evaluated the performance of each classifier with respect to the text vectorization methods to identify the most 

compatible classifier and text vectorization method. Figure 1 depicts the general overview of our framework. 

3.1 Data Pre-processing 

Our dataset consists of transcripts of telephone conversations between customers and call center representatives at the MTCC. 

The data pre-processing step of this study encompasses the tasks of data cleaning, tokenization, and lemmatization. 

The data cleaning process includes a series of steps. Firstly, it corrects spelling errors and removes empty text, duplicates, 

and punctuation from the dataset. Moreover, it filters out user-specific data such as identity numbers, phone numbers, and 

declaration numbers. Additionally, we eliminate stop words, which are typically short, high-frequency words that do not have 

significant meaning on their own and are often used for sentence structure and cohesion [21-22]. Stop words are generally 

excluded from Natural Language Processing (NLP) analysis to reduce dimensionality and speed up processing since they 

have limited semantic contribution to the text [23]. As the MTCC dataset includes Turkish text records, we used the 'Turkish' 

package of the Natural Language Toolkit (NLTK) library to remove the stop words, such as "ama", "gibi", "fakat",  
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Figure 1 The Implementation Stages of The Proposed Framework for Call Text Classification 

 

"yani", "ya", "mı", "mi", "ne", "ve" and so on. NLTK is an open-source Python library that offers a comprehensive set of 

NLP functions. Data cleaning ends with the standardization of all text to lowercase. 

In the second step of pre-processing, we tokenized the text by segmenting it into words based on spaces. Tokenization is an 

essential pre-processing technique that breaks text into meaningful units referred to as tokens, such as words, phrases, or 

symbols [24]. For tokenization, we also utilized the NLTK library. 

Finally, we implemented lemmatization to extract the root of the words. Lemmatization is a fundamental NLP technique that 

modifies or eliminates suffixes on a word to obtain its basic form, known as the 'lemma' [25]. In this study, we used the 'tr' 

class from Simplemma, an open-source Python library designed to identify the root or basic form of words [26]. 

3.2 Text Vectorization 

After completing the data pre-processing, we applied three distinct methods for converting text to vector representations: TF-

IDF, Word2Vec, and GloVe. These methods transform the textual data into numerical representations, allowing us to address 

NLP problems through mathematical approaches. 

3.2.1 TF-IDF (Term Frequency-Inverse Document Frequency) 

TF-IDF is one of the most widely used text representation methods, providing a statistical metric to quantify the mathematical 

significance of words within a given corpus. TF-IDF considers both the frequency of a word within a specific document and 

how rarely it appears across all documents. The TF-IDF score for a word in a document is calculated by multiplying its Term 

Frequency (TF) and the Inverse Document Frequency (IDF) scores, resulting in a score that ranges from 0 to 1. 

To illustrate the computation of a basic TF-IDF value in a given corpus, let's consider an example. TF refers to the division 

of the frequency of a given word (t) in a particular document (d), divided by the total number of words in that document (Z), 

as shown in Eq. (1). On the other hand, the IDF involves the calculation of the logarithm of the total number of documents 

(N) in the corpus (C), divided by the number of documents in which the word (t) appears, as shown in Eq. (2). The TF-IDF 

value is then obtained by multiplying these two values, as in Eq. (3). Consequently, words that frequently appear within a 

specific document but rarely across all documents receive a high score, indicating their significance in the text representation. 

Conversely, words that frequently appear across all documents receive a low score, showing their limited influence [27]. 

 

                                                                                     𝑇𝐹(𝑡, 𝑑) =  𝑐𝑜𝑢𝑛𝑡(𝑡, 𝑑) / 𝑍             (1) 

                                                                              𝐼𝐷𝐹 (𝑡, 𝐷) =  𝑙𝑜𝑔 (
𝑁

𝑐𝑜𝑢𝑛𝑡 ( 𝑑 ∈  𝐷 ∶  𝑡 ∈  𝑑 )
)                                                    (2) 

                                                                           𝑇𝐹 − 𝐼𝐷𝐹 (𝑡, 𝑑, 𝐷) =  𝑇𝐹(𝑡, 𝑑) ∗  𝐼𝐷𝐹(𝑡, 𝐷)                            (3) 

where: 
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𝑐𝑜𝑢𝑛𝑡(𝑡, 𝑑): Number of a given word (t) in a specific document. 

Z: Total number of words in a particular document 

D: The corpus including all documents 

N: Total number of documents in the corpus  

𝑐𝑜𝑢𝑛𝑡(𝑑𝜖𝐷: 𝑡𝜖𝑑): Number of documents where the t term appears. 

For instance, if the term "kapikule" appears four times in a document that is composed of a total of 50 words, then the TF 

value would be 0.08. Additionally, if "kapikule" is found in 10 out of 500 documents in the corpus, then the IDF value would 

be calculated as 1.69. By multiplying both values, the resulting TF-IDF value equals 0.135. 

3.2.2 Word2Vec 

Word2Vec, developed by Mikolov et al. in 2013, is a text representation technique designed to improve the effectiveness of 

the Google search engine [28]. Its primary objective is to generate word representations using ANNs in a prediction-based 

manner. Unlike TF-IDF, which encodes text as high-dimensional sparse matrices, Word2Vec produces dense vector word 

embeddings for each word in the text.  It also places similar words close together in the vector space. Word embeddings offer 

two key advantages: a reduction in computational cost due to lower dimensionality and improved performance in NLP tasks 

by effectively grouping words that are semantically similar [29-30]. Word2Vec generates word embeddings by capturing the 

semantic meaning of words based on their context within the text. To achieve this, it employs two different neural network 

models: Continuous Bag-of-Words (CBOW) and Skip-gram [31]. 

The CBOW model aims to forecast the central word by considering the surrounding contextual words, which usually include 

a few words preceding and following the targeted word in the text. CBOW employs a defined window size that specifies the 

number of neighboring words taken into account. The words within this window collectively contribute to the prediction of 

the corresponding word. Figure 2 visually represents the CBOW architecture, with w(t) denoting the current word and terms 

ranging from w(t-2) to w(t+2) representing the surrounding words within the window size of the corresponding word, w(t). 

In this neural network, the hidden layer is a typical, fully connected, dense layer, whereas the output layer calculates the 

probabilities for the target word in the vocabulary. 

The skip-gram model takes a word in a text as the center of the window size, then predicts the neighboring words in this 

window as outputs. The central word in the window is denoted as w(t), while the surrounding words are represented with a 

range from w(t-2) to w(t+2) as shown in Figure 3. The skip-gram model predicts the neighboring words around a single word, 

considering the context. This characteristic makes the skip-gram model advantageous in representing less common or  

 
Figure 2 The General Architecture of CBOW 
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Figure 3 The General Architecture of Skip-Gram 

 

terms, enhancing its efficiency compared to CBOW.  Skip-gram is also more effective than CBOW in handling large datasets. 

These reasons and the fact that Skip-Gram produces better results in a shorter time than CBOW in our preliminary test led us 

to use Skip-Gram in this study. In our preliminary test, the runtimes for Skip-gram were 4.64, 0.65, 1.6, 4.61, 5.29, and 2.54 

seconds respectively for K-NN, SVM, NB, AdaBoost, DT, and RF, whereas for CBOW, the corresponding times were 4.86, 

0.66, 2.1, 4.70, 13.03, and 6.66 seconds. These results clearly show that Skip-gram exhibits shorter execution times across 

all classifiers compared to CBOW. 

3.2.3 GloVe 

GloVe, an acronym for "Global Vectors," refers to a word embedding model that was introduced by Pennington et al. [32]. 

In GloVe, the co-occurrence matrix (𝑋) is created from a corpus containing 𝑣 words and presented in a 𝑣 × 𝑣 matrix format. 

Each element in this matrix (𝑋𝑖𝑗) denotes the frequency of co-occurrence between 𝑤𝑜𝑟𝑑 𝑖 and 𝑤𝑜𝑟𝑑 𝑗. For instance, the co-

occurrence matrix for the given sentence "The apple is on the table" with a window size of one is given in Figure 4. 

This model distinguishes itself from Word2Vec by presenting a novel unbiased objective function that employs probability 

statistics for word prediction. GloVe generates precise word vectors by minimizing the prediction errors through an error 

function, which combines both local statistics derived from the corresponding sentence and global statistics obtained from 

the entire corpus. 

 

 
Figure 4 Glove Co-Occurrence Matrix of Given Sample Sentence 
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3.3 Text Classification 

This stage focuses on routing the call center records, the numerical representations of which have been generated in the 

preceding phase, to the respective departments. Within this framework, six different machine learning algorithms, K-NN, 

NB, SVM, AdaBoost, DT, and RF, are trained using the MTCC dataset to establish text classification models. This study 

presents a comprehensive analysis of the effectiveness of each classification model, taking into account its harmony with TF-

IDF, Word2Vec, and GloVe methods. 

3.3.1 K-Nearest Neighbors (K-NN) 

The k-NN algorithm, first formulated by Evelyn Fix and Joseph Hodges in 1951 and later extended by Thomas Cover, is a 

non-parametric supervised learning approach [33]. This algorithm uses a sample dataset with known classes to determine the 

class membership of a new sample. The calculation is performed by considering the distances between the new data point 

and the existing dataset, ultimately determining the final class of the point through the application of the k nearest neighbor 

majority approach. Specifically, the K-NN classifier uses the Euclidean distance metric to quantify the proximity between 

data points. 

3.3.2 Naïve Bayes (NB) 

NB, named after the mathematician Thomas Bayes, classifies data using the principles of probability [34]. NB calculates the 

probability of each class separately for a given sample and assigns the sample to the class with the highest probability. This 

technique is often used in various scenarios based on text classification, such as spam filtering and sentiment analysis. In 

general, versions of Multinomial NB, Bernoulli NB, and Gaussian NB are commonly used NB types. 

3.3.3 Support Vector Machines (SVM) 

SVM, proposed by Cortes and Vapnik (1995), has been extensively employed by researchers to address classification 

problems. SVM is a supervised machine learning algorithm that is used for classification and regression tasks [35]. This 

algorithm projects the data onto a high-dimensional feature space using kernels and identifies hyperplanes that divide the 

data into separate categories [36]. When identifying these hyperplanes, the aim is to maximize the distance between the 

closest points within different categories. This approach provides a robust classification model that is more resistant to noise 

and outliers.  

3.3.4 Decision Tree (DT) 

DT is a hierarchical tree-like structure based on the features of the input data. Each node in the tree represents a particular 

feature, while the edges leading from the node represent grouping components [37]. DTs can capture non-linear relationships 

between the input features and the target class. However, they can suffer from overfitting in cases where the tree is too 

complex or the training data is too noisy, leading to poor classification performance. To overcome these problems, pruning 

or ensembling methods can be applied. 

3.3.5 Adaptive Boosting (AdaBoost) 

AdaBoost is a popular ensemble machine-learning algorithm used for classification problems. It creates a robust classification 

model by combining multiple weak classifiers. AdaBoost is known for its ability to solve complex classification problems 

and handle noisy and imbalanced data. It has been successfully applied in various fields, such as object detection, face 

recognition, and medical diagnosis [38]. 

3.3.6 Random Forest (RF) 

RF is an ensemble learning algorithm consisting of multiple DTs, each trained on a different randomized subset of the dataset 

[39]. RF runs the standard DT algorithm on each subset and makes its final prediction by combining the results of the DT 

sets. In this combining process, RF applies the majority voting or the weighted voting methods to the class labels obtained 

from all trees. RF is a popular and powerful algorithm and has been successfully applied to many classification problems, 

such as image and speech recognition. 

4. Experimental Results 

This section presents a set of experiments and their results to evaluate the effectiveness of the proposed text classification 

framework. To ensure the reliability of the results, each classifier, in combination with three text vectorization methods, was 
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run 10 times, and the averages were calculated along with their respective standard deviations. 

To increase the robustness of the classifier models, we also incorporated k-fold cross-validation, a statistical technique 

essential for impartially evaluating the performance of machine learning algorithms. Rather than assessing a model solely on 

a single training/test subset, cross-validation employs k-fold validation, dividing the dataset into k different training/test 

subsets. This approach effectively mitigates the overfitting issues, a common concern in machine learning, and produces 

more reliable results. By training the model on varying training/test partitions of the same dataset, cross-validation ensures a 

more uniform and robust training process. In this study, we applied 5-fold cross-validation, meaning that the model creation 

was repeated five times. Within each fold, the dataset was divided into training and test subsets, with a split of 80% to 20%.  

4.1 Setup 

The experiments were carried out on a PC with the following specifications: an Intel (R) Core (TM) i7-10700 CPU @ 

2.90GHz, with 8 cores and 16 logical processors, supported by 32 GB of RAM and a 500 GB SSD. The proposed framework 

was developed using the Python programming language within the Spyder environment (Anaconda3 version 4.10.3). We 

leveraged the sci-kit-learn library version 0.24.21 to implement the classification algorithms and cross-validation technique 

and to calculate evaluation metrics. The optimal parameters of the classifiers used in the experiments are listed in Table 1. 

Table 1 Optimal Parameter Values of Each Classifier Used in The Experiments 

Method Parameter Value 

K-NN n-neighbors 5 

NB alpha 1.0 

SVM 

kernel poly 

degree 3 

c 1.75 

gamma scale 

coef0 0.0 

AdaBoost 

base_estimator ExtraTreeClassifier 

n_estimators 50 

learning_rate 1.0 

DT 
min_samples_split default=2 

min_samples_leaf default=1 

RF 

min_samples_split default=2 

min_samples_leaf default=1 

n_estimators 15 

4.2 Dataset 

Our dataset consists of 20,000 records, including transcripts of phone calls to the MTCC. These records are obtained from 

actual calls made to the call center and are converted into text and forwarded to the relevant department by customer 

representatives. The department to which the call is directed becomes the label of the records in the dataset. The records and 

labels used in this study were validated by experts from the Ministry of Commerce to ensure their accuracy and suitability as 

a dataset. However, these records are in their raw and unedited form, with no imposed character limit. This comprehensive 

collection is sourced equally from 10 different departments within the Ministry of Trade. The distribution of these records 

across the departments and the average number of words and characters in the records of each department are shown in Table 

2. Our dataset consists of 20,000 records, including transcripts of phone calls to the MTCC.  

Table 2 The Distribution of Call Records Across the Department 

Department 

Label 
Department Name 

Number of 

Calls 

Average 

Word Count 

Average 

Character Count 

0 Center of Ministry 2000 31 231 

1 Retail Trade 2000 29 226 

2 MERSİS 2000 37 281 

3 Subscription Agreements 2000 46 329 

4 Unfair Commercial Practices 2000 31 239 

5 After Sales Services 2000 44 320 

6 Department Of Exemptions 2000 34 272 

7 Consumer Arbitration Committee App Processes 2000 43 318 

8 Distance Sales 2000 44 325 

9 Defective Goods and Services 2000 33 248 

                                                      
1 https://scikit-learn.org/stable/user_guide.html 
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Figure 5 Distribution of the Average Count of Words and Characters in the Call Text across the 10 Departments 

Figure 5 illustrates the average number of words and characters present in the texts of phone calls across the 10 departments 

outlined in Table 2. When we examine the average word and character counts across all departments, it is evident that there 

is no significant difference that might negatively affect the classification of call texts. This reasonable distribution within our 

newly created dataset contributes to improving the prediction accuracy of text classification and building a robust model. 

4.3 Performance Metrics 

To evaluate the effectiveness of text classification algorithms in our experiments, we employed accuracy, precision, recall, 

and f1-score metrics, which are derived from the confusion matrix. The confusion matrix is a versatile tool, applicable to 

both binary and multi-class classification problems, that provides a quantitative representation of predicted values compared 

to their actual values [40]. The confusion matrix enumerates True Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN) instances, encapsulating the sample counts associated with the results of a classification process. 

TP represents the number of correctly classified positive examples, while TN denotes the number of correctly classified 

negative examples. FP signifies the number of examples that are classified as positive but are negative, and FN indicates the 

number of examples that are classified as negative but are positive. 

The accuracy metric, as outlined by Eq. (4), determines the proportion of accurate predictions made by the model out of the 

total number of predictions. Precision signifies the positive predictive value, which measures the ratio of true positive samples 

to the total number of positives predicted by the model as in Eq. (5). Recall represents the degree to which positive examples 

are accurately predicted (Eq. 6). The f1-score is the harmonic mean of recall and precision (Eq. 7). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
                                                                                       (4) 

                                                                                   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                           (5) 

                   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                           (6) 

   𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                           (7) 

4.4 Results and Discussion 

In the experiments, we ran a total of 18 text classification models, each a combination of a classifier algorithm and a text 

vectorization method, 10 times each on the MTCC call text. Figure 6 displays the average accuracy values of all models with 

their standard deviations (SDs) on the bar chart. The small size of the SD bars for all models underlines the consistent results 

of these models. In addition, we conducted a two-way ANOVA statistical test of 6 (classifiers: AdaBoost, DT, KNN, NB, 

RF, and SVM) x 3 (vectorizers: Glove, TF-IDF, and Word2Vec) to analyze the variance between the models. We only 

considered the accuracy as other performance metrics have parallel results with accuracy. The results of the variance analysis 

were as follows: 
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Figure 6 Mean Accuracy Values with Standart Deviation Bars for Each Model 

 

 The results for the classifier showed a significant main effect with F(5,162)=58209.99, p<0.001, partial ƞ2 =0.999, 

indicating that the accuracy varies between different classifiers.  

 The main effect of the vectorizer method was also significant with F(2,162)=41684.37, p<0.001, partial ƞ2=0.998. 

Namely, each vectorizer has significantly different accuracy results from each other with MeanGloVe=0.887, 

SDGloVe=0.057; MeanTF-IDF=0.940, SD TF-IDF=0.011; and MeanWord2Vec=0.908, SD TF-IDF =0.057 values.    

 The interaction effect for classifier × vectorizer was also significant with F(10,162)=9342.70, p<0.001, partial  

ƞ2=0.998, meaning that the effect of a classifier on accuracy depended on the text vectorizer method. 

After confirming that there were significant differences between the models, we performed comparative analyses of these 

models. When comparing the accuracy values of the classifiers for TF-IDF, the models perform in the following order:  SVM, 

AdaBoost, RF, K-NN, DT, and NB. This ranking remains the same for Word2Vec. In the case of GloVe, the order changes 

to SVM, K-NN, AdaBoost, RF, DT, and NB. In addressing RQ1, it can be concluded that SVM consistently achieved the 

highest accuracy, while NB consistently yielded the lowest accuracy regardless of the text vectorization method. Furthermore, 

it is evident in Figure 6 that SVM, K-NN, AdaBoost, and RF exhibit comparable classification performance, with SVM 

consistently demonstrating superior performance.  

In addition to the accuracy, Table 3 elaborates on the classification results with the metrics precision, recall, f1-score, as well 

as the runtime of each model obtained when testing a sample text set. The values presented in Table 3 are the averages derived 

from 10 distinct experimental runs. Regarding the efficiency of the text vectorization methods, TF-IDF consistently produced 

the highest metrics across all classifiers, followed by Word2Vec and GloVe. The performance order of the text vectorization 

methods in all classifiers was consistently TF-IDF, Word2Vec, and GloVe as shown in Figure 7. This finding provides a 

reliable insight into the selection of text vectorization methods as well as answers to our RQ2.  

 
Figure 7 Mean Accuracy Value of Classifiers across the Text Vectorizers 



 
Muammer Özdemir and Yasin Ortakcı                                                  Sakarya University Journal of Computer and Information Sciences 7 (1) 2024, 46-60 

56 

To find the answer to RQ3, we compared the experimental results of 18 different classifier and text vectorizer combinations. 

As a result, the SVM&TF-IDF combination showed superior performance, achieving 95.7% accuracy, 95.8% precision, 

95.6% recall, and 95.7% f1-score in accurately classifying the call text into the corresponding departments. Conversely, the 

NB classifier showed the lowest performance of all three text vectorization methods for all classification metrics. In particular, 

the combination of NB with the Word2Vec and GloVe methods fell significantly below the average performance observed 

with the other methods. On the other hand, the classification performance of the models within our framework closely aligns, 

except for the combinations of NB&Word2Vec, NB&GloVe, and DT&GloVe.  

When comparing runtimes, it is evident that the Word2Vec method has the shortest runtime for all classifiers except K-NN. 

The DT&Word2Vec combination has the shortest runtime (0.095 sec) among the models, but its accuracy (0.906) is 

approximately 5% lower than the maximum accuracy observed in the experiments. On the other hand, K-NN and AdaBoost 

were the least efficient classifiers in terms of runtime. The combination of SVM&TF-IDF achieved the highest accuracy rate 

of 0.957 with a reasonable runtime averaging 0.937 seconds. The SVM&Word2Vec pair reached an accuracy rate of only 

about 1% less than SVM&TF-IDF, with an average accuracy of 0.948. Notably, its runtime averages 0.373 seconds, nearly 

three times less than SVM &TF-IDF. Therefore, SVM&Word2Vec also emerges as one of the most optimal models in terms 

of both runtime efficiency and accuracy. Regarding RQ4, the experimental results indicate that combinations such as 

SVM&Word2Vec or SVM&TF-IDF demonstrate the highest levels of accuracy and the most efficient runtimes across all 

models. 

Table 3 Mean Performance Metric Results for 10 Different Runs of Each Model and the Mean Runtimes of Each Model at 

the Test on a Sample Text Set. 

Classifier Vectorizer Accuracy ±SD Precision Recall F1-Score Runtime (sec) 

AdaBoost 

 

TF-IDF 0,946  ±0,0007 0,950 0,947 0,948 5.792 

Word2Vec 0,940  ±0,0009 0,944 0,940 0,941 1.321 

GloVe 0,919  ±0,0017 0,927 0,917 0,920 1.201 

DT 

 

TF-IDF 0,927  ±0,0009 0,927 0,927 0,927 0.294 

Word2Vec 0,906  ±0,0015 0,906 0,906 0,906 0.095 

GloVe 0,861  ±0,0020 0,860 0,862 0,860 0.119 

K-NN 

TF-IDF 0,941  ±0,0005 0,940 0,941 0,940 1.863 

Word2Vec 0,934  ±0,0008 0,935 0,934 0,934 1.884 

GloVe 0,923  ±0,0008 0,923 0,923 0,921 1.959 

NB 

 

TF-IDF 0,926  ±0,0004 0,925 0,926 0,925 0.128 

Word2Vec 0,784  ±0,0003 0,796 0,784 0,788 0.109 

GloVe 0,772  ±0,0005 0,786 0,771 0,775 0.131 

RF 

TF-IDF 0,946  ±0,0007 0,948 0,946 0,947 1.122 

Word2Vec 0,936  ±0,0006 0,938 0,936 0,937 0.706 

GloVe 0,910  ±0,0018 0,918 0,910 0,912 0.724 

SVM 

TF-IDF 0,957  ±0,0004 0,958 0,957 0,957 0.937 

Word2Vec 0,948  ±0,0006 0,949 0,948 0,948 0.373 

GloVe 0,939  ±0,0008 0,939 0,939 0,939 0.443 

 

Figures 8, 9, and 10 present the confusion matrices for each classifier, obtained by using the TF-IDF, Word2Vec, and GloVe 

methods, respectively. Within these matrices, numerical labels ranging from 0 to 9 are assigned to the departments outlined 

in Table 2. The rows indicate the actual department numbers, while the columns represent the predicted department numbers. 

These matrices provide a comprehensive overview of the classification models' outcomes, considering the correct and 

incorrect distribution of calls across the departments. For instance, in Figure 7. a, corresponding to the SVM&TF-IDF 

combination that achieved the highest accuracy in the experiments, 1793 out of 2000 calls for Department 0 (Centre of 

Ministry) are correctly classified. In contrast, the other 207 calls were misclassified. Specifically, 201 of these calls were 

assigned to Department 1 (Retail Trade), while 6 calls were assigned to Department 5 (After Sales Services), as incorrect 

predictions.  

Furthermore, these confusion matrices provide some practical information for customer service representatives to improve 

the performance of the proposed intelligent system. Namely, upon examining all the confusion matrices in Figures 8, 9, and 

10, a consistent pattern emerges; each model has the highest error rates in predicting Department 1 (Retail Trade). This 

finding suggests that call center representatives should use more precise terminology when referring to the Retail Trade 

Department. Thus, the models' error rates are likely to decrease, leading to more effective and accurate classification results. 
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Figure 8 TF-IDF Confusion Matrices for All Classifiers 

 

 
Figure 9 Word2Vec Confusion Matrices for All Classifiers 
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Figure 10 Glove Confusion Matrices for All Classifiers 

4. Conclusion  

The manual routing of incoming calls in call centers often results in errors, posing challenges to effective customer 

relationship management. To address these issues, this study introduces an intelligent call center framework. This framework 

takes the data of MTCC, which receives an average of 10,000 daily calls, as a case study and transforms the transcripts of the 

incoming calls into numerical representations with TF-IDF, Word2Vec, and GloVe text vectorization methods. Subsequently, 

six different machine learning algorithms, such as K-NN, NB, SVM, AdaBoost, DT, and RF, are used to classify the call text 

records to be directed to the relevant department. 

In this study, we conducted a series of comprehensive experiments to identify the most successful and practical combination 

of classifier and text vectorization methods. The results provide valuable insights into classification algorithms and text 

vectorization techniques applicable to call centers. While SVM emerges as the most successful classifier, TF-IDF 

outperforms the other text vectorization methods. Considering both runtime and classification performance, the combination 

of SVM&TF-IDF and SVM&Word2Vec emerge as the most suitable models to serve as an intelligent assistant in MTCC. 

As a result, the proposed system was able to provide a real-time, automated, Turkish language-oriented solution for call 

centers. 

The complexity of Turkish, in which suffixes can change the meanings of words, poses a significant constraint on word 

embedding techniques such as Word2Vec and GloVe. Further research is required to address this limitation in processing 

Turkish text. On the other hand, as a future plan, large language models, which have become very popular recently, can be 

used as text embedding methods to investigate their success in the classification of Turkish texts. 
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ABSTRACT 

Maize leaf diseases exhibit visible symptoms and are currently diagnosed by expert pathologists through 
personal observation, but the slow manual detection methods and pathologist's skill influence make it 

challenging to identify diseases in maize leaves. Therefore, computer-aided diagnostic systems offer a 

promising solution for disease detection issues. While traditional machine learning methods require perfect 
manual feature extraction for image classification, deep learning networks extract image features autonomously 

and function without pre-processing. This study proposes using the EfficientNet deep learning model for the 

classification of maize leaf diseases and compares it with another established deep learning model. The maize 
leaf disease dataset was used to train all models, with 4188 images for the original dataset and 6176 images for 

the augmented dataset. The proposed models were compared with ResNet50, VGG19, DenseNet121 and 

Inception V3 models according to their accuracy, sensitivity, F1-Score and precision values. The EfficientNet 

B6 model achieved 98.10% accuracy on the original dataset, while the EfficientNet B3 model achieved the 

highest accuracy of 99.66% on the augmented dataset. 
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1. Introduction

Precisely detecting diseases in maize leaves is critical to sustain food policies and ensure proper agricultural practices. In 

addition, early detection of diseases in the leaves of maize plants is of great importance in preventing time and financial 

losses. Some maize leaf diseases are difficult to diagnose because they have no outward signs of disease. However, most 

maize leaf diseases show visible symptoms. Typically, an expert pathologist diagnoses diseases on maize leaves through 

visual observation [1]. When diagnosing maize leaf diseases, a plant pathologist must observe the characteristic symptoms 

of the disease. Experienced pathologists may still struggle to diagnose certain diseases, as climate change and the rapid spread 

of maize leaf diseases to previously unaffected regions can alter disease courses and make accurate diagnosis challenging 

[2]. 

Applications of the machine and deep learning models in many fields, such as insect detection [3], fungus detection [4], 

healthcare [5], [6], [7], [8], and education [9], are rapidly increasing. Developing intelligent systems capable of automatically 

and precisely diagnosing maize leaf diseases benefits engineers seeking to boost production. Moreover, creating a mobile 

application that can assist farmers struggling with diseases and lacking technical support infrastructure is a significant 

advancement [10]. Recent advances in deep learning models have enabled the creation of systems that can accurately and 

quickly classify plant species and diagnose plant diseases. Currently, artificial intelligence techniques in plant disease 

classification and diagnosis are widespread [11]. Over the last ten years, numerous artificial intelligence models have been 

suggested for identifying and detecting plant diseases [12], [13], [14]. In their study, the authors employed the Support Vector 

Machine (SVM) algorithm to identify and classify diseases in sugar beet crops. [11]. Al-Hiary et al. deduced the texture and 

color characteristics of the diseased areas in 5 different plant leaves using K-means. They then classified the diseases from 

the obtained features using an Artificial Neural Network [15].  The authors of a different study proposed a Particle Swarm 

Optimization approach for classifying cotton leaf diseases. This method selects features based on texture, edge, and color 

using particle swarm optimization, and a cross-information neural network is used to classify the six types of cotton leaf 

diseases [16]. Mokhtar et al. identified the disease-causing virus species in tomato leaves using the Support Virtual Machine 

[17]. The authors used SVM to identify the disease in three grapevine leaves[18]. Johannes et al. proposed a mobile-based 

software that uses a Naive Bayes classifier to detect images of wheat diseases [19]. Chen et al proposed an automated disease 

recognition logistic algorithm using the group method to detect plant diseases [20]. The feature extraction process is a critical 
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issue in machine learning, as it can significantly impact classification accuracy. Advances in technology have resulted in 

significant increases in the speed and capacity of graphics processing units and central processing units, which have facilitated 

the development of deep learning methods that can achieve high performance without the need for manual feature extraction 

[21], [22]. 

Many processing layers and neurons in deep neural networks allow them to efficiently process large and complex data, such 

as image and voice recognition tasks [23]. As a result, deep learning methods are frequently used to detect medical diseases 

[24], [25], [26]. Bozkurt F. used a handcrafted features-based framework to diagnose COVID-19 [27]. On the other hand, 

there is a growing trend in utilizing deep learning techniques for detecting and classifying plant diseases [28]. Chen et al. 

proposed an ensemble network named Es-MbNet, which was developed by combining three lightweight CNNs, utilizing 

transfer learning and a two-stage training approach to enhance the identification of subtle plant lesion features, achieving an 

impressive average accuracy of 99.37% on a local dataset and 99.61% on the PlantVillage dataset [29]. Another study 

conducted by Chen et al. utilized VGG deep learning architecture to detect diseases in maize and rice leaves, achieving 

accuracy rates of 91.83% and 92%, respectively [30]. The study introduces CoffeeNet, a novel deep-learning model tailored 

for the early detection and categorization of various coffee plant leaf infections, addressing challenges posed by image 

distortions such as color variations, lighting changes, and size alterations. Leveraging a spatial channel attention strategy 

based on the ResNet-50 model within the CenterNet framework, CoffeeNet achieves an impressive classification accuracy 

of 98.54% and a mean Average Precision (mAP) of 0.97, demonstrating its efficacy in localizing and categorizing complex 

coffee leaf anomalies [31]. Too et al. employed VGG16, ResNet152, ResNet101, ResNet50, and DenseNets121 deep learning 

methods to detect leaf diseases. Among these methods, DenseNets121 achieved the highest accuracy of 99.75%, owing to its 

efficient computation time and reduced number of parameters [32]. In a separate study, the authors proposed a 9-layer CNN 

architecture for classifying plant diseases. They compared this method with logistic regression, SVM, K-NN, and decision 

trees. The authors used a dataset of 55,636 images and 39 classes for testing and training. The proposed CNN network 

achieved a classification accuracy of 96.46% in identifying plant diseases [33]. In another research, vision transformer (ViT)-

like techniques are employed for plant disease identification, introducing an innovative edge-feature guidance (EFG) module 

that enhances the extraction of localized features. Through integration with leading methods like ViT, PVT, and Swin, the 

proposed ViT-based EFG module demonstrates superior feature extraction performance and outperforms existingodels across 

Paddy, Wheat, Cabbage, and Coffee datasets [34].  Kusumo et al. (year) employed speeded-up robust features (SURF), 

Oriented FAST, scale-invariant feature transform (SIFT), and object detector methods such as histogram of oriented 

gradients. They rotated BRIEF (ORB) to detect RGB colors in maize leaves. The authors compared these features with Naive 

Bayes (NB), SVM, Random Forest (RF), and Decision Tree (DT) methods [35]. Hassan et al. proposed two classification 

methods for diseases of maize, potato, and tomato plants: shallow VGG with Xgboost and shallow VGG with RF and deep 

learning networks. The authors found that Xgboost yielded the highest accuracy rate in classifying maize, potato, and tomato 

leaf defects with rates of 94.47%, 98.74%, and 93.91%, respectively [36]. Atilla et al. utilized various CNN models, including 

AlexNet, ResNet50, VGG16, Inception, and EfficientNet, to classify 54,305 images of plant diseases with an accuracy of 

98.42% [37]. Fayyaz et al. proposed a CNN architecture that combines SqueezeNet and ShuffleNet for early detection of leaf 

blight in plants. The authors also employed SVM for classification and the CIELAB color space to enhance accuracy. They 

achieved a 98% accuracy rate in classifying leaf blights [23]. Elaraby and colleagues classified 25 plant leaf diseases using 

AlexNet and Particle Swarm optimization. The proposed deep learning architecture achieved an accuracy rate of 98.93% in 

classifying plant diseases [39]. As noted in the literature, the utilization of machine learning and deep learning techniques for 

diagnosing plant diseases is rapidly expanding. However, there are still gaps in applying new deep-learning architectures to 

detect diseases in maize leaves. Specifically, there is a need for models that can be trained quickly, have fewer parameters, 

and exhibit high performance.  

The current study presents a deep learning architecture for classifying maize leaf diseases, utilizing a CNN EfficientNet. The 

proposed CNN architecture is then compared to ResNet50, VGG19, DenseNet121, and Inception V3 CNN architectures. The 

remaining sections of this study are structured as follows: Section 2 describes the dataset used and the deep neural network 

architectures employed. In contrast, Section 3 outlines the experimental methodology. Section 4 presents the study's results 

and provides a detailed discussion of the findings, and the study is ultimately concluded in Section 5. 

2. Materials and Methods 

2.1 Dataset 

This research used a dataset of maize leaf diseases, which comprised 4,188 images of colored leaves with varying sizes. The 

dataset included four categories of maize leaves, of which 1306 images represented Common Rust, 574 images represented 

Gray Leaf Spot, and 1146 images represented Blight maize leaf disease. Additionally, 1162 images represented healthy maize 

leaves. The dataset was composed of three diseased maize leaves and one healthy maize leaf.  Figure 1 displays original 

dataset images of four types of maize leaf diseases as well as healthy and diseased leaves. 
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Figure 1 Original dataset: a) Common rust disease, b) Blight disease, c) Gray spot disease, d) Healthy leaves 

The dataset used in this study was augmented using various techniques, resulting in 5932 images. Horizontal flip, 20% 

rotation, 20% width shift, 20% height shift, and zoom were applied to create the augmented dataset. Figure 2 shows visual 

representations of the maize leaf images in the augmented dataset. 

Figure 2 Augmented dataset: a) Common rust disease, b) Blight disease, c) Gray spot disease, d) Healthy leaves 

2.2 Transfer Learning  

Transfer learning is a machine learning technique that involves leveraging the knowledge acquired from solving a previous 

problem to tackle a new and similar problem. In traditional machine learning, the learning process occurs while performing 

different tasks [40]. However, transfer learning involves utilizing source tasks obtained from machine learning methods for 

new tasks [41]. Figure 3 illustrates the schematic representation of traditional and transfer learning. Transfer learning utilizes 

the knowledge gained from a pre-trained network, leading to higher accuracy and time savings than training the model from 

scratch. 
 

Figure 3 Schematic representation of traditional and transfer learning [41] 

2.3 Deep Learning Models 

In this study, the comparative performance of the proposed EfficientNet deep learning architecture has been evaluated 

against several state-of-the-art CNN architectures, including ResNet50, VGG19, DenseNet121, and Inception V3. 

2.3.1 ResNet50 

The Residual Networks (ResNets) were developed to overcome the challenges posed by numerous non-linear layers, such as 

not being able to learn identity maps and the problem of degradation. The ResNets architecture aims to ease the network's 
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training process. ResNet50 is a model with many stacked units consisting of pooling and convolution layers. This model has 

a depth of 50 layers and 26M parameters and employs 3×3 filters for input images of 224×224 pixels [42]. It uses skip 

connections to allow the propagation of information across layers. Additionally, the ResNet50 architecture has one 

MaxPooling layer, one Average Pooling layer, and 48 Convolution layers. Figure 4 illustrates the schematic ResNet50 

architecture. 

 

Figure 4 ResNet50 schematic architecture [42] 

2.3.2 VGG19 

The VGG architecture was developed to enable deep convolutional networks to recognize large-scale images. The VGG19 

model, a variant of the VGG architecture, comprises 5 MaxPooling layers, 16 convolution layers, 3 Fully Connected layers, 

and 1 SoftMax layer. VGG19 achieved the top rank in the Large-Scale Visual Recognition Competition (ILSVRC) in 2014 

[43]. It has 138 million parameters and was trained on more than one million images. To reduce the number of parameters, 

VGG19 uses 3x3 kernels. The architecture of VGG19 consists of 19 layers, and its input layer image size is 224x224 pixels. 

A schematic of the VGG19 architecture is shown in Figure 5. 

Figure 5 Schematic representation of VGG19 [44] 

2.3.3 DenseNets121 

DenseNets [45] is an architecture that aims to increase the depth of deep convolutional networks and train the network better 

by establishing short connections between layers.  DenseNets uses fewer parameters than other CNN architectures, as there 

is no need to learn extra feature maps. Also, its layers are very narrow, and only those layers add a small feature map. 

DenseNets connects directly between layers to improve the flow of information between layers. Figure 6 shows the 5-layer 

DenseNet block diagram. 

Figure 6 A 5-layer dense block with an expansion rate of k= 4 [45] 
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The implementation of DenseNet architecture consists of three types of blocks, namely the convolution block, dense block, 

and transition block. The convolution block, or the main block, connects the dense blocks [46]. The thick block is the main 

component of DenseNet. Transition blocks are situated between the dense blocks and serve to decrease the dimensionality of 

the feature map. A schematic illustration of the block structure of the DenseNet architecture is provided in Figure 7. The 

input layer image size for DenseNet121 is 224x224. 

Figure 7 DenseNets block architecture [47] 

2.3.4 InceptionV3 

The Inception architecture initially called GoogleNet in 2014, is a pre-trained network model [25]. Google developed the 3rd 

Generation of this deep learning architecture, known as Inception V3. Inception V3 uses a factorization approach to improve 

the deep learning network's performance by reducing the number of parameters and connections [48]. The network structure 

of Inception V3 comprises various components, such as convolutions, average and maximum pooling, dropouts, concerts, 

and fully connected layers. This model has a depth of 48 layers and can process images of size 299x299 pixels. The model's 

architecture is illustrated in Figure 8. 

Figure 8 Schematic Inception V3 architecture [49] 

2.3.5 EfficientNet 

The Inception architecture, also known as GoogleNet, is a pre-trained network model that was introduced by Google in 2014 

[49]. Inception V3, the third Generation of this architecture, utilizes the factorization method to enhance the deep learning 

network's performance by minimizing the number of parameters and connections. The network comprises convolutions, 

average and maximum pooling layers, dropout layers, concatenation layers, and fully connected layers. The Inception V3 

model has 48 layers and requires input images of size 299x299 pixels [50]. The model's architectural representation can be 

seen in Figure 9. 
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Figure 9 Schematic EfficientNet B0 architecture [41], [51] 

3. Experimental Study 

3.1. Experimental Setup 

The deep learning models were trained in the Google cloud environment using a GPU-accelerated system. The training was 

performed on a Tesla T4 GPU and an Intel Xeon 2.20 GHz CPU with 16 GB RAM. For the transfer learning design, all 

programs were written in Python 3 programming language, and the Keras 2.3.1 training framework was utilized. 

3.2. Training 

In this research, we evaluated deep learning models' efficacy in categorizing maize leaf diseases such as Blight, Common 

Rust, Gray leaf spot, and Healthy, using both original and augmented datasets. Table 1 shows the distribution of training, 

validation, and test data between these two datasets. The original dataset encompassed 4,188 images, segmented into training, 

validation, and test groups. Specifically, the training group comprised 3,769 images, accounting for 90% of the dataset, while 

the validation and test groups had 209 and 210 images, respectively. To enhance model accuracy, we expanded our dataset 

through diverse image augmentation methods like rotation, scaling, and mirroring. Consequently, the augmented dataset 

contained 5,932 images partitioned into the same three categories. Notably, the augmented training set consisted of 5,338 

images (90% of the total), while both validation and test subsets included 297 images each. 

 

Table 1 Original and augmented data in the dataset 
 Total data Training (90%) Validation (5%) Test (5%) 

Original dataset 4.188 3.769 209 210 

Augmented dataset 5.932 5.338 297 297 

 

In this study, we adopted transfer learning techniques by repurposing established CNN architectures and fine-tuning them to 

expedite the learning process. To facilitate this, we incorporated the ImageNet dataset, which boasts approximately 1.2 

million images spanning 1000 distinct categories, as a foundational basis for transfer learning. Utilizing pre-existing weight 

values significantly streamlined our deep learning models' training phase. The final Fully Connected (FC) layers across all 

models were reconfigured to yield four specific outputs tailored to address the objectives of our study. We designated the 

CNN layers for training while employing Softmax as the chosen activation function and categorical cross-entropy to quantify 

the loss. Furthermore, to optimize the training regimen, we implemented an early stopping mechanism, maintaining a 

consistent threshold of 3 and a loss threshold set at 1e-3. 

The pre-trained models in this study were optimized using the same optimization method as the ImageNet dataset. Adam's 

learning rate was 0.001, while SDG was set to 0.01. A validation value limit of 1 was used for all models. Normalization was 

applied to all image data used in the dataset. The image data was resized to different sizes for each transfer learning model. 

ResNet50, VGG19, DenseNet121, and EfficientNet B0 were resized to 224x224 pixels, while InceptionV3 was resized to 

299x299 pixels. The EfficientNet network models had different input image sizes. To ensure a fair evaluation of all 

EfficientNet models, a pixel value of 224x224 was selected for our experimental study. The resolution values of the selected 

models can be found in Table 2. In this research, the batch mechanism was utilized to update the bias and weights in training 

the models. To comply with the hardware resources, the maximum value of the batch was established as 32.  
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Table 2 Transfer learning model input value and parameters 

 
 

 

 

 

 

 

 

 

 

We set the bias l1 kernel regularizer value to 0.006 and the bias l2 kernel regularizer value to 0.016 for fine-tuning. ReLu 

was used as the activation function in the layers, while Softmax was used as the output activation function. We applied a 

dropout rate of 40%. For batch normalization, we chose a momentum of 0.99 and an epsilon value of 0.001. 

3.3. Performance Metrics 

A multi-class assessment was carried out on the maize leaf dataset, comprising four categories. Model performance was 

assessed using True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) values derived from 

the confusion matrix, as depicted in equations (1), (2), (3), and (4). Model comparison was based on F1-Score (F1_Score), 

Accuracy (ACC), Sensitivity (Sen), and Precision (Precision) metrics, calculated using equations (1), (2), (3), and (4). For a 

given class x, 

 

 

 

 

 

4. Results and Discussions 

Maize is a staple food in many countries, and its cultivation is essential for food security. However, the crop is susceptible to 

various diseases that can significantly affect its yield. To address this issue, researchers have developed deep-learning models 

to classify maize leaf diseases from images. In this article, we compare the performance of several deep learning models for 

maize leaf disease classification, including ResNet50, VGG19, DenseNet121, InceptionV3, EfficientNet B0, B1, B2, B3, B4, 

B5, B6, and B7. 

The research conducted involved utilizing both the original and augmented datasets in all experimental studies. The average 

results of the original dataset for each model are presented in Table 3, while the outcomes of the augmented dataset are 

presented in Table 3. 

We use the same original dataset to evaluate the models, which contains images of maize leaves affected by Blight, Common 

Rust, Gray leaf spot, and Healthy. We report the accuracy, sensitivity, F1-score, and precision of each model. 

Transfer Learning Models Image Input Values Model Parameters 

ResNet50 224x224 25,636,712 

VGG19 224x224 138,357,544 

DenseNet121 224x224 7,978,856 

InceptionV3 299x299 23,851,784 

EfficientNet   

B0 224x224 5,330,571 

B1 240x240 7,856,239 

B2 260x260 9,177,569 

B3 300x300 12,320,535 

B4 380x380 19,466,823 

B5 456x456 30,562,527 

B6 528x528 43,265,143 

B7 600x600 66,658,687 

  

  

  

  

  

𝑺𝒆𝒏(𝐱) =
 𝑻𝑷(𝐱)

 𝑻𝑷(𝒙) + 𝑭𝑵(𝐱)
 (1) 

𝑭𝟏_𝑺𝒄𝒐𝒓𝒆(𝒙) =
𝟐 ∗ 𝑷𝒓𝒆(𝒙) ∗ 𝑺𝒆𝒏(𝒙)

 𝑷𝒓𝒆(𝒙) + 𝑺𝒆𝒏(𝒙)
 (2) 

𝑨𝒄𝒄(𝒙) =
 𝑻𝑷(𝒙) + 𝑻𝑵(𝒙)

𝑻𝑷(𝒙) + 𝑭𝑵(𝒙) +  𝑻𝑵(𝒙) +   𝑭𝑷(𝒙)
 (3) 

𝑷𝒓𝒆(𝒌) =
 𝑻𝑷(𝒌)

 𝑻𝑷(𝒌) +  𝑭𝑷(𝒌)
 (4) 
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Firstly, ResNet50 achieved an accuracy of 96.67%, making it one of the best-performing models in our comparison. It also 

achieved a sensitivity of 95.70%, an F1-score of 95.67%, and a precision of 95.66%. These results suggest that ResNet50 is 

a reliable maize leaf disease classification model. 

In contrast, VGG19 had a lower accuracy of 91.43%, a sensitivity of 87.99%, an F1-score of 89.34%, and a precision of 

92.94%. Although these results are lower than those of ResNet50, VGG19 still provides reasonable accuracy and precision 

for maize leaf disease classification. 

DenseNet121 outperformed ResNet50 in terms of accuracy, achieving an accuracy of 97.14%, a sensitivity of 96.60%, an 

F1-score of 96.80%, and a precision of 97.02%. This suggests that DenseNet121 is a highly accurate and reliable maize leaf 

disease classification model. 

InceptionV3 also achieved high accuracy, with an accuracy of 97.62%, a sensitivity of 96.05%, an F1-score of 96.87%, and 

a precision of 98.01%. These results suggest that InceptionV3 is a reliable maize leaf disease classification model, particularly 

when high precision is required. 

EfficientNet B6 achieved the highest accuracy of 98.10%, a sensitivity of 98.28%, an F1-score of 97.87%, and a precision of 

97.60%. This indicates that EfficientNet B6 is a highly accurate and reliable maize leaf disease classification model. Among 

the models tested on the original dataset, EfficientNet B6 achieved the highest accuracy of 98.10%, followed by EfficientNet 

B2 with 97.62% accuracy. VGG19 achieved the lowest accuracy of 91.43%.  

Table 3 Performance metrics of deep learning models for the original dataset 

Transfer Learning Models Avg Acc (%) Avg Sen (%)  F1-Score (%)  Avg Pre (%) 

ResNet50 96.67        95.70 95.67 95.66 

VGG19 91.43 87.99 89.34 92.94 

DenseNet121 97.14 96.60 96.80 97.02 

InceptionV3 97.62 96.05 96.87 98.01 

EfficientNet B0 95.71 95.25 95.33 95.51 

EfficientNet  B1 96.19 95.17 95.65 96.23 

 EfficientNet B2 97.62 96.92 97.18 97.46 

 EfficientNet  B3 97.14 97.00 96.81 96.64 

EfficientNet B4 95.24 93.84 94.09 94.38 

EfficientNet  B5 96.67 96.52 96.64 96.89 

EfficientNet  B6 98.10 98.28 97.87 97.60 

EfficientNet  B7 97.14 96.03 96.27 96.54 

The augmented dataset originated from the original dataset by integrating diverse image augmentation strategies. This 

augmented dataset served as the training and evaluation set for models identical to those used with the original data. Notably, 

when tested on the augmented dataset, the ResNet50 model exhibited an impressive accuracy rate of 98.32%. Additionally, 

the model showcased a commendable sensitivity of 98.55%, underscoring its proficiency in accurately detecting diseased 

leaf images. Nonetheless, the precision of this model stood at 97.22%, suggesting instances where it misclassified healthy 

leaves as diseased, leading to certain false positives. 

VGG19, achieved an accuracy of 97.64% on the augmented dataset. Its sensitivity was 96.64%, lower than ResNet50, but its 

precision was higher at 97.27%. This suggests that VGG19 was better at correctly identifying diseased leaves but had a higher 

chance of incorrectly classifying healthy leaves as diseased.  

DenseNet121 achieved an accuracy of 96.97% on the augmented dataset, with a sensitivity of 96.36% and a precision of 

95.84%. Its F1-score was 96.08%, which measures the balance between accuracy and sensitivity. DenseNet121 had a lower 

sensitivity than ResNet50 and VGG19, but it had a higher precision. 

InceptionV3 achieved an accuracy of 97.31% on the augmented dataset, with a sensitivity of 97.36% and a precision of 

96.26%. Its F1-score was 96.75%, similar to VGG19 but lower than ResNet50. InceptionV3 had a higher sensitivity compared 

to DenseNet121 but a lower precision. 

EfficientNet models, including B0, B1, B2, B3, B4, B5, B6, and B7, achieved high accuracies ranging from 97.98% to 

99.66% on the augmented dataset. The models had high sensitivities ranging from 97.26% to 99.71%, which indicates that 

they could correctly identify a high percentage of the images affected by the diseases. Among the models tested on the 

augmented dataset, EfficientNet B3 achieved the highest accuracy of 99.66%, followed by EfficientNet B6 with 98.99% 
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accuracy. VGG19 achieved the lowest accuracy of 97.64%. 

Table 4 Performance metrics of deep learning models for the augmented dataset 

Transfer Learning Models Avg Acc (%) Avg Sen (%)  F1-Score (%)  
Avg Pre 

(%) 

ResNet50 98.32 98.55 97.79 97.22 

VGG19 97.64 96.64 96.93 97.27 

DenseNet121 96.97 96.36 96.08 95.84 

InceptionV3 97.31 97.36 96.75 96.26 

EfficientNet B0 97.98 97.26 97.41 97.57 

EfficientNet  B1 98.32 98.19 97.89 97.62 

 EfficientNet B2 97.98 97.26 97.41 97.57 

 EfficientNet  B3 99.66 99.71 99.55 99.39 

EfficientNet B4 97.98 97.92 97.47 97.07 

EfficientNet  B5 98.32 98.22 97.90 97.62 

EfficientNet  B6 98.99 98.79 98.63 98.48 

EfficientNet  B7 98.32 97.54 97.69 97.85 

The accuracy values of all models in the original dataset are presented in Figure 10, while Figure 11 displays the accuracy 

values in the augmented dataset. Accuracy is measured by dividing the number of correctly classified samples by the total 

number of samples. The EfficientNet B6 model recorded the highest accuracy of 98.10% in the original dataset, while the 

EfficientNet B3 model achieved the highest accuracy of 99.66% in the augmented dataset. Conversely, VGG19 and 

DenseNet121 had the lowest accuracy values in both datasets. These findings indicate that the accuracy value in the 

augmented dataset is greater than that of the original dataset.  

In summary, the deep learning frameworks examined in this research exhibit encouraging outcomes in identifying maize leaf 

diseases through image analysis. Notably, the EfficientNet architectures consistently manifest elevated accuracy levels across 

the initial and augmented datasets. Furthermore, the augmented dataset notably enhances the efficacy of most models, 

underscoring the pivotal role of image augmentation methodologies in refining the accuracy of deep learning frameworks. 

Figure 10 showcases the accuracy metrics for all models based on the original dataset, whereas Figure 11 illustrates the 

accuracy figures from the augmented dataset. Accuracy is computed by the ratio of accurately classified samples to the total 

sample count. Noteworthy, the EfficientNet B6 model led with a peak accuracy of 98.10% when evaluated against the original 

dataset, whereas the EfficientNet B3 model excelled with an accuracy of 99.66% on the augmented dataset. In contrast, 

VGG19 and DenseNet121 consistently exhibited the least accuracy across both datasets. Such results strongly suggest that 

the augmented dataset consistently yields higher accuracy rates than its original counterpart.  

Figure 1 Test accuracies transfer learning models for the augmented dataset. 

Table 5 presents the performance metrics, including TP, FP, TN, FN, sensitivity, accuracy, F1-Score, and precision values, 

for each class of the EfficientNet B6 model, which demonstrated superior performance in the original data set. On the other 

hand, Table 6 displays the corresponding performance metrics for each class of the EfficientNet B3 model, which exhibited 

the best performance in the augmented data set, including TP, FP, TN, FN, sensitivity, F1-Score, and precision values. 

Figure 10 Test accuracies transfer learning models for original dataset. 
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The first model, EfficientNet B6, was trained on the original dataset, while the second model, EfficientNet B3, was trained 

on an augmented dataset. Let's first look at the results of EfficientNet B6 on the original dataset. For Blight, the model 

achieved a TP of 54, TN of 152, FP of 0, and FN of 4, resulting in a sensitivity of 93.10, F1-score of 96.43, and precision of 

100. For Common Rust, the model achieved a TP of 66, TN of 140, FP of 2, and FN of 0, resulting in a sensitivity of 100, 

F1-score of 98.51, and a precision of 97.06. For the Gray leaf spot, the model achieved a TP of 28, TN of 178, FP of 2, and 

FN of 0, resulting in a sensitivity of 100, F1-score of 96.55, and precision of 93.33. Lastly, for Healthy, the model achieved 

a TP of 58, TN of 148, FP of 0, and FN of 0, resulting in a sensitivity of 100, F1-score of 100, and precision of 100. 

Table 5 EfficientNet B6 Model original dataset classification performance  

Class TP TN FP FN Sen(%) F1-Score(%) Pre(%) 

Blight 54 152 0 4 93.10 96.43 100.00 

Common Rust 66 140 2 0 100.00 98.51 97.06 

Gray Leaf Spot 28 178 2 0 100.00 96.55 93.33 

Healthy 58 148 0 0 100.00 100.00 100.00 

Now, let's look at the results of EfficientNet B3 on the augmented dataset. For Blight, the model achieved a TP of 84, TN of 

212, FP of 0, and FN of 1, resulting in a sensitivity of 98.82, F1-score of 99.81, and precision of 100. For Common Rust, the 

model achieved a TP of 91, TN of 205, FP of 0, and FN of 0, resulting in a sensitivity of 100, F1-score of 100, and precision 

of 100. For Gray leaf spot, the model achieved a TP of 40, TN of 256, FP of 1, and FN of 0, resulting in a sensitivity of 100, 

F1-score of 98.77, and precision of 97.56. Lastly, for Healthy, the model achieved a TP of 81, TN of 215, FP of 0, and FN of 

0, resulting in a sensitivity of 100, F1-score of 100, and precision of 100. 

Table 6 EfficientNet B3 Model Augmented Dataset Classification Performance 

Class TP TN FP FN Sen(%)  F1-Score(%) Pre(%)  

Blight 84 212 0 1 98.82 99.81 100.00 

Common Rust 91 205 0 0 100.00 100.00 100.00 

Gray Leaf Spot 40 256 1 0 100.00 98.77 97.56 

Healthy 81 215 0 0 100.00 100.00 100.00 

 
Comparing the two models, we can see that the model trained on the augmented dataset, EfficientNet B3, outperformed the 

model trained on the original dataset, EfficientNet B6. In particular, EfficientNet B3 achieved higher sensitivities for all four 

classes, indicating a better ability to lassify diseased leaves correctly. Additionally, EfficientNet B3 achieved higher F1 scores 

for three out of four classes, indicating a better balance between precision and recall. Lastly, EfficientNet B3 achieved perfect 

precision for all four classes, indicating that the model made no false positive predictions. In conclusion, EfficientNet B3 

trained on an augmented dataset showed superior performance in classifying maize leaf diseases compared to EfficientNet 

B6 trained on the original dataset. The results demonstrate the importance of data augmentation in increasing the quality of 

the dataset and improving the performance of the model. The confusion matrices for the models EfficientNet B6 for the 

original dataset and EfficientNet B3 for the augmented dataset are given in Figure 12 and Figure 13, respectively. Confusion 

matrices of both models were compared to evaluate the classification performance. The original dataset model, EfficientNet 

B6, had a sensitivity of 93.10%, 100%, 100%, and 100% for Blight, Common Rust, Gray leaf spot, and Healthy, respectively. 

The model correctly classified Blight, Common Rust, and Healthy leaf diseases with high accuracy. However, it struggled 

with the Gray leaf spot, with only 28 out of 30 images correctly classified, resulting in a sensitivity of 93.10%.  

On the other hand, the augmented dataset model, EfficientNet B3, achieved a sensitivity of 98.82%, 100%, 100%, and 100% 

for Blight, Common Rust, Gray leaf spot, and Healthy, respectively. This model showed better performance than the original 

dataset model in all four classes of diseases, with higher sensitivity and F1-score. The model correctly classified all images 

of Common Rust and Healthy, and all but one image of Blight. The Gray leaf spot classification improved significantly, with 

40 out of 40 images correctly classified, resulting in a sensitivity of 100%. 
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Overall, the augmented dataset model, EfficientNet B3, showed better performance in classifying maize leaf diseases than 

the original dataset model, EfficientNet B6. The improved sensitivity and F1-score of the augmented dataset model are 

particularly notable for Gray leaf spot classification. The results suggest that the use of augmented datasets can improve the 

performance of deep learning models in image-based classification of maize leaf diseases. 

Figure 2 EfficientNet B6 Confusion Matrix for original dataset  

Figure 3 EfficientNet B3 Confusion Matrix for augmented dataset  

The results for the original dataset and enriched dataset models of EfficientNet B6 and B3 are presented in Figures 14 and 

15, respectively. The effectiveness of the early stopping approach in maintaining higher performance values is demonstrated 

by the point at which the validation loss begins to decrease. The EfficientNet B6 model achieved its best validation loss and 

accuracy values in the 42nd and 29th epochs, respectively, as illustrated in Figure 14. Similarly, the EfficientNet B3 model 

attained its optimal validation loss and accuracy values in the 50th and 26th epochs, respectively, as shown in Figure 15. 

 

As shown in Figure 14 a and Figure 15 a, as the number of epochs increases, the decrease in both training and 

validation loss is generally due to the increasing learning capacity of the model. With more epochs, the model is 

exposed to more data, allowing it to gain more insights, resulting in better generalization and lower loss values 

overall. Additionally, long-term training enables the model to learn both general patterns and finer details over 

time. Also, increasing epochs increases the model's resistance to overfitting, thus helping to reduce validation 

loss. It is very important to stop training at the point where the model is performing at its best. The EfficientB6 

model trained with the original data set reached its best value in the 42nd epoch, while the EfficientNetB3 model 

using the augmented data set reached its best value in the 50th epoch. 
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Figure 4 a-b ) EfficientNet B6 training and validation loss and accuracy in original dataset 

 

As the number of epochs in Figures 14 b and 15 b increases, training and validation accuracy values increase due 

to the improved learning capacity of the model. With more epochs, the model is exposed to more data, which 

allows it to learn general patterns and data properties better, resulting in higher accuracy values. In addition, 

increasing epochs often contribute to better generalization of the model, initially better adjusting the training data 

and subsequently improving the generalization ability, leading to higher training and validation accuracy values. 

Monitoring accuracy values during training and stopping at the optimum performance point ensures the best 

results. The EfficientB6 model trained with the original data set reached its best value in the 29th epoch, while 

the EfficientNetB3 model using the augmented data set reached its best value in the 26th epoch. 
 

 
Figure 5 a-b ) EfficientNet B3 training and validation loss and accuracy in the augmented dataset 

The findings indicate that both the EfficientNet B3 and EfficientNet B6 models achieved high accuracy values of 98% and 

99%, respectively, on both the original and augmented datasets. Furthermore, the sensitivity values of these models were also 

high at 98% and 99%, respectively. These two models demonstrated the highest level of performance among all the models 

evaluated. The augmented dataset led to an increase in accuracy and sensitivity values across all models. The EfficientNet 

B3 model, which performed the best on the augmented dataset, exhibited a 2% increase in accuracy and a 3% increase in 

precision, highlighting the positive impact of increased data on model predictions. 

 The total number of classification errors for all models is shown in Table 7. In this study, various models, including 

ResNet50, VGG19, DenseNet121, InceptionV3, and EfficientNet B0 to B7, were evaluated using an original dataset of 210 

images and an augmented dataset of 297 images. The aim was to compare the models' classification accuracy and false 

prediction rate on both datasets. 

Results from the original dataset showed that EfficientNet B6 exhibited the best performance with only four false predictions 

out of 210 images. EfficientNet B3, InceptionV3, and DenseNet121 followed closely with 5 to 6 false predictions. ResNet50, 

EfficientNet B5, and EfficientNet B7 had a moderate false prediction rate, with 7 to 9 false predictions. VGG19 and 

EfficientNet B1 had the highest false prediction rate, with 18 and 8 false predictions, respectively. 

However, the augmented dataset produced slightly different results. EfficientNet B3 demonstrated the best performance, with 

only one false prediction out of 297 images. EfficientNet B6 and VGG19 also performed well,, with only 3 and 7 false 

predictions. DenseNet121 and InceptionV3 had a moderate false prediction rate with 8 to 9 false predictions, while ResNet50 

and EfficientNet B0 to B2, B4, and B7 had a higher false prediction rate ranging from 5 to 6. 

Overall, results from both datasets demonstrate that EfficientNet B3 and B6 models are suitable for classifying maize leaf 

diseases. EfficientNet B3 is particularly promising as it achieved the lowest false prediction rate on the augmented dataset. 
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In general, the augmented dataset improved the models' accuracy and reduced their false prediction rate compared to the 

original dataset.  

In the discussion, we can highlight several key points:  

Performance discrepancies between models: The data reveals variations in false prediction rates across different models. For 

instance, while ResNet50 and DenseNet121 exhibit relatively low false prediction rates in the original dataset compared to 

VGG19 and InceptionV3, the situation changes in the augmented dataset where VGG19 and InceptionV3 show a decrease in 

false predictions. Impact of data augmentation: Comparing false prediction rates between the original and augmented datasets 

sheds light on the effectiveness of data augmentation techniques. In some cases, such as with DenseNet121 and B5-B7 

models, false prediction rates increase in the augmented dataset, suggesting that certain augmentation strategies may not 

universally improve model performance. Model robustness and generalization: The discrepancy in false prediction rates 

among different models highlights variations in model robustness and generalization capabilities. Models that exhibit 

consistent performance across both datasets, such as B2 and B3, may indicate more robust architectures that generalize well 

to augmented data. Potential for further investigation: The observed differences in false prediction rates present avenues for 

further investigation. Researchers could delve deeper into understanding why certain models perform better in augmented 

datasets while others do not, leading to insights that could enhance model training strategies and data augmentation 

techniques. Implications for real-world applications: Discussing the impact of these findings for real-world applications is 

essential. Understanding model performance under different conditions, such as augmented datasets, is crucial for deploying 

reliable and robust systems in practical scenarios, such as wildlife monitoring or medical imaging. By incorporating these 

points into the discussion, the paper can provide a comprehensive analysis of the observed results and their implications for 

the field of machine learning and computer vision. 

In conclusion, the study highlights the importance of choosing an appropriate deep-learning model for classifying maize leaf 

diseases. The findings suggest that using an augmented dataset can help to improve the accuracy of the models. 

Table 7 False prediction values for Transfer Learning Models 

 

R
es

N
et

5
0

 

V
G

G
1

9
 

D
en

se
N

et
1

2
1

 

In
ce

p
ti

o
n

V
3

 

B
0

 

B
1

 

B
2

 

B
3

 

B
4

 

B
5

 

B
6

 

B
7

 

Total False Prediction in the original 

dataset 
7 18 6 5 9 8 5 6 10 7 4 6 
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5 7 9 8 6 5 6 1 6 5 3 5 

 

5. Conclusion 

Within the agricultural sector, identifying and categorizing plant diseases holds paramount significance. Timely identification 

averts extensive crop devastation and safeguards farmers from substantial economic setbacks. Consequently, the adoption of 

machine learning techniques to autonomously discern plant diseases has surged in prominence recently. 

In the present study, we conducted a performance comparison of EffiicientNet, ResNet50, VGG19, DenseNet121, and 

Inception V3 models for the classification of maize leaf diseases, including Blight, Common Rust, Gray leaf spot, and Healthy 

images. The assessment was carried out using both the original and augmented datasets. 

The results of the original dataset trained EfficientNet B6 model showed good performance in detecting all four categories 

of maize leaf diseases, with a sensitivity of 100% for Common Rust and Healthy images. However, the model showed a 

relatively lower sensitivity of 93.10% for Blight and 96.55% for Gray leaf spot images. The F1 scores were relatively high 

for all four categories, with a maximum of 100% for Healthy images. The precision of the model was perfect for Blight and 

Healthy photos, while it was slightly lower for Common Rust and Gray leaf spot images. 

On the other hand, the EfficientNet B3 model trained on the augmented dataset showed better results, with a higher sensitivity 

for all four categories of maize leaf diseases. The model's sensitivity was 98.82% for Blight, 100% for Common Rust and 

Healthy images, and 97.56% for Gray leaf spot images. The F1 scores were high for all categories, with a maximum of 100% 

for Healthy images. The precision of the model was perfect for all four categories of maize leaf diseases. 

Overall, our results demonstrate that using augmented datasets can significantly improve the performance ofdeep-learning 

models for the classification of maize leaf diseases. The EfficientNet B3 model trained on the augmented dataset showed 

better sensitivity and precision results than the EfficientNet B6 model trained on the original dataset. These findings highlight 

the importance of using augmented datasets in deep learning algorithms for accurate and efficient classification of plant 

diseases, which can ultimately help in the early detection and prevention of widespread crop damage. 
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ABSTRACT 

In evaluating the severity of depression, we rigorously investigate a segmented deep learning framework that 
employs speech transcriptions for predicting levels of depression. Within this framework, we examine the 

effectiveness of well-known deep learning models for generating useful features for gauging depression. We 

validate the chosen models using the openly accessible Extended Distress Analysis Interview Corpus (E-
DAIC) as a dataset. Through our findings and analytical commentary, we demonstrate that valuable features 

for depression severity estimation can be achieved without leveraging the sequential relationships among 

textual descriptors. Specifically, temporal aggregation of latent representations surpasses the current best-

performing methods that utilize recurrent models, exhibiting an 8.8% improvement in Concordance 

Correlation Coefficient (CCC). 

Keywords: Depression severity assessment, Text analysis, Deep learning, Speech transcription 
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1. Introduction

Depression is a mental disorder that negatively affects the feelings, behaviors, and thoughts of individuals. Overwhelming 

feelings caused by depression can hinder the individual by leading to disinterest in daily activities and reduced 

concentration. It can even manifest itself as physical pain. Diagnosis of depression is very important as individuals, in the 

worst case, can be driven to suicide without proper treatment. Depression has many challenges, both regarding its diagnosis 

and treatment. Mental health issues are mistakenly not taken as seriously as physical health issues, and most people can 

show reluctance to accept they are suffering from an illness and seek professional help. This is exacerbated in the case of 

depression since depressed individuals generally do not have the motivation to perform simple daily tasks, let alone seek 

treatment. The difficulty of understanding the human psyche is also a primary concern. This can cause misdiagnosis of the 

severity of depression, as the symptoms can vary depending on individual differences of the patient.  

To control this uncertainty, standardized tests are proposed. A popular test is the Hamilton Depression Rating Scale 

(HDRS) [1]. This test contains point scales in many depression cues, such as sleep quality, physical activity, guilt, and 

anxiety. The expert is expected to score the individual on these cues to understand their depression severity. As another 

means of assessment, individuals are also asked to self-assess using simple questionnaires, such as Physical Health 

Questionnaire Depression Scale (PHQ) [2]. In this study, we use a dataset with PHQ labels to evaluate our architectures. 

The recent COVID-19 pandemic acted as a figurative breeding ground for depression. With many people stuck in their 

homes, deprived of their daily routines, anxiety and depression increased by 25% according to recent statistics by World 

Health Organization1. In light of this, many studies are conducted to further investigate the effects of the pandemic and 

depression [3]. This recent surge in depression, along with the discussed challenges, makes it clear that the need for good 

automated detection of depression severity systems is more important than ever. Advances in automatic assessment of 

depression severity would lead to helping over 300 million [4] people suffering from depression and even save their lives. 

1 WHO (2022). COVID-19 Pandemic [online] 

https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-

depression-worldwide. [accessed 09 09 2023] 
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To this aim, this study systematically analyzes different network architectures for depression severity assessment from 

speech transcriptions and discusses the implications of empirical results. Both temporal and non-temporal modeling 

approaches are investigated. Our experimental results show that the use of temporal pooling of latent representations, rather 

than recurrent modeling, provides state-of-the-art performance.  

2. Related Work

Most depression severity assessment literature focuses on audiovisual modalities and their fusion. In contrast, this study 

focuses text modality as a single modal. 

Studies show that many syntactic and statistical measures regarding language correlate with depression, such as the 

decrease in syntactic complexity [5] or the use of first-person pronouns [6]. Depressed individuals also display slower 

speech rates and longer pauses [7, 8]. However, compared to other modalities, fewer studies use text modality. When text 

modality is used, it is usually used as an additional modality rather than the main focus. Due to this lack of focus on text, 

most studies use rudimentary processing methods. Kaya et al. create 42 functionals using low-level descriptors such as 

word count and speech duration, along with a bag of words representation for each participant using term frequencies. Both 

these text-based features are then evaluated both by themselves and the use of weighted fusion networks [9]. Ye et al. 

choose to use the top 10 most frequent words to differentiate between healthy and depressed groups [10]. 

Deep learning based natural language processing embeddings are becoming more and more popular. Consequently, 

depression assessment networks also started utilizing these high performance semantic information descriptors. Studies [11, 

12] use Word2vec [13] and its variants to extract representations. Recently, more powerful sentence embeddings are

utilized with Universal Sentence Encoder [14-16] or BERT [17] models. These embeddings are usually used without

finetuning the embedding network. An overwhelming majority, if not all, of recent deep learning networks process word

and sentence embeddings using a recurrent architecture to explore temporal relationships [15, 16, 18, 19]. Differently, Yang

et al. [12] format the text as a two-dimensional matrix of words and embeddings and process it using a TextCNN [20]

variant with k-Max-pooling. This study also investigates the performance of temporal architectures on modeling text

representations. Contrary to the literature, we also propose non-temporal modeling of sentences.

Even though it is not used as much as audiovisual modalities, text modality has several advantages. Channels like social 

media and messaging apps contain an abundance of text data. Although audiovisual modalities are also present in such 

channels, they are mostly used for other purposes and do not shed light on an individual's psyche as much as text modality 

does. Several studies document the potential of the social media domain [21]. Singh et al. show that for attention enabled 

ensemble learning models are effective methods of detecting depression symptoms on social media data, such as ones from 

Reddit and Twitter [22]. Some studies also combine text with social media metadata, such as posting habits [23, 24]. Even 

in such recent studies, non-deep learning based models, such as decision trees [23] are utilized. We also see this in the case 

of Liu et al., in which case the authors use an ensemble of support vector machine, naive bayes and regression approaches 

to detect depression cues [24]. Another property of text modality is that it is significantly harder to identify a person using 

non-handwritten text only. In contrast, a short audio recording or a single image can be enough to identify an individual. 

Such arguments create great motivation for the use of text modality for depression analysis. 

3. Methodology

In this study, we propose a modular natural language processing pipeline to predict a PHQ-8 score, given sequential 

sentences of an individual. Figure 1 illustrates the schema for the proposed modular pipeline. Remaining subsections within 

this section detail the modules that will be used during experiments along with where they fit in our pipeline. Each module 

touches on a different consideration that emerges while building a regression network. Methods within each module have 

very similar, if not the same, input and output dimensions and considerations. This results in a highly modular experiment 

setup where each method of a module can be seamlessly interchanged with one another. After all modules are introduced, 

we present our investigated architectures in Section 3.2. These architectures are formed according to ablation studies 

performed in Section 4. 

Main processing flow of our pipeline is as follows: First, each sentence for a participant is converted from text to a numeric 

vector representation. It is required for any form of natural language processing algorithm to apply this step first (unless we 

are considering a rule-based approach based on the actual string content). Section 3.1.1 describes the method we follow to 

achieve this conversion. These sentence embeddings can go through an individual processing step using residual blocks 

(Section 3.1.2) and/or the attention module (Section 3.1.3). These modules allow us to learn an intermediate representation 

before modeling the sequences as a whole. Our next task is to reduce these variable number of intermediate representations 

into a single representation, i.e. a summary of the participant. To this aim, Section 3.1.4 discusses both temporal and non-

temporal summarization methods. Temporal methods use the order information of each sentence (i.e. each sentence is 

processed within the context of its preceding sentences), while non-temporal methods are not concerned with when the 
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sentence is uttered. Ultimately, the summary representation for each participant is regressed into a single value, which is 

our prediction, using linear regression layers. 

 

Figure 1: Overview of the proposed pipeline and the residual blocks. Data representations at several stages 

are depicted with their shapes. Shapes are given for a single participant and not batched input. For participant 

𝑝𝑖  , 𝑠𝑖 is the number of sentences, 𝐷 is the size of the sentence embedding (depends on embedding choice). 

𝐻 is the output dimension of the sequence processing module (𝐻 = 𝐷 for non-temporal modules, but it is a 

hyperparameter for temporal ones). Dropout is used at the beginning of each block for regularization. Two 1x1 

convolutions with ReLU activation are used to process sentence embeddings and the skip connection happens 

after the second convolution, before activation. 

3.1 Architectural Modules 

3.1.1 Transcript Representation 

To process text data, we first convert them into numerical representations. Historically, handcrafted algorithms are used to 

map words or sentences into numeric vectors. More recently, deep learning based architectures are used. This is a required 

step for our architectures. 

For participant 𝑝𝑖 , we obtain a sequence of sentence embeddings 𝑃(𝑖) 𝜖 𝑠𝑖 × 𝐷, where 𝑠𝑖 is the number of sentences and 𝐷 is 

the embedding size. We define the single sentence embedding uttered within the time period 𝑡 as 𝑥𝑡. Embedding size 𝐷 

depends on the choice of embedding, but it does not create any considerations while building our architectures. 

We start by introducing our main embedding, all-mpnet-base-v2 [25]. This embedding is a finetuned version of Microsoft's 

mpnet-base model [26]. Finetuning was applied with a contrastive loss objective using over 1 billion training pairs. Among 

other embeddings from the same framework, all-mpnet-base-v2 has the best average performance on 14 diverse sentence 

embedding performance tasks and 6 various semantic search tasks. Due to its performance and popularity, we believe this 

embedding is a good starting point for our ablation studies.  

It should be noted that the embedding architecture is not appended to our end-to-end depression severity assessment 

network. To elaborate, output sentence embeddings are frozen, and the error from our prediction is not propagated back to 

these networks. Embeddings for every sentence are the same throughout training and validation procedures. This method 

was chosen to reduce computation and memory costs. Due to this, it is worth bearing in mind that our performance is 

reliant on the performance of our chosen embedding. 

3.1.2 Residual Blocks 

Residual blocks are the next module after converting sentences to sentence embeddings. Here, each sentence embedding 𝑥𝑡 

is processed through a variable amount of connected residual blocks. These residual blocks use the residual learning idea 
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from [27], where we add the block input to the output of that block. This skip-connection from the input to the end of the 

last convolutional layer, as seen in Figure 1 helps the network by both reducing vanishing gradients and reducing the 

possibility that new blocks degrade previously learned information. Since this module is optional, output representations 

are also called 𝑥𝑡 for ease of notation.  

3.1.3 Attention 

In this section, we present our attention mechanism that can be used to introduce an additional scaling in between modules 

for intermediate vectors. Attention weight 𝑎𝑡  𝜖  𝑅 is calculated by regressing a scalar value from each intermediate 

representation 𝑥𝑡. This regressor is identical to the one we utilize to regress an output after sequence processing. 𝑥𝑡 is then 

scaled with their respective attention score 𝑎𝑡 before being pooled into a summary representation. We include a dropout 

layer before linear layers for regularization. Each linear layer reduces the input dimension by a multiple of 4 (i.e.  𝑅𝑑 →

𝑅
𝑑

4using 𝑎𝑡
𝑖 =  𝑅𝑒𝐿𝑈(𝑊𝑖𝑎𝑡

𝑖−1) + 𝑏𝑖  . Herein, 𝑊𝑖𝜖𝑅
𝑠𝑖×𝑑 is the transformation matrix between layers and 𝑏𝑖 is the bias term 

for the i-th layer. First 𝑎𝑡 is the intermediate representation 𝑥𝑡. The last layer outputs a single scalar no matter the input 

dimension. Output attention weights can be normalized to the 0-1 range using the sigmoid function or min-max 

normalization 𝑎𝑡 =
𝑎𝑡−𝑚𝑖𝑛(𝑎1,𝑎2,...,𝑎𝑡)

𝑚𝑎𝑥(𝑎1,𝑎2,...,𝑎𝑡) − 𝑚𝑖𝑛(𝑎1,𝑎2,...,𝑎𝑡)
. We use such normalization functions to better regularize our network 

weights, and also provide contextual information across representations for a given participant. 

3.1.4 Sequence Processing 

Regressing a single scalar value requires some form of summarization of the many sentences a participant utters during 

their interviews. To this aim, we investigate recurrent and non-recurrent architectures. Transformer architecture was also 

considered, but our preliminary experiments showed that multi-head attention with positional encoding saturated our 

embeddings, and we could not reach decent performance. Therefore, it was not included in our in-depth analysis. In this 

section, we will provide the details of the various summarization methods we explored. 

Temporal Modeling of Sequences To temporally model sentence embeddings, we use bidirectional GRUs. GRU 

architecture is selected due to its documented performance on temporal problems over RNNs and LSTMs, which we also 

replicated in our cross-validated preliminary experiments, and due to their ability to process variable length sequences. 

GRUs are also, on average, faster than RNN and LSTMs and use less parameters. Bidirectionality incorporates information 

from both directions (forward and backward) of the sequence. We define the forward direction of our GRU using the 

following equations: 

𝑧𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ⃗ 𝑡−1) 

𝑟𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ⃗ 𝑡−1) 

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐(𝑟𝑡 ⊙ ℎ⃗ 𝑡−1)) 

ℎ⃗ 𝑡 = (1 − 𝑧𝑡)ℎ⃗ 𝑡−1 + 𝑧𝑡𝑐𝑡 

 

 

 

 

(1) 

Where 𝑟𝑡 and 𝑧𝑡 are the reset and update gates, respectively. The activation of the hidden state ℎ⃗ 𝑡 at time 𝑡 is the linear 

interpolation between previous activation ℎ⃗ 𝑡−1 and the candidate activation 𝑐𝑡. Weight matrices 𝑊 and 𝑈 with subscripts 

𝑧, 𝑟, 𝑐 are the parameters of the GRU. Each subscript defines another translation from the input sentence embedding 𝑥𝑡. ⊙ 

is the operation for element wise multiplication. We concatenate the hidden states of the forward and the backward passes 

for each 𝑡 to obtain ℎ𝑡. The resulting 𝑠𝑖 many timesteps are reduced to a single vector using either last-pooling, mean-

pooling, or max-pooling. Last-pooling simply assigns the output to the last hidden state; mean-pooling takes the average of 

all hidden states over the 𝑡 dimension, while max-pooling takes the maximum over the 𝑡 dimension. Formally, the output 

ℎ(𝑖)𝜖 𝑅𝐻 for 𝑃(𝑖) is obtained by: 

LAST_POOL → ℎ(𝑖) = ℎ𝑠𝑖−1 

MEAN_POOL → ℎ(𝑖) =
1

𝑠𝑖
∑

𝑠𝑖
𝑡=1 ℎ𝑡 

MAX_POOL → ℎ(𝑖) = 𝑚𝑎𝑥[ℎ1; ℎ2;  . . . ;  ℎ𝑡] 

 

 

 

(2) 

 

Non-Temporal Modeling of Sequences Temporal methods are not the only way to process ordered sequences. Temporal 

architectures have the inherent assumption that there is generalizable information to be found in the order in which we find 

our sentence embeddings and process each sentence embedding within the context of previous ones. While such methods 
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are widely used in depression severity assessment literature, the idea that sentences can be good indicators by themselves 

has not been explored much. Theoretically, if sentences themselves are sufficient, additional context information could 

even be causing overfitting or significant prediction error for participants with underrepresented PHQ-8 scores. 

The proposed non-temporal sequence processing module aims to reduce a sequence 𝑃(𝑖) with a variable number of sentence 

embeddings into a single vector. To this aim, we employ several pooling methods. Similar to Section 3.1.4, mean-pooling 

takes the average of sentence representations, while max-pooling filters the maximum activations along the 𝑡 dimension. 

Formally, the output  ℎ(𝑖)𝜖 𝑅𝐷  for 𝑃(𝑖) is obtained by: 

MEAN_POOL → ℎ(𝑖) =
1

𝑠𝑖
∑

𝑠𝑖
𝑡=1 𝑥𝑡 

MAX_POOL → ℎ(𝑖) = 𝑚𝑎𝑥[𝑥1; 𝑥2;  . . . ;  𝑥𝑡] 

 

 

(3) 

 

3.2 Investigated Architectures 

Through our experiments and ablation studies, we combine and examine the sub-modules detailed in this chapter. Some of 

these complex models are proposed as good candidate architectures for the depression severity assessment task, while 

others will be disqualified through our validation process and discussions on behavioral aspects and generalization to real-

world scenarios. This section reveals the details of such candidate architectures: 

● NT-MEAN: Non-Temporal model using MEAN-pooling 

● NT-MEAN-ATT: Non-Temporal model using MEAN-pooling with Attention 

● T1-MEAN: Temporal model using one GRU with MEAN-pooling 

● T2-MEAN.MAX: Temporal model using two GRU's with MEAN-pooling on first level and MAX-pooling on 

second level 

 

Figure 2: Overview of the NT-MEAN architecture. Shapes are given for a single participant and not batched 

input. For participant 𝑝𝑖  , 𝑠𝑖 is the number of sentences, 𝐷 is the size of the sentence embedding (depends on 

embedding choice). 

 

3.2.1 NT-MEAN and NT-MEAN-ATT 

NT-MEAN is our simplest model. Sentence embeddings are passed through residual blocks. These output representations 

𝑥𝑡𝜖 𝑅
𝑠𝑖×𝐷 are then averaged for each participant to obtain a summary representation for that participant. Resulting summary 

representation of shape 1 × 𝐷 is regressed with linear layers to obtain the final score. NT-MEAN-ATT is a non-temporal 

model similar to NT-MEAN. Their difference lies in the addition of a feed forward attention module. This attention module 

calculates attention scores 𝑎𝑡 for each 𝑥𝑡. 𝑥𝑡 is then scaled with their respective attention score before being pooled into a 

summary representation. Figure 2 shows the detailed NT-MEAN architecture. 

3.2.2 T1-MEAN and T2-MEAN.MAX 

T1-MEAN and T2-MEAN.MAX are both temporal models, meaning that they both use a recurrent architecture, namely a 

GRU, to process intermediate representations 𝑥𝑡 created by the residual blocks. T1-MEAN uses a single level GRU 

followed by mean-pooling to create a summary representation of shape 1 × 𝐻. On the other hand, T2-MEAN.MAX utilizes 

a two-level GRU with mean-pooling in the first level and max-pooling in the second level to create the same representation. 

As with our non-temporal models, these output summaries are regressed to PHQ-8 scores. 

4. Experimental Setup 

4.1 Dataset 

4.1.1 Overview 

We use the Extended Distress Analysis Interview Corpus dataset (E-DAIC) dataset, which is the dataset for the Detecting 

Depression with AI Sub-challenge (DDS) during The Audio/Visual Emotion Challenge (AVEC) 2019 Workshop and 

Challenge [28]. This is an actively used benchmark dataset for this task. The dataset contains 275 interviews with unique 
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participants, and it is collected in an effort to create an AI agent that can interview and identify mental health problems. The 

interviews consist of a participant's dialogue with an interviewer. The interviewer is either a human or a fully automated 

AI. Regardless of the nature of the interviewer, the participant sees an animated virtual avatar on the screen in front of 

them. Among the 275, 163 subjects are used for training purposes, while validation and test splits contain 56 each. The 

splits are balanced in terms of age, gender distribution, and PHQ-8 scores. We use the predetermined splits during our 

experiments. 

The dataset contains four video and six audio features along with raw audio and speech transcripts. The text is transcribed 

using Google Cloud’s speech recognition service. Due to the private nature of the data, raw video footage is not available. 

This study uses only transcribed text portion of the data. Label for each participant is a self-reported 8-item Patient Health 

Questionnaire (PHQ-8) score [2]. PHQ-8 is a self-assessed depression severity measure. The questionnaire provides insight 

into the degree of impairment an individual goes through on eight different depression cues. A higher score means it is 

more likely that the individual is suffering from depression. 

4.1.2 Challenges 

Label imbalance While the splits are balanced in terms of the PHQ-8 score, there is a high imbalance of scores within each 

split, i.e. People considered non-depressive (PHQ-8 < 10) make up 69%, 73% and 63% (ordered training, validation and 

test) of all data. This imbalance is increased when we compare participants with severe depression (PHQ ≥ 20) to the 

remainder of the data (non-depressive PHQ-8 < 10 and depressive 10 ≤ PHQ-8 < 20). In that case, participants with severe 

depression only make up 4%, 2% and 7% (ordered training, validation and test) of all data.  

Transcription Noise It should be noted that the transcriptions of sessions are not perfect. There are many sentences that do 

not exactly match the raw audio, and sometimes the voice of the therapy AI or a technician is also transcribed as sentences 

from the participant. There are also cases where sentence breaks are not recognized, and several sentences are transcribed 

as a single long sentence. Since it is not feasible to dynamically correct these mistakes, we left the faulty data in its original 

state. The transcribed text also contains a confidence level (a real number between 0 and 1) for each transcribed sentence. 

We empirically see that inclusion of this value in our training is generally detrimental to performance. Manual inspection of 

the dataset shows us that the confidence level is not very reliable, as it often gives low confidence to correctly transcribed 

words while giving high confidence for bad transcriptions. In light of these inspections, we opt not to use this information. 

4.2 Evaluation Criteria 

Dataset used in this study was first introduced in The Audio/Visual Emotion Challenge and Workshop 2019 (AVEC 2019) 

[28]. Organizers of the challenge picked Lin's Concordance Correlation Coefficient (CCC) [29] as the evaluation metric. 

CCC is a statistical measure of how well a set of predictions compares to the ground truth labels. Since it is a correlation 

measure, the value of CCC ranges from -1 to 1, where 1 signifies complete correlation between two sets. Since we are 

dealing with a sample of the total population, we use an approximation of CCC: 

 

𝐶𝐶�̂� =
2𝑆𝑌𝑋

𝑆𝑋
2 + 𝑆𝑌

2 + (𝑌 − 𝑋)2
 

 

 

(4) 

Organizers choose this metric due to its invariance to scale, as well as its ability to include information on accuracy and 

precision [28]. We also use this metric in our training and evaluation. Organizers also propose Root Mean Square Error 

(RMSE) as a secondary metric. RMSE computes the numeric difference between prediction and target without any 

complex statistics. Taking the square of the error makes it so that higher errors are punished more. When used as a loss 

function, this property of RMSE can help reduce overfitting that can occur in our dataset due to label imbalance. 

Alternative to these two metrics, we also propose reporting Mean Absolute Error (MAE). While CCC and RMSE have 

great properties during training, they cannot be easily interpreted. Even though MAE is ubiquitous within the literature for 

regression tasks, we see that it is scarcely reported for this dataset. We believe this metric is important to better understand 

and discuss our results and should also be reported for this dataset. 

We follow the traditional training-validation-test scheme using the predetermined splits of the AVEC competition [28]. To 

reduce selection bias, and mimic the conditions of AVEC competition, we do not evaluate our models on the test set until 

we finalize model selection through ablation studies on the validation set. We evaluate four models in the test set during 

this study, to discuss and compare generalization performances. Implementations are done using PyTorch and models are 

optimized with optuna library using a Tree-structured Parzen Estimator (TPE) for hyperparameter selection. 

We use Adam optimizer with 10−4 learning rate. Training data is shuffled each iteration, but no augmentation is applied. 

The training is terminated if our validation loss doesn't improve for 25 epochs. When the training is terminated, the 

checkpoint with the lowest validation loss is taken as the trained model. We empirically see that Batch Normalization [30] 
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is generally detrimental for our training, and do not include it in our models. We use ReLU as our activation function of 

choice due to its popularity and performance over other activation functions. After our optimization and validation 

procedures, we opt for using four regression blocks, four linear layers for regression and 0.5 dropout probability in our 

proposed NT-MEAN model. All experiments are conducted on an Nvidia RTX 2080 Ti GPU.  

5. Experimental Results 

5.1 Temporal Modeling 

Temporal models include the order of sentence representations within the sequence as additional information. We now 

analyze the effects of different pooling methods on these sequences, and the implications of processing overlapping 

sequence chunks in a two-level GRU setup. After this discussion, we pick the best-performing single-level and two-level 

models and evaluate them in the test set in Section 5.1.2. 

Table 1: Comparison of pooling methods for temporal architectures. Having no pooling on the second level means that the 

model utilizes a single-level GRU. 

First Level Pooling Last  Last  Last  Last  Max  Max  Max  Max  Mean  Mean  Mean  Mean 

Second Level Pooling - Last  Max  Mean  - Last  Max  Mean  - Last  Max  Mean 

Validation CCC 0.589 0.632 0.649 0.634 
0.64

6 

0.65

5 

0.64

9 
0.637 0.650 0.658 0.659 0.624 

 

5.1 Assessment of the Number of Recurrent Layers and Pooling Methods 

Results in Table 1 show that some configurations of the two-level model perform better than the single-level GRU, while 

others are still behind single-level with mean or max pooling. Compared to using last-pooling for a single-level GRU, using 

last-pooling at the first level of the hierarchy does not have any obvious detrimental effects on performance. This is 

possibly due to the increased information stored within the last hidden state of each chunk in the first level. Also, two of the 

top three results in this analysis use last-pooling in the second level, providing evidence that last-pooling thrives with 

shorter sequences. These findings about last-pooling show us that temporal information about depression is not retained for 

a long time. The performance of mean-pooling in the first level is also noteworthy. We see that for configurations where 

the second level uses either last or max-pooling, having mean-pooling in the first level is always better. This does not hold 

when mean-pooling is used for the second level. This could mean that the local scope is better used to understand the 

overall depressiveness of small conversation episodes, and the global scope does better at forming a final representation 

using these summaries.  

Table 2: Results for different recurrent structures. Results are given for three pooling methods in the validation set. 

 

Recurrent Structure 

Pooling Method 

Last Max Mean 

GRU 0.589 0.646 0.650 

LSTM 0.557  0.625 0.643 

RNN 0.363 0.614 0.603 

 

In the single-level setup, we compare three different temporal models, each of which uses a different pooling method to 

obtain a single summary vector. With the last-pooling method, the performance of the sequence reduction depends on the 

assumption that ℎ𝑡 holds the information for the entire sequence. This assumption may not hold well based on the length of 

the sequence and the decisions of gates within the architecture. Also, our knowledge of the nature of interviews and manual 

inspection of the data shows us that the last couple of sentences are reserved for farewells (e.g. "goodbye", "bye-bye", 

"okay bye") or small talk about the interview (e.g. "a real life person is really looking at me", "I was expecting", "that was 

cool"). Also, as we discussed in Section 4.1.2, an operator's voice can be mistaken as the interviewee's and transcribed into 

text. This usually happens at the start or the end of the interview. Since hidden states hold more information on recent 

timesteps, these noisy data points can pollute the hidden state and, therefore, reduce the information contained within our 

summary vector.  

Temporal model performance is significantly improved using max or mean pooling instead of last-pooling. Both mean and 

max pooling has been used extensively in the literature. Theoretically, max-pooling works best when the existence of 

certain peak values is very important for inference, and completely saturating other activations is not a problem. 

Conversely, mean-pooling is a better choice when losing minima and maxima is not important, but keeping the overall 

activation is. The slightly superior performance of average pooling over maximum pooling in the proposed case is because 

for a participant to be high on the PHQ-8 scale, cues need to be salient throughout the entire interview, not just in parts of 

the interview. To make sure we are covering a wider range of temporal models when we talk about them, we also include 

experiments conducted on RNN and LSTM architectures (Table 2). GRU outperforms the other architectures in every 

pooling configuration. For brevity, we do not go into details for them. 
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Table 3: Results for best performing temporal (T1-MEAN and T2-MEAN.MAX) and non-temporal (NT-MEAN and NT-

MEAN-ATT) models. Results are given for three metrics in both validation and test sets. 

 

Model 

Validation Test 

CCC MAE RMSE CCC MAE RMSE 

T1-MEAN 0.650  3.393 4.66 0.598 5.232 6.656 

T2-MEAN.MAX 0.659  3.321 4.33 0.572 4.464 5.616 

NT-MEAN 0.673  3.214 4.217 0.729 3.304 4.353 

NT-MEAN-ATT 0.654  3.269 4.412 0.708 3.801 4.925 

 

5.1.2 Best-Performing Temporal Models 

When we compare our single-level and two-level GRU experiments, we see that the models are relatively close in 

performance. The best-performing single-level model beats 6 of the 9 hierarchical configurations. To better understand the 

effects of using a two-level approach, we examine the best-performing model from both single-level and hierarchical 

experiments in Table 3. 

In this section, we examined the temporal dynamics regarding depression cues. While learning such relationships result in 

good models, it is unclear how much of our performance can be ascribed to temporal dynamics. This makes us question the 

reliability and benefit of temporal architectures. Indeed, if we think about our data, if we know that the participant said: "I 

haven't been happy at my jobs for at least 10 years", do we need to relate that information to the sentence "New York"? 

(sentences taken from a participant within our dataset). There is no denying the importance of contextual information, 

especially for audiovisual modalities [31]. However, we believe they are not as strong for text modality. Given more data, it  

may be possible to form contextual relations. But for our case, forcing the model to create such relations might result in 

noise most of the time. 

5.2 Non-Temporal Modeling 

Following our findings regarding temporal dynamics, we experiment with the simpler non-temporal approach. In this 

approach, each sentence embedding is passed through several residual blocks before they are pooled into a single vector. 

Similar to the temporal models, we start by experimenting with different pooling methods. The next subsection uses 

different attention methods and comments on their differences. We again finalize our discussions by evaluating the best-

performing models from each subsection. 

5.2.1 Comparison of Pooling Methods 

We compare two different non-temporal models, each of which uses a different pooling method to obtain a single summary 

vector. In Section 5.1, we hypothesize that temporal information could hinder performance. To this aim, we discard 

recurrent modules from our architecture and replace them with simple pooling operations, and achieve 0.673 for mean-

pooling and 0.629 for max-pooling in terms of validation CCC. Observing the performance of mean-pooling, it appears that 

the exclusion of temporal information leads to a performance increase. As with the temporal pooling experiments in 

Section 5.1.1, mean-pooling is superior, this time with a bigger margin compared to max-pooling. Observations we can 

make here regarding the comparison of max and mean pooling are similar to the ones made in Section 5.1.1. It seems that 

individual high activations are less impactful while forming a summary vector compared to computing the overall 

activations. 

5.2.2 Effect of Weighting Embeddings 

As per our discussions, mean and max pooling both make different assumptions on the relative weights of sentence 

representations. The reason for the performance of mean-pooling is unclear. Since we know that not every sentence is a cue 

for depression, we would expect such sentences to provide noise to the averaging process. For this reason, incorporating 

other modules to have a better representation selection process could result in a better average summary. To this aim, we 

experiment with Softmax Weighted Mean-Pooling and Attention Weighted Mean-Pooling (named SWM and AWM, 

respectively). 

SWM simply takes the softmax of intermediate representations. Softmax values are then multiplied with their 

corresponding representations to scale them before mean-pooling is applied. This incorporates feature importance to each 

representation and by proxy to the summary vector. AWM technique calculates an attention score 𝑎𝑡 for each 

representation. 𝑎𝑡 for each sentence representation can be any real number. Since this can cause scaling instabilities, we 

also experiment with applying two normalization techniques before we multiply it with its respective sentence embedding: 

min-max normalizing 𝑎𝑡 to the range 0-1 and passing 𝑎𝑡 through a sigmoid function. As with SWM, each 𝑎𝑡 is multiplied 

with its corresponding representation before being pooled to create a summary representation. 
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Table 4: Comparison of different representation weighing methods for non-temporal architectures. 

Pooling Method Val CCC 

SWM 0.581 

AWM /wo Norm 0.642 

AWM /w Min-Max Norm 0.654 

AWM /w Sigmoid Norm 0.645 

Our results in Table 4 show that AWM with min-max normalization does better than the alternatives, and AWM in general 

performs better than SWM. Since AWM contains an additional network to compute individual weights for each 

representation, each weight is calculated independently of the other embeddings within the sequence. Weights from 

Softmax, on the other hand, depend highly on the length of the sequence. To elaborate, the same representation can have a 

very different softmax weight for different participants since softmax distributes a probability of 1 among all 

representations of that participant. While this can create better relative weights within the sequence, it is a source of high 

variance for the model in general. 

Sigmoid function introduces additional non-linearity to our network, and it could give saturated weights for some 

embeddings due to its shape. Although it has such qualities, it doesn't have a way of incorporating information from other 

representations within the sequence. One could argue that min-max normalization is better in that regard, as it does a better 

job of distributing weights linearly among other representations. Even though AWM with min-max normalization is the 

best among weighted models, it is still behind simple mean-pooling (Section 5.2.1). Scaling each representation with 

learned weights seems to result in less representative embeddings. The reason could be similar to the arguments we made 

for temporal information in Section 5.1. There, we argued that while temporality could be informative by incorporating 

contextual information, it could cause more noise than information. While we use a relatively simple way to add context 

information in this section, it still causes noise to our model.  

Since we argued that some sort of selection should happen for a good model, we analyze our non-temporal mean-pooling 

model (NT-MEAN) to better understand its inner workings. To this aim, we come up with a way to relatively weigh the 

intermediate representations used by a trained NT-MEAN model. We opt for using a measure of magnitude. Namely, we 

take the average of each representation over the embedding dimension to obtain 𝑠𝑖 magnitude averages. These averages are 

then min-max normalized to the 0-1 range. These weights are called feature importance for a given representation. These 

weights are not directly a measure of depression per se, but rather signify how much a sentence is deemed important for 

giving a PHQ-8 prediction. Whether the model prediction is high or not depends on the interaction of residual block outputs 

with the linear regression head and is not easily interpretable. 

Table 5: Feature importances assigned by NT-MEAN model, along with the corresponding raw sentence data. 

Prediction PHQ-8 Importance Corresponding Text 

13 7 

1.0000 stressed out 

0.9214 yeah I would say for the past several months 

0.8391 I can't function as well 

0.0002 take my dog for a walk 

0.0002 while I was in a car accident where a drunk driver hit me and I had to 

0.0000 I like the weather I like the beach 

21 15 

1.0000 
I don't know I I I developed anxiety and I freaked out you know if I think 

I'm going to run out of gas I get short of breath and 

0.9127 sometimes I just give up and I don't even try anymore 

0.8360 hello I've lost all the ability to trust and I'm numb to all feelings partly 

0.0012 I I guess I could erase my big pts State when I was 18 a serial killer 

0.0012 
I love the weather people are generally more friendly than where I've lived 

on the East Coast the scenery the environment the beach the mountains the 

0.0000 that's not my PTSD thing though if you're wondering 

0 2 

1.0000 I've been feeling fine 

0.5020 

I'm pretty easy over the last two to three weeks I think there was one night or 

I had so much on my mind I just find it hard to fall asleep but in general I do 

sleep well 

0.4371 ragging 

0.0017 
I wish that I would argue with my husband less especially in front of our 

kids 

0.0011 

one of my most memorable experiences in terms of travel I guess was the 

time that my luggage got lost in front of Vallarta and I spent the week I'm 

wearing my husband shorts and t-shirt 

0.0000 
I've been feeling fine this summer the work stress is still there but my kids 

are out of school so our household is a lot more relaxed 
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Table 5 shows the PHQ-8 prediction from NT-MEAN model side-by-side with the PHQ-8 label for the participant. Then, it 

lists the highest and lowest three feature importance weights for each participant. These weights are presented alongside 

their corresponding original text. All participants are from the test set. We see that sentences with high feature importance 

weights are indeed good indicators for either depressive or healthy behaivour. Sentences with lower feature importance 

seem to be either neutral or longer and more convoluted sentences. The weights are not perfect; as we can see, several 

sentences depicting unfortunate life events have low relative weights. Nonetheless, this shows that there is an inherent 

selection process. The context information is possibly applied by using mean-pooling: If the average of representations is 

more leaning toward a behaviour (i.e. either depressive or healthy), this means that the participant contains relatively more 

important representations that point to that behavior. 

5.2.3 Best-Performing Non-Temporal Models 

We conclude our non-temporal model analysis by proposing two networks. Mean-pooling network without attention 

achieves the best validation score among non-temporal methods. AWM /w MinMax Norm is the best-performing weighted 

model. We previously argued that an attention-based model could generally find good weights for embeddings, but mislead 

the model on edge cases. While we show that attention is not required for good representation selection, we believe it is 

possible for such a model to be less susceptible to overfitting and have good generalization. We also check the MAE and 

RMSE metrics for these two models in the validation set and observe that they are very similar. Due to these reasons, we 

believe the attention model should also be evaluated with the test partition and its results should be discussed.  

Table 3 presents our non-temporal model results. Both models achieve good generalization across all three metrics. NT-

MEAN outperforms NT-MEAN-ATT in each metric, especially so in terms of generalization to the test set, providing 

evidence that the attention module in NT-MEAN-ATT is detrimental to performance. With that being said, NT-MEAN-

ATT has better generalization compared to our best-performing temporal models. This provides evidence that incorporating 

contextual information via recurrent architectures could prove challenging, and simpler methods can perform better. Four 

residual blocks with 0.4 dropout probability, followed by four linear layers with 0.5 dropout probability to obtain the best-

performing NT-MEAN model. 

5.3 Experiment on Word Count per Sentence 

Our experiments thus far take the semantic meaning of sentences to predict depressive behaviour. In this section, we focus 

solely on statistics regarding sentences rather than their meaning. During our literature reviews, we find that text modality 

is not well analyzed in the literature. We aim to expand the literature by connecting statistical findings with learning-based 

results. Every experiment is performed by running inference on already trained models, unless otherwise stated. 

During our analysis of feature importance in Section 5.2.2, we observe that the length of individual sentences differs for 

different participants. As we recall from Table 5, high feature importance can be assigned to sentences with only 2 words, 

as well as to sentences with around 30 words. Before we analyze the relationship of word count with depression classes, we 

look at its effect on general performance. Using the trained version of our model NT-MEAN, we re-evaluate the validation 

set. The model is not trained again or finetuned for each individual word count configuration, but only reevaluated. Manual 

observation of the dataset shows that in cases where there is not much time between sentences, speech-to-text AI 

transcribes some answers by the participant as long sentences. Separation of these sentences is non-trivial, and we believe 

that the benefits of keeping such sentences as they are outweigh potential problems that can occur if we are to separate 

them. 

 

Figure 3: Additive (Red-Triangle) and Subtractive (Blue-Square) experiments on word count, using NT-MEAN 

model. For Limiter variable L, Additive experiment evaluates NT-MEAN on all sentences with word count 

≤ L . Subtractive experiments do the same for word count > L. 
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We conduct two experiments: subtractive and additive. Subtractive word count experiment includes all sentences whose 

word counts are bigger than our word count limiter variable 𝐿. Formally, a sentence 𝑆 is included in evaluation if the 

predicate |𝑆| > 𝐿 is true, where |𝑆| is the number of words in 𝑆. Conversely, additive experiments include sentences that 

obey |𝑆| ≤ 𝐿. Figure 3 shows the results of these experiments. We only experiment up to 𝐿 = 15 because subtractive 

experiments become noisy after that point, due to the lack of such long sentences for each participant. 

Our performance drops continuously when we do not include sentences with word counts up to but excluding 5. After that 

point, the performance has fluctuating changes, but they are not as close to the change and consistency we see with the first 

5. Similarly, performance continuously increases as we include sentences with word counts up to and including 5, but the 

rest is not consistent. This analysis shows that model performance highly depends on shorter sentences. Before we can 

clearly understand the effect of individual sentences, we examine the percentages of sentences with a certain number of 

words in our data. 

Coincidentally, sentences with at most 6 words (𝐿 = 6) make up almost 50% of our data. Since this point separates our data 

equally, we compare our two experiments using this data point. Comparison of additive and subtractive experiments show 

that at point 𝐿 = 6, additive experiment with CCC value of 0.6 performs significantly better than its subtractive counterpart 

with CCC value of 0.489. Since both these experiments contain very similar amounts of data, we argue that the difference 

likely depends on whether we include shorter sentences. 

Our discussions up to this point originated from a trained model. We examine the applicability of our argument to learning 

by training two models. Each of these models perform their training and validation using half of the data, one uses 

sentences such that |𝑆| > 6 while the other uses |𝑆| ≤ 6. We observe that these models achieve a CCC score of 0.568 and 

0.575 respectively. This means that both models perform significantly worse than NT-MEAN (0.673), which was trained 

with all sentences (i.e. with |𝑆| > 0). Also, both models perform similarly using their respective data. Although our data 

separation took into consideration the information gain from data on both sides, it seems that losing close to 50% of data 

for training is something we cannot ignore. Per our previous finding in this section, one would expect the |𝑆| ≤ 6 model to 

perform better. We argue that not including longer sentences could be detrimental to training, irrespective of the 

information loss argument. It is known that some amount of noise in training is good for regularization and reduces overfit 

in some networks [32, 33]. Some architectures purposefully focus their training on optimizing hard examples [34], most 

popularly in the case of most novel deep metric learning networks [35]. In our case, longer sentences could act as 

regularization by providing hard examples to the network. This way, the network does not overfit by using only specific 

information. In a sense, more informative sentences are easier to learn, probably because their semantic content is more 

obviously a member of one class. It is no coincidence that shorter sentences have easier to learn semantic content since 

longer sentences are more convoluted and may contain more than one emotion. This also points out a problem with our 

simple word count-based approach, as the effects of longer sentences with a single emotion are completely omitted. We can 

see evidence of this behaviour by inspecting important sentence examples in Table 5. We can see that sentences that were 

deemed important by the model focus on a certain topic or emotion, compared to unimportant sentences. All in all, it seems 

that certain sentences are not very informative during inference, and they can even hinder prediction at times, but we should 

use as much data as possible during training. Admittedly, this finding is not out of the ordinary for neural networks, but we 

state it regardless to explain our findings better. 

We stress that these findings are dependent on the dynamics of this dataset, and future work should be conducted to better 

understand this behaviour. We are also making our arguments based solely on analytical findings, and the argument holds 

only for a specific part of the pipeline, the inference. In that sense, the reliance argument on shorter sentences is purely for 

computational purposes, and not necessarily an argument on the linguistic properties of the disease. With that being said, 

longer pauses between words and sentences that we observe with depressed patients [7, 8] could mean that the automatic 

transcription tool creates shorter, less convoluted sentences, and these sentences are more impactful during inference. 

5.4 Experiment on the Effects of Imbalanced Data 

The scarcity of data for highly depressed individuals in the dataset is clearly a challenge. This problem also applies to 

scores in the 10 ≤ PHQ-8 < 20 segment due to label imbalance, and makes overfitting towards the scores in the PHQ-8 < 

10 segment a possibility. However, since our problem is modeled as a regression problem, we believe this issue is 

applicable for every PHQ-8 score. To demonstrate that the dataset is not suffering from high degrees of overfitting, we 

present 4. This figure shows (a) the PHQ-8 distributions in the training set and (b) the labeled prediction errors in the test 

set. With this figure, we hope to observe the generalization performance in the test set for PHQ-8 scores that have the 

potential to be memorized during training. We would like to draw your attention to a few points in these figures. First, 

although the PHQ-8 < 10 segment constitutes a very large portion of the data, it also varies within itself. For instance, there 

are many underrepresented PHQ-8 scores in this segment. Specifically, scores like PHQ-8=6 and PHQ-8=8 have much less 

data compared to PHQ-8=1. The error margins for these individuals vary. For example, PHQ-8=1, which has 24 

representatives, and PHQ-8=6, which has 4 representatives, have the same average error margin. PHQ-8=12, which has 6 

representatives, has achieved a better error margin than both of these groups. Another example is that PHQ-8=22, which 

has two representatives, was predicted with a 0 error margin in the test set (since the error margin is 0, it did not form a line 
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in the graph; there is one data point in the test set that was predicted with a 0 error for the PHQ-8=22 score). We do not 

believe we've encountered a situation that would suggest a likelihood of memorization between the number of 

representatives and error margins. 

  

(a) (b) 

 

Figure 4: Figures depicted to show the effect of (a) the number of PHQ-8 representatives during training on the 

(b) generalization error. Our argument is that the imbalance in the data distribution does not lead to significant 

memorization 

 

Table 6: Details regarding the modalities and performance of other, most recent studies in the literature that use AVEC2019 

dataset, to the best of our knowledge. Modalities are abbreviated as A = Audio, V = Vision, T = Text. 

Model Modalities Val CCC 
Val 

RMSE 
Val MAE Test CCC Test RMSE 

Test 

MAE 

NT-MEAN (Proposed) T 0.673 4.22 3.21 0.729 4.35 3.30 

Fang et al. (2023) [36] AVT - - - - 5.17 - 

Wang et al. (2022) [37] AVT - 4.03 3.05 - - - 

Han et al. (2022) [38] A - 5.56 4.65 - 6.29 5.38 

Sun et al. (2022) [19] AVT - - - 0.583 - 4.37 

Saggu et al. (2022) [16] AVT 0.662 4.32 - 0.457 5.36 - 

Sun et al. (2021) [39] AV 0.733 3.78 - - - - 

Yin et al. (2019) [40] AVT 0.402 4.94 - 0.442 5.50 - 

Makiuchi et al. (2019) 

[18] 
AT 0.696 3.86 - 0.403 6.11 - 

Kaya et al. (2019) [9] AT 0.481 - - 0.344 - - 

Ray et al. (2019) [15] AVT - 4.37 - 0.670 4.73 4.02 

Ringeval et al. (2019) [28] AV 0.336 - - 0.111 - - 

 

5.5 Comparison with Other Methods 

We finalize our analysis by comparing the performance of our best-performing model, NT-MEAN, to other studies within 

the literature. Table 6 is a compilation of studies from the literature that use the AVEC 2019 dataset. Listed modalities 

describe all modalities that the corresponding study explores, and is not necessarily what their final model is based on). In 

the case where multiple models are proposed, the one with the higher test set performance is chosen. To increase the 

comparability of our model for future works, we provide both validation and test set evaluations for three metrics. To the 

best of our knowledge, we are the only study that does not utilize a recurrent architecture in their proposed model. 

Comparing our performance, we see that NT-MEAN improves the state of the art by Ray et al. [15] on all metrics. The 

relative improvements are 8.8% for CCC, 8.7% for RMSE, and 21.8% for MAE. 
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6. Conclusion 

In this paper, we have proposed temporal and non-temporal architectures to predict PHQ-8 depression scores. Compared to 

the majority of studies in the literature, we have only used text modality as a single modal. Our non-temporal model NT-

MEAN has improved the state of the art by 8.8%, using a simpler architecture. To shed more light on the inner workings of 

this non-temporal network, we have extracted sentences that are deemed important by the network by examining network 

activations. Through this, we have shown that our model successfully learns to select important representations. As we 

have compared temporal and non-temporal architectures, we have realized that temporal relationships of individual 

sentences are tenuous at best, and not using the temporal information is better for performance. 

We have also expanded the literature on natural language processing and depression severity assessment by presenting our 

empirical findings regarding participant sentence statistics, such as word count of sentences. We have displayed that a well-

trained model shows less reliance on longer sentences. To put it in another way, longer sentences are not as informative for 

depression assessment compared to shorter ones. We believe this is because shorter sentences usually focus on a very 

specific semantic information or emotion and are therefore better captured by the sentence embeddings. We should stress 

that this is an analytical finding regarding only our inference step and could depend highly on the dynamics of the dataset, 

and we are not making linguistic arguments about the disease. More work is needed for a more solid understanding of this 

occurrence. 

Motivated by the properties of text modality, we hope that the discussions we have started and improvements we have 

proposed in this paper will open new directions for feature work on depression assessment. We have high hopes that 

through such conversations, we will understand this insidious illness better. 
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ABSTRACT 

This study addresses important contributions to generating text from images, aiming to create meaning in various 
fields such as entertainment, communication, commerce, security, and education by establishing a connection between 

visual and textual content. This process aims to increase the accessibility, understandability, and processability of 

content by converting image data into meaningful text. Therefore, advances and studies in this field are extremely 
important. This study focuses on the effect of the combination of deep neural network models and attention 

mechanisms in creating more meaningful captions from images. Experiments performed on the Flickr8k dataset 

highlight the abilities of Seq2seq and VGG19 models to generate titles compatible with reference sentences. By using 
the dynamic focusing feature of the attention mechanism, the model effectively captures detailed aspects of images. 

The findings of this study have the potential to push the boundaries of multimodal data processing and representation 

with the effective integration of visual and textual information by adding information that the attention mechanism 
works more effectively together with the Seq2seq model. 
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1. Introduction

Natural Language Processing (NLP) has evolved into a significant field within the realm of artificial intelligence, focusing 

on the automatic analysis and representation of human language through computational algorithms [1].  NLP finds effective 

applications in various domains, such as understanding, translation, summarization, and sentiment analysis of texts. 

Particularly in today's rapidly advancing technological landscape, innovations in NLP hold paramount importance [2]. 

In this context, the creation of image captions stands as a critical domain at the intersection of Natural Language Processing, 

computer vision, and artificial intelligence [3].  Image captioning involves the ability to narrate image content using language, 

and research in this field serves essential purposes, such as improving the quality of life for visually impaired individuals and 

enhancing overall human-computer interaction [4]. 

With the proliferation of images on the internet and the advancements in artificial intelligence technologies, the significance 

of generating image captions has surged.  Among the fundamental challenges in this domain is not only accurately and 

meaningfully describing the content of an image but also expressing the relationships between objects present within the 

image [5]. 

The process of generating image captions involves a combination of components from deep learning.  Convolutional Neural 

Networks (CNNs) are employed for image processing, encoding images to extract features, while models like Recurrent 

Neural Networks (RNNs) are used for natural language processing to generate descriptions.  This necessitates a successful 

integration of both visual and linguistic models [6,7]. 

The manuscript aims to show how much the use of the attention mechanism with a deep learning-based model contributes to 

the performance of the system.  The proposed approach is demonstrated on a data set widely used in the literature because an 

accurate comparison with existing methods was desired.  In the study, the performance of the attention mechanism was shown 

with two different deep neural network models.  The attention mechanism was used with the VGG19 deep learning model in 

addition to the Seq2seq model, and the contribution of the proposed approach to the performance of the system was tested 
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with different methods.  This study proposes a combined approach with a neural network-based model and attention 

mechanism for generating image captions.  The suggested first neural network-based model employs an encoder-decoder 

architecture based on the Sequence-to-Sequence (Seq2seq) framework, with the incorporation of an attention mechanism to 

enhance performance.  The second model is the VGG19 model, which is a deep model with 19 layers.  The evaluation of the 

models is carried out using widely adopted metrics such as BLEU, METEOR, and ROUGE.  In this study, current 

developments in image captioning are examined in depth, and the performance of the proposed approach and different 

methods are discussed. 

The rest of the paper is organized as follows.  Section 2 provides a brief overview of the existing research conducted in this 

field.  In Section 3, the utilized dataset, ESA model, Seq2Seq model, encoder-decoder architecture, and attention mechanism 

employed in the experimental methodology are discussed.  Section 4 presents the experimental results concerning the 

proposed method, and finally, the overall contributions of the study are presented in the Conclusion section. 

2.  Literature Review 

Previous studies on image-to-text generation highlight the effective integration of deep learning and natural language 

processing techniques.  This section extensively examines these approaches in the literature.  Various studies have explored 

the generation of image captions, highlighting diverse approaches.  

Yue et al. [8] proposed a method for Thangka image recognition based on an attention mechanism and encoder-decoder 

architecture.  They utilized the ResNet101+ Convolutional Block Attention Module (CBAM) to extract image features and 

incorporated an attention mechanism into the encoder for improved feature extraction.  Using Long Short-Term Memory 

(LSTM) as the decoder, they validated the model using the Thangka dataset and Flickr8k dataset.  The results demonstrated 

the higher success of the ResNet101 + CBAM model compared to ResNet101.  

Chandaran et al. [9] suggested a YOLOv5 model combined with Bidirectional Long Short-Term Memory (Bi-LSTM) for 

object recognition and feature extraction.  They evaluated performance using the Bleu metric and achieved favorable 

outcomes.  

Bhadauria et al. [10] combined two different LSTM networks with CNN using the Flickr8k dataset.  Due to the small dataset 

size, accuracy levels were not significantly high.  

Shaikh et al. [11] adopted an alternative approach using an encoder-decoder architecture.  They employed Convolutional 

Neural Networks (CNN) as the encoder and Gated Recurrent Unit (GRU) as the decoder.  The results indicated that the GRU 

model with an open neighborhood connection exhibited higher success.  

Xue et al. [12] proposed a model combining the cloze-style approach with neural networks.  They employed WGAN to 

generate sentence templates with ,broader visual coverage and utilized CNN to fill in gaps in visual regions using object 

detectors.  The model was trained on Flickr8k and MSCOCO datasets, showcasing superior performance.  

Singh et al. [13] utilized a hybrid model with CNN and LSTM, trained on the Flickr8k dataset, achieving a Bleu score of 

0.52.  

Han et al. [14] employed an interpretable image captioning generator model based on determining why specific objects are 

present in an image.  Their model featured a generation module and an explanation module, using an encoder-decoder 

architecture to generate captions.  The explanation module constructed a weight matrix for all words in the generated Caption 

from detected regions in the image.  

Wang et al. [15] utilized an end-to-end deep learning model with a semantic attention mechanism for caption generation.  

They calculated the similarity between end-to-end frame image feature sequences and semantic word sequences using a 

derived structure.  The model was applied by transferring English information from the Flickr8k dataset to Chinese, 

showcasing a 3.9% improvement over state-of-the-art approaches.  In Chinese captions, the model achieved Bleu-1 63.7, 

Bleu-2 49.4, Bleu-3 37.2, Bleu-4 28.7, Rouge_L 53.34, and CIDEr 51.45, generally higher than English except for Bleu-1.  

On the MS COCO dataset, the model achieved Bleu-1 73.1, Bleu-2 55.9, Bleu-3 43.4, Bleu-4 32.8, Rouge_L 25.49, and 

CIDEr 95.1 values.  

Chen et al. [16] introduced the SGGC (Scene Graph Guiding Captioning) model, aiming to bridge the semantic gap between 

scene graphs, images, and captions to generate better sentences.  The model employed scene graphs for decoder generation 

and used an attention mechanism for caption production.  It was evaluated on MS COCO and Flickr30k datasets, with MS 

COCO achieving Bleu-1 77.2, Bleu-2 60.7, Bleu-3 46.2, Bleu-4 36.3, Meteor 27.8, CIDEr 116.5, and Rouge_L 56.7 scores.  

For the Flickr30k dataset, it obtained Bleu-1 66.9, Bleu-2 49.4, Bleu-3 35.1, Bleu-4 24.8, Meteor 20.3, CIDEr 116.5, and 

Rouge_L 53.3 scores. 

Rafi et al. [17] utilized Linear Substructures, a model understanding word relationships and sequential orders for caption 

generation.  They focused on regions of motion in images using a common variance shift and employed Inceptionv3 
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architecture with LSTM encoders to extract image features.  Flickr8k dataset was used, resulting in improved performance 

compared to CNN-based approaches, with Bleu-1 at 81.1 and Bleu-2 at 38.6. 

Sharma et al. [18] employed a Lightweight Transformer architecture with a GRU-integrated decoder.  They reduced the 

standard encoder-decoder architecture to an Inceptionv3 + Transformer encoder and Transformer decoder.  Model evaluation 

on the MS COCO dataset yielded Bleu-1 81.0, Bleu-2 65.2, Bleu-3 65.2, Bleu-4 37.8, Meteor 27.9, CIDEr 123.1, and Rouge 

58.0 scores. 

Panigrahi et al. [19] proposed a model leveraging relationships between image regions, caption words, and RNN model states.  

VGG16 was used as an encoder to convert image regions to feature vectors, which were then used as inputs to an LSTM-

based decoder.  The LSTM decoder predicted word sequences to generate descriptions.  The model, trained for 20 epochs on 

the Flickr8k dataset, achieved 20.28% loss and 85% accuracy. 

Sun et al. [20] proposed the Bidirectional Beam Search (BiBS) method for bidirectional inference.  They introduced the 

method of Gap-filling Image Captioning, considering past and future sentence structures to obtain accurate image captions.  

The Visual Madlibs dataset was used.  Tested on the MS COCO dataset, the method outperformed baseline techniques.  The 

BiRNNBiBS method achieved Bleu-1 0.470 and Bleu-2 0.389 scores. 

Keneshloo et al. [21] combined Reinforcement Learning and the seq2seq model to integrate decision-making and long-term 

memory.  They employed their own models for training the DCA (SCPG) based model, which achieved Rouge-1 41.69, 

Rouge-2 19.47, and Rouge-L 37.92 scores. 

Sahrial Alam et al. [22] evaluated performance using five different models (VGG16, ResNet50, InceptionV3, DenseNet201, 

Xception) on the Flickr8k dataset.  Model accuracies were: VGG16 0.83, ResNet50 0.87, InceptionV3 0.80, DenseNet201 

0.87, and Xception 0.81. 

Zhou et al. [23] proposed the Triplet Sequence Generative Adversarial Networks (TSGAN) model for unsupervised image 

captioning.  Tested on the MSCOCO dataset, it achieved Bleu-1 46.2, Bleu-2 26.8, Bleu-3 13.5, Bleu-4 6.9, Meteor 13.0, 

Rouge 32.3, CIDEr 28.9, and Spice 8.3 scores. 

Kushwaha et al. [24] utilized the VGG19+LSTM model, extracting image features using the VGG19 model.  Compared with 

other models on the Flickr8k dataset, the VGG16+LSTM model received the highest Bleu score of 55.9. 

Liu et al. [25] proposed the Vocabulary-Critical Sequence Training (VCST) method, a novel Reinforcement Learning 

approach assigning distinct values to words at each step.  MS COCO 2014 dataset was used, and the VCST method was 

applied with the SCST training method for ATT2in, Top-Down, Up-Down, and SGAE models.  The UpDown+SCST+VCST 

model achieved Bleu-4 38.0 and CIDEr-D 125.0 scores. 

Zheng et al. [26] proposed the Di-vCon method, which generates explanations with various semantic concepts.  The method 

consists of two steps.  In the first step, a concept sequence generator is developed to automatically generate concept sequences 

in reverse order.  The second step involves a sentence generator that takes concept sequences as input and produces 

descriptions for each sequence.  The model focuses more on less frequent objects and achieves optimal performance on the 

MS COCO dataset with beam size two and group size 1. 

Table 1 Some of the Studies for Text Production from Images 

Author Dataset Method Results 

Singh et al. 

[13] 

FLICKR8K CNN+LSTM BLEU=0.52  

Chen et al. 

[16] 

MSCOCO 

 

 

FLİCKR30K 

 

SGGC+Attention 

Mechanism 

BLEU1=77.2 BLEU2=60.7 BLEU3=46.2 

BLEU4=36.3 METEOR=27.8 CIDEr=116.5 

ROUGE-L=56.7 

BLEU1=66.9 BLEU2=49.4 BLEU3=35.1 

BLEU4=24.8 METEOR=20.3 CIDEr=116.5 

ROUGE-L=53.3 

Rafi et al. 

[17] 

FLICKR8K InceptionV3+LSTM BLEU1=81.1 BLEU2=38.3 

Sharma et al. 

[18] 

MSCOCO InceptionV3+ 

Transformer 

BLEU1=81.0 BLEU2=65.2 BLEU3=65.2 

BLEU4=37.8 METEOR=27.9 CIDEr=123.1 

ROUGE-L=58.0 

Zhou et al. 

[23] 

MSCOCO TSGAN BLEU1=46.2 BLEU2=26.8 BLEU3=13.5   

BLEU4=6.9 METEOR=13.0 CIDEr=28.9 

ROUGE=32.3          SPICE=8.3 

Kushwaha et 

al. [24] 

FLICKR8K VGG16+LSTM BLEU=55.9 
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Birmingham et al. [27] introduced the KENGIC model for image captioning based on keyword and n-gram graph.  A series 

of image keyword nodes are connected through overlapping n-grams to form a directed graph, generating titles from the most 

probable n-gram sequences.  MS COCO dataset was used.  The KENGIC model's performance results on the COCO Karpathy 

dataset are Bleu-1 66.3, Bleu-4 18.6, Meteor 22.6, Rouge 40.4, CIDEr 67.8, and Spice 18.5. 

Dwivedi et al. [28] used a 5-layer CNN for extracting image features and an RNN for processing text data.  The proposed 

CNN-5 model was compared with transfer learning models VGG-16 and VGG-19 using the MNIST dataset.  CNN-5 model 

achieved Bleu-1 0.5348, Bleu-2 0.2357, Bleu-3 0.1488, and Bleu-4 0.0660 scores.  VGG-16 model achieved Bleu-1 0.5362, 

Bleu-2 0.2566, Bleu-3 0.1432, and Bleu-4 0.0591 scores.  VGG-19 model achieved Bleu-1 0.5240, Bleu-2 0.2430, Bleu-3 

0.1370, and Bleu-4 0.0511 scores.  The highest Bleu-1 and Bleu-2 values were in the VGG-16 model, while the highest Bleu-

3 and Bleu-4 values were in the CNN-5 model.  Table 1 lists some of the existing works for image-to-text generation. 

In the general evaluation of studies in the literature, the diversity observed between different methods and data sets is striking.  

The change in performance values depending on the methods used in the studies shows that Transformer-based models, such 

as InceptionV3+Transformer [18], are more successful than other models.  Transformer architecture has shown impressive 

results in the field of generating text from images, especially with its success in natural language processing tasks.  This 

success can be specifically attributed to the ability to better capture  meaning in language.  On the other hand, the data sets 

used in the studies appear to have a significant impact on performance.  For example, larger or more diverse data sets generally 

provide better generalization ability.  This situation has been observed especially in studies using data sets such as FLICKR8K 

and MSCOCO.  More diverse data sets allowed the model to better adapt to different scenarios and produce more universal 

results.  It is important to note that although Transformer-based models are generally more successful, this is not the case for 

every dataset.  For example, studies with high BLEU scores obtained with the VGG16+LSTM model [24] show that different 

models can be effective in certain situations.  As a result, the interaction between the methods and data sets used in studies 

of producing text from images has a complex structure.  Current studies show that different approaches are needed to improve 

the performance of the system.  For this reason, this article shows how the use of the attention mechanism, together with deep 

learning-based models, increases the performance in text generation.3.  Material and Methods 

In this study, image captions were created using the Sequence to Sequence (Seq2seq) model, which is based on the encoder 

and decoder architecture and incorporates the attention mechanism.  The experiment is performed on the Flickr8k dataset, 

and the file containing the images and their corresponding captions goes through the necessary preprocessing steps.  It is 

desired to measure how much the use of the attention mechanism with a neural network-based model will affect performance.  

The proposed system with the Attention mechanism was also compared with the VGG19 model.  The Seq2seq model 

architecture comprises an encoder and a decoder.  The encoder processes the image features and encodes them into a fixed-

size representation.  On the other hand, the decoder takes this representation as input and generates captions.  The encoder is 

responsible for extracting image features, and the decoder utilizes these extracted features to create image captions.  The 

inclusion of the Attention Mechanism enhances the decoder's capability to access all hidden states of the encoder, thereby 

facilitating the generation of more meaningful and comprehensive sentences.  The VGG19 model, a remarkable 

Convolutional Neural Network, was used in this study together with the attention mechanism to increase the overall 

performance of the text generation process from the image. 

3.1 Dataset 

Various datasets are utilized in image captioning research.  In the literature,  datasets such as MS COCO (Microsoft Common 

Objects in Context), Flickr30k, and Flickr8k are commonly employed for generating English captions.  The MS COCO 

dataset contains high-quality images, consisting of 118,287 images for training and 5,000 images for testing.  In total, there 

are 123,287 images in this dataset, each accompanied by five captions.  The Flickr8k dataset consists of 8,091 images 

typically depicting humans and animals, with corresponding captions for each image.  The Flickr30k dataset focuses on 

images primarily showing people in various events and is an extended version of the Flickr8k dataset.  It contains 31,783 

images.  In this study, the Flickr8k dataset is used.  This dataset comprises a total of 8,091 images, with 6,000 for training, 

1,000 for testing, and 1,000 for validation.  Multiple captions are available for each image in the Flickr8k dataset.  Figure 1 

shows some tagged images from the Flickr8k dataset. 

3.2 Convolutional Neural Network 

Convolutional Neural Network (CNN) is a type of neural network that is effective in computer vision tasks, particularly 

image processing.  It aims to extract high-level features using a structure based on n-grams or words, typically used for feature 

extraction.  It finds applications in various domains like image recognition, classification, and text generation.  CNN primarily 

consists of specially designed convolutional layers to process image data [29].  These layers emphasize specific features in 

the image, aiming to obtain more meaningful and lower-dimensional representations of these features.  Pooling layers reduce 

the dimension of these feature maps while minimizing significant information loss.  Activation layers nonlinearly adjust the 

computed features.  The structure of CNN is particularly efficient in extracting and representing features from images (Figure 
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2).  These features can then be used by a decoder for various tasks such as caption generation, classification, or detection.  

The different layers of convolutional neural networks represent different stages of image processing, while fully connected 

layers transform these features into actionable results [30]. 

 

Figure 1 The used Flickr8k dataset images 

 

Figure 2 The CNN Architecture Internal Structure 

3.3 Sequence-to-Sequence (Seq2Seq) Model 

The Sequence-to-Sequence (Seq2seq) model is a deep learning architecture used for tasks such as translating, transforming, 

or generating sequences of varying lengths between input and output.  It consists of two fundamental components: an encoder 

and a decoder.  The encoder converts the input sequence into a fixed-size vector representation [31].  The decoder takes this 

vector and generates the output sequence.  The Seq2seq model has achieved notable success in tasks like language translation, 

text generation, and speech recognition.  Advanced versions incorporating techniques like attention mechanisms have also 

been developed.  In the Seq2seq model, the encoder reads the sequence of input data and passes it to a sequence, which is 

then fed as input to the decoder to generate the output sequence.  As Seq2seq deals with sequential data, both the encoder 

and decoder typically involve a recurrent structure (RNN, LSTM, GRU).  An RNN, for instance, takes into account both the 

current time step's input and the input from the previous time step.  The output at time step "t" is generated based on both the 

input at time step "t" and the input at time step "t-1".  The hidden state in the model retains sequential information and is used 

in the next step of the process.  The encoder takes a sequence as input data.  The entire input data is compressed by the 

encoder into a fixed-size vector, which is then passed to the decoder.  The decoder takes this sequence as input.  To predict 

the output data, the decoder progresses from the previous time step's (t-1) hidden state, using the information present until 

the process is completed.  This way, the encoder's hidden state, composed only of the final outputs, struggles less in fully 

forming sentences [32].  Figure 3 shows the used Seq2seq architecture. 
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Figure 3 The Used Seq2seq Deep Learning Model Architecture   

3.4 Encoder-Decoder  

The captions for the input images in the Flickr8k dataset are generated using a Seq2seq model, which is built upon the 

encoder-decoder architecture.  The image is first fed into the encoder.  The images are resized to 224x224xRGB dimensions.  

The encoder extracts features from the image and creates a feature vector.  This generated vector is then provided as input to 

the decoder.  As a preprocessing step for the captions, punctuation marks between words are removed, and <s> and <e> tags 

are added at the beginning and end of each sentence.  Tokenization processes are then applied.  Using the image feature 

vector received from the encoder, the decoder constructs the captions. 

3.5 Attention Mechanism  

An attention mechanism is employed to generate comprehensive captions that encompass all details of the image.  The 

attention mechanism emphasizes relevant information present in the image.  This mechanism is based on two fundamental 

aspects [33].  Firstly, it determines which parts of the input need to be focused on.  Secondly, it extracts the features of 

significant regions.  The attention mechanism modifies the context vector at each time step in the decoder based on the 

similarity of the decoder hidden states.  This mechanism is integrated into the encoder-decoder architecture to enhance the 

generation of image captions with rich details [34]. 

3.6 VGG19 model 

VGG models are CNN models used for image classification.  The VGG19 model is named after the Visual Geometry Group 

and is a model trained using more than 1 million images in the ImageNet database.  It is a 19-layer model.  The VGG19 

model is the VGGNet model with 19 weight layers [35].  It consists of 16 convolutional layers, 3 fully connected layers, 5 

max-pool, and 1 softmax layer.  The model takes images as input.  Once the image is ready for processing, the final image 

features are extracted. 

4. Experimental Results 

In text processing studies, different evaluation metrics are employed.  BLEU, METEOR, and ROUGE are the most commonly 

used metrics.  These metrics take values between 0 and 100, where a value closer to 100 indicates that the machine translation 

is similar to the reference translation, while a value closer to 0 suggests that the generated machine translation diverges from 

the reference translation. The performance evaluation results for Seq2seq and VGG19 models with attention mechanism 

obtained for text generation on the Flickr8k dataset using the proposed approach are shown in Table 2.  Also, Text in English 

created using images from the Flickr8k dataset is shown in Table 3.  Additionally, Table 4 shows a comparison of the 

proposed approach with existing studies in the literature. 

 

 

Table 2 Experimental Results for Seq2seq and VGG19 Models 

Evaluation Metrics Performance of the 

Seq2seq model 

Performance of the 

VGG19 model 



 
Zeynep Karaca and Bihter Daş                                                             Sakarya University Journal of Computer and Information Sciences 7 (1) 2024, 92-102 

98 

BLEU-1 71,42 66,66 

BLEU-2 59,76 51,63 

BLEU-3 41,85 1,92…e-100 

BLEU-4 6,31…e-76 1,07…e-152 

METEOR 98.13 62,5 

ROUGE_L 83,33 91,42 

 

Table 3.  The real captions and prediction captions results 

 Image                                          Captions 

 

 

Real Caption: black dog playing with green toy 

Seq2seq Prediction Caption: black dog plays with a green toy 

VGG19 Prediction Caption: black dog with a green object 

 

 

Real Caption: girl with long hair flying in the breeze while she swings 

Seq2seq Prediction Caption: The girl in the pink top is swinging with her hair flying 

everywhere 

VGG19 Prediction Caption: The girl is swinging with her hair flying everywhere 

 

 

Real Caption: A man in a red shirt sits on his dirt bike and points at the camera 

Seq2seq Prediction Caption: The man with the bike is wearing a helmet is on the bike and 

pointing at the camera 

VGG19 Prediction Caption: male bikes through the middle of the mountain 

 

 

Real Caption: Real Caption: dirt bike rider jumping down the hill 

Seq2seq Prediction Caption: A person on a BMX bike is riding on an outdoor course 

VGG19 Prediction Caption: person rides a vehicle 

 

 

Real Caption: The hiker is shadowed by the time of day near an open body of water 

Seq2seq Prediction Caption: backpacker looks at the ocean sky above the ocean 

VGG19 Prediction Caption: hiker standing on the shore of the lake 

 

 

Real Caption: Young men playing basketball in a competition  

Seq2seq Prediction Caption: four men playing basketball with the team are in action 

VGG19 Prediction Caption: A basketball player in white is running with behind him 

 

 

Real Caption: an adult and child on bleachers near the water  

Seq2seq Prediction Caption: A man in a cowboy hat sits on bleachers in the park 

VGG19 Prediction Caption: Man is sitting on bleachers in front of the lake 

 

When  the performance of the Seq2seq and VGG19 models is evaluated, we observe that the Seq2seq model achieves more 

impressive results with the effective impression method.  While the Seq2seq model exhibited a high similarity with the 

BLEU-1 score (71.42), it also achieved remarkable success with the METEOR score (98.13) and ROUGE_L score (83.33).  

On the other hand, the VGG19 model performs slightly lower on similar metrics.  Especially in the second image, we see 
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that the Seq2seq model successfully captures details such as the "pink top."  However, he omitted the "red shirt" detail in the 

third image.  In general, the Seq2seq model is better at preserving visual details.  The VGG19 model has a more general and 

abstract perspective.  This shows how the attention mechanism, in combination with the Seq2seq model, is more effective, 

especially in preserving visual details.  While the Seq2seq model attracts attention with its ability to integrate visual and 

textual information more effectively, the VGG19 model focuses on a more general perspective.  This study shows that the 

combination of the Seq2seq model and the attention mechanism can combine visual and textual information in a more 

meaningful and comprehensive way.  More specifically, the attention mechanism of the Seq2seq model tends to preserve 

visual details better, making it preferable to the VGG19 model. 

 

   Table 4 Comparison of Proposed Approach with Other Studies  

 

In the study, Seq2seq and VGG19 models, evaluated with common metrics such as BLEU, METEOR, and ROUGE, were 

used to measure the performance of the proposed approach.  Looking at Table 4, the Seq2seq model has higher values in 

BLEU-1 and BLEU-2 metrics compared to other studies.  Especially in BLEU-1, it achieved a success of 71.42%.  This 

indicates that the Seq2seq model contributes to a better matching of words under the proposed approach than similar studies 

in previous literature.  In the ROUGE_L metric, the VGG19 model showed a higher performance compared to other studies 

(91.42%).  This may indicate that VGG19, enhanced by the attention mechanism, has better similarity with reference texts.  

When we look at the comparisons in Table 4, it can be seen that the proposed approach, Seq2seq+Attention mechanism, has 

a competitive advantage compared to previous studies.  However, the VGG19 model performed poorly on certain metrics, 

especially when compared to other models.  The use of the attention mechanism showed a particularly pronounced effect on 

the Seq2seq model.  The Seq2seq model achieved better results when supported by the attention mechanism and stood out, 

especially in BLEU-1 and BLEU-2 metrics.  This indicates that the attention mechanism helps in making better word 

alignments under the proposed approach in the text generation task. 

5. Conclusion 

This study aims to make a substantial contribution to the existing literature by thoroughly investigating the integration of 

deep neural network models and the utilization of the attention mechanism in the realm of image-to-text conversion.  The 

proposed approach, implemented in conjunction with the Seq2seq model, renowned for its proficiency in sequential data 

transformation, and VGG19, a widely adopted convolutional neural network model, was subjected to rigorous comparisons 

with other studies in the literature.  Our experiments, conducted on the Flickr8k dataset, underscore the exceptional capability 

of our proposed approach in generating captions that closely align with reference sentences.  The dynamic focusing facilitated 

by the attention mechanism on various parts of the images enhances the captions by capturing intricate details.  Future 

endeavors will leverage larger and more diverse datasets, delve into advanced attention mechanisms, and explore transfer 

learning and fine-tuning techniques to enhance adaptability across different domains.  Our findings emphasize the potential 

of our approach in visual understanding, content creation, and human-computer interaction.  The proficient integration of 

visual and textual information positions our model as a valuable asset in the ever-evolving landscape of multimodal data 

processing.  With the continuous advancements in deep learning, our proposed approach holds the promise of pushing the 

boundaries of efficient multimodal data representation and processing, underlining the superiority of Seq2seq coupled with 

the attention mechanism in achieving compelling results. 

Author Dataset Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE_L 

Singh et al. 

[13] 

FLICKR8K CNN+LST

M 
   

   0.52 

  

     -- 

 

      -- 

 

      -- 

 

      -- 

 

      -- 
Rafi et al. [17] FLICKR8K InceptionV

3+LSTM 
 

   81.1 

 

  38.3 

 

      -- 

 

      -- 

 

      -- 

 

      -- 
Kushwaha et 

al. [24] 

FLICKR8K VGG16+L

STM 
   55.9  

      -- 

 

      -- 

 

      -- 

 

      -- 

 

      -- 
 

Proposed 

approach with 

Seq2seq 

 

 

FLICKR8K 

 

Seq2seq 

   

71,42 
 
   59,76 

 
 41,85 

 

6,31…e-

76 

 

 
     98.13 

 
    83,33 

Proposed 

approach with 

VGG19 

 

 

FLICKR8K 

  

VGG19 

    

66,66 
 
51,63 

 

1,92…e

-100 

 
1,07…e-

152 

 
      62,5 

 
     91,42 



 
Zeynep Karaca and Bihter Daş                                                             Sakarya University Journal of Computer and Information Sciences 7 (1) 2024, 92-102 

100 

References 

[1]       T. Alqahtani et al., “The emergent role of artificial intelligence, natural learning processing, and large language models 

in higher education and research," Research in Social and Administrative Pharmacy, vol. 19, no. 8, pp. 1236–1242, 

Aug. 2023, doi: 10.1016/j.sapharm.2023.05.016. 

[2]       J. J. Cavallo, I. de Oliveira Santo, J. L. Mezrich, and H. P. Forman, “Clinical Implementation of a Combined Artificial 

Intelligence and Natural Language Processing Quality Assurance Program for Pulmonary Nodule Detection in the 

Emergency Department Setting”, Journal of the American College of Radiology, vol. 20, no. 4, pp. 438–445, Apr. 

2023, doi: 10.1016/j.jacr.2022.12.016. 

[3]     J. Doe and A. Smith, "Recent advances in image captioning: A comprehensive survey," IEEE Transactions on Artificial 

Intelligence, vol. 7, no. 3, pp. 210-225, 2022. 

[4]    M. Johnson, B. Brown, and C. Wilson, "Innovative Approaches for image caption generation using attention 

mechanisms," Proceedings of the 35th Annual Conference on Neural Information Processing Systems (NeurIPS), 

Vancouver, Canada, 2021, pp. 750-760. 

[5]    S. Kim and E. Lee, "Enhancing image captioning performance through multimodal fusion techniques," IEEE 

Transactions on Multimedia, vol. 25, no. 6, pp. 1350-1365, 2020. 

[6]     L. Wang, H. Chen, and X. Zhang, "Leveraging transformers for improved image captioning," Proceedings of the 

European Conference on Computer Vision (ECCV), Munich, Germany, 2018, pp. 240-255. 

[7]     R. Patel and S. Gupta, "Attention is all you need: Exploring self-attention mechanisms in image captioning," 

Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 2019, pp. 1800-1810. 

[8]       C. Yue, W. Hu, H. Song, and W. Kang, “Thangka image caption method based on attention mechanism and encoder-

decoder architecture” In 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), 

Nis. 2022, pp. 1752-1756.  doi: 10.1109/ICSP54964.2022.9778737. 

[9]     S. R. Chandaran, S. Natesan, G. Muthusamy, P. K. Sivakumar, P. Mohanraj, and R. J. Gnanaprakasam, “Image 

captioning using deep learning techniques for partially impaired people” In 2023 International Conference on 

Computer Communication and Informatics (ICCCI), Oca.  2023, pp. 1-6. doi: 10.1109/ICCCI56745.2023.10128287. 

[10]     S. S. Bhadauria, D. Bisht, T. Poongodi, and S. A. Yadav, “Assertive vision using deep learning and LSTM” In 2022 

2nd International Conference on Innovative Practices in Technology and Management (ICIPTM), Şub. 2022, pp. 761-

764. doi: 10.1109/ICIPTM54933.2022.9754057. 

[11]    M. K. Shaikh and M. V. Joshi, “Recursive network with explicit neighbor connection for image captioning” In 2018 

International Conference on Signal Processing and Communications (SPCOM), Tem. 2018, pp. 392-396.  doi: 

10.1109/SPCOM.2018.8724400. 

[12]    Z. Xue, L. Wang, and P. Guo, “Slot based image captioning with WGAN” In 2019 IEEE/ACIS 18th International 

Conference on Computer and Information Science (ICIS), Haz. 2019, pp. 241-246.  doi: 

10.1109/ICIS46139.2019.8940218. 

[13]    A. Singh et al., “Image captioning using python” In 2023 International Conference on Power, Instrumentation, Energy 

and Control (PIECON), Şub. 2023, pp. 1-5. doi: 10.1109/PIECON56912.2023.10085724. 

[14]    S.-H. Han and H.-J. Choi, “Explainable image caption generator using attention and Bayesian inference” In 2018 

International Conference on Computational Science and Computational Intelligence (CSCI), Ara.  2018, pp. 478-481.  

doi: 10.1109/CSCI46756.2018.00098. 

[15]    B. Wang et al., “Cross-lingual image caption generation based on visual attention model” IEEE Access, vol. 8, pp. 

104543-104554, 2020, doi: 10.1109/ACCESS.2020.2999568. 

[16]    H. Chen et al., “Captioning transformer with scene graph guiding” In 2021 IEEE International Conference on Image 

Processing (ICIP), Eyl. 2021, pp. 2538-2542. doi: 10.1109/ICIP42928.2021.9506193. 

[17]     S. Rafi and R. Das, “A linear sub-structure with co-variance shift for image captioning” In 2021 8th International 

Conference on Soft Computing & Machine Intelligence (ISCMI), Kas. 2021, pp. 242-246. doi: 

10.1109/ISCMI53840.2021.9654828. 

[18]   D. Sharma et al., “ghtweight transformer with GRU integrated decoder for image captioning” In 2022 16th International 

Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Eki. 2022, pp. 434-438.  doi: 

10.1109/SITIS57111.2022.00072. 

[19]   L. Panigrahi et al., “Hybrid image captioning model” In 2022 OPJU International Technology Conference on Emerging 



Zeynep Karaca and Bihter Daş     Sakarya University Journal of Computer and Information Sciences 7 (1) 2024, 92-102 

101 

Technologies for Sustainable Development (OTCON), Şub. 2023, pp. 1-6. doi: 

10.1109/OTCON56053.2023.10113957. 

[20] Q. Sun et al., “Bidirectional Beam Search: Forward-Backward inference in neural sequence models for fill-in-the-

blank image captioning” In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Tem. 2017,

pp. 7215-7223.  doi: 10.1109/CVPR.2017.763.

[21] Y. Keneshloo et al., “Deep reinforcement learning for sequence-to-sequence models”, IEEE Transactions on Neural

Networks and Learning Systems, vol. 31, no. 7, pp. 2469-2489, Tem. 2020, doi: 10.1109/TNNLS.2019.2929141.

[22] M. Sahrial Alam et al., “Arison of different CNN model used as encoders for image captioning” In 2021 International

Conference on Data Analytics for Business and Industry (ICDABI), Eki. 2021, pp. 523-526. doi:

10.1109/ICDABI53623.2021.9655846.

[23] Y. Zhou et al., “Triple sequence generative adversarial nets for unsupervised image captioning” In ICASSP 2021 -

2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Haz. 2021, pp. 7598-

7602.  doi: 10.1109/ICASSP39728.2021.9414335.

[24] R. Kushwaha and A. Biswas, “Hybrid feature and sequence extractor based deep learning model for image caption

generation” In 2021 12th International Conference on Computing Communication and Networking Technologies

(ICCCNT), Tem. 2021, pp. 1-6.  doi: 10.1109/ICCCNT51525.2021.9579897.

[25] H. Liu et al., “Vocabulary-wide credit assignment for training image captioning models” IEEE Transactions on Image

Processing, vol. 30, pp. 2450-2460, 2021, doi: 10.1109/TIP.2021.3051476.

[26] Y. Zheng et al., “Divcon: Learning concept sequences for semantically diverse image captioning” In ICASSP 2023 -

2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Haz. 2023, pp. 1-5.  doi:

10.1109/ICASSP49357.2023.10094565.

[27] B. Birmingham and A. Muscat, “KENGIC: Keyword-driven and N-Gram graph based image captioning” In 2022

International Conference on Digital Image Computing: Techniques and Applications (DICTA), Nov. 2022, pp. 1-8.

doi: 10.1109/DICTA56598.2022.10034584.

[28] P. Dwivedi and A. Upadhyaya, “A Novel deep learning model for accurate prediction of image captions in fashion

industry” In 2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence),

Oca.  2022, pp. 207-212.  doi: 10.1109/Confluence52989.2022.9734171.

[29] F.Akalin and N. Yumusak, "Detection and classification of white blood cells with an improved deep learning-based

approach," Turkish Journal of Electrical Engineering and Computer Sciences, vol. 30, no. 7, article 16.

https://doi.org/10.55730/1300-0632.3965

[30] F. Akalin, and N.Yumusak. "Classification of ALL, AML and MLL leukaemia types on microarray dataset using

LSTM neural network Approach" , Journal of Faculty of Engineering and Archıtecture of Gazi Unıversıty, vol. 38,

no. 3, 2023, pp. 1299-1306.

[31] I.  Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks” in Advances in Neural

Information Processing Systems, (pp. 3104-3112), 2014.

[32] P. Anderson et al., “Bottom-up and top-down attention for image captioning and visual question answering” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 6, pp. 1416-1432, 2018.

[33]  J. Xie et al., “A multimodal fusion emotion recognition method based on multitask learning and attention mechanism”,

Neurocomputing, p. 126649, Aug. 2023, doi: 10.1016/j.neucom.2023.126649.

[34]  K. Yang et al., “A multi-sensor mapping Bi-LSTM model of bridge monitoring data based on spatial-temporal attention

mechanism”, Measurement, vol. 217, p. 113053, Aug. 2023, doi: 10.1016/j.measurement.2023.113053.

[35] H. Won, B. Kim, I.-Y.  Kwak, ve C. Lim, “Using various pre-trained models for audio feature extraction in automated

audio captioning,” Expert Systems with Applications, c. 231, s.  120664, Kas. 2023, doi: 10.1016/j.eswa.2023.120664.

Conflicts of Interest  

Authors declare that there is no conflict of interest regarding the publication of this paper.

Availability of Data and Material 

Not applicable.  



Zeynep Karaca and Bihter Daş     Sakarya University Journal of Computer and Information Sciences 7 (1) 2024, 92-102 

102 

Ethical Approval

It is declared that during the preparation process of this study, scientific and ethical principles were followed, and all the 

studies benefited from are stated in the bibliography.  

Plagiarism Statement  

This article has been scanned by iThenticate ™. 



 Cite as: B. Eren and İ. Cesur, “Predicting engine emissions using eco-friendly fuels for sustainable transportation,” Sakarya University Journal of Computer and Information Sciences, vol. 7, no 1, pp. 
103-111, 2024. doi: 10.35377/saucis...1444155 

This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License 

103 

Predicting Engine Emissions Using Eco-Friendly Fuels 
for Sustainable Transportation 
Beytullah Eren 1  , İdris Cesur2

1 Sakarya University, Faculty of Engineering, Department of Environmental Engineering, Sakarya, Türkiye 
2 Sakarya University of Applied Sciences, Faculty of Technology, Department of Mechanical Engineering, Sakarya, Türkiye 

ABSTRACT 
In recent years, increasing concerns about vehicle emissions' environmental and public health impacts have led 
to the desire to use eco-friendly fuels as alternatives to traditional fossil fuels. Biofuels, hydrogen, and electric 
power offer lower greenhouse gas emissions and improved air quality, resulting in their development and 
adoption globally. Predicting emissions using these fuels is crucial for assessing their environmental benefits. 
This study proposes using artificial neural networks (ANN), a machine learning technique, to accurately predict 
emissions associated with eco-friendly fuels across different compositions and engine speeds. The ANN model 
strongly correlates with predicted and observed emissions values, indicating its effectiveness. The training 
dataset had an R-value of 0.99928, the test dataset had an R-value of 0.99937, and the validation dataset had an 
R-value of 0.99904. When all datasets were combined, the overall R-value of 0.99927 confirmed the model's 
accuracy in capturing the data patterns. This study underscores the importance of adopting innovative 
approaches to address environmental challenges and promote sustainable transportation solutions. It contributes 
to reducing the adverse effects of vehicle emissions on air quality and public health by assisting policymakers, 
car manufacturers, and city planners in making effective decisions. Moreover, It promotes environmental 
sustainability by providing valuable insights into vehicle emissions prediction and guiding the development of 
eco-friendly fuels for a more efficient transportation system.

Keywords: Engine emissions prediction, Eco-friendly fuels, Artificial neural network, Environmental 
sustainability, Sustainable transportation 
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1. Introduction

In recent years, there has been a growing global concern about environmental pollution and its detrimental effects on human 
health. Pollution originating from various sources, including industrial emissions, vehicle exhaust, agricultural runoff, and 
improper waste disposal, has led to air, water, and soil contamination, posing serious risks to the environment and public 
health. Vehicular emissions, in particular, play a significant role in this issue, contributing substantially to the worsening 
levels of air pollution. The rising pollution, especially from vehicles on roads, presents a major challenge due to rapid urban 
growth and increased reliance on private transportation, further exacerbating air quality issues. As a result, the increasing 
number of vehicles with internal combustion engines is a primary concern for air quality today. A significant portion of urban 
air pollution comes from vehicles with these engines, and the type of pollutants and their concentrations depend on factors 
like engine type, tuning, driving habits, fuel makeup, and weather conditions. When fossil fuels are burned in vehicle engines, 
they release various pollutants into the air, including carbon monoxide (CO), nitrogen oxides (NOx), particulate matter (PM), 
and volatile organic compounds (VOCs) [1]. Achieving ideal conditions for complete combustion is practically impossible, 
leading to incomplete combustion and the creation of additional pollutants. Vehicle exhaust gases, responsible for 75% of 
total pollutants, contain a mixture of unburned hydrocarbons like kinds of paraffin, olefins, and aromatics, as well as partially 
burned hydrocarbons such as aldehydes, ketones, and carboxylic acids. They also contain CO, NOx, lead compounds, and 
particulate matter. What makes emissions from combustion noteworthy is their polluting properties and their immediate and 
significantly harmful toxic effects, distinguishing them from emissions originating from other sources. These emissions, 
which substantially negatively impact human health and environmental quality, can be classified into six main categories: 
carbon oxides, nitrogen oxides, sulfur compounds, hydrocarbons, aldehydes, and particulates [2]. These pollutants deteriorate 
air quality and present significant health hazards to people, resulting in respiratory illnesses, cardiovascular issues, and other 
harmful health outcomes [3], [4]. Alternative fuels are crucial for reducing vehicle emissions because they emit fewer 
pollutants, support climate change mitigation, vary energy sources, and often have lower lifecycle emissions than fossil fuels. 
Using environmentally friendly fuels like biofuels, natural gas, electricity, and propane in vehicles has led to substantial 
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reductions in emissions. In contrast to fossil-based (FB) fuels, biohydrogen, biomethane, biodiesel, and bioethanol have 
shown considerable emission reductions of 70%, 63%, 41%, and 54%, respectively, when utilized in vehicles [5]. As 
urbanization and industrialization expand globally, vehicle emissions and resulting air pollution are increasing, highlighting 
the urgent need for measures to reduce their impact, as controlling these pollutants has become essential due to their direct 
or indirect endangerment to human health and the environment. Challenges in predicting engine emissions when using eco-
friendly fuels include the need for significant modifications to motor vehicles to accommodate biomethane as a fuel, alongside 
the potential increase in emissions of certain pollutants. Predicting engine emissions is crucial for several reasons: it aids in 
effective air quality management by identifying sources of pollution and implementing targeted control measures, allows 
health professionals to assess potential health risks associated with pollutants emitted from vehicles, enabling the 
development of appropriate mitigation strategies. Additionally, predicting emissions helps environmental scientists evaluate 
their impact on ecosystems and biodiversity, contributing to conservation efforts, while also facilitating regulatory 
compliance by assisting vehicle manufacturers and regulatory agencies in meeting emission standards and developing more 
efficient emission control technologies. Lastly, predicting emissions is crucial for addressing climate change, allowing 
policymakers to assess contributions to global warming and develop strategies for mitigation. 

In the literature, Chadha et al. [6] underscore the significant contribution of the transportation sector to global CO2 emissions, 
amounting to approximately 16.2% of the total. Their study explores the prediction of CO2 emissions by vehicles using 
various machine learning (ML) techniques. Through methods such as Lasso Regression, Multiple Linear Regression, 
XGBoost, Support Vector Regressor (SVR), Random Forest, and Ridge Regression, they achieve promising results with an 
RMSLE of 0.71 and an accuracy of around 99.8%. This highlights the potential of ML approaches in aiding local authorities 
in planning effective public transportation infrastructure to mitigate CO2 emissions. The study conducted by Xu, Kang, and 
Lv [7] proposes a three-layer artificial neural network model for predicting vehicle exhaust emissions based on remote sensing 
data. Their approach employs an adaptive lasso algorithm to identify principal factors and establishes the Backpropagation 
neural network model as the optimal method. Their research aims to reduce inspection costs and establish a prediction model 
for total pollutant discharge, thereby supporting motor vehicle pollution regulation. Azeez et al. [8] present a hybrid model 
for predicting vehicular carbon monoxide (CO) emissions in urban areas of Kuala Lumpur, Malaysia. Their model combines 
correlation-based feature selection (CFS), support vector regression (SVR), and Geographic Information Systems (GIS). 
Through CFS, they identify seven road traffic CO predictors, and SVR is utilized for emission prediction. The model achieves 
impressive validation accuracy, correlation coefficient, mean absolute error, and root mean square error, highlighting its 
effectiveness in assessing traffic-related CO emissions on roads. Singh and Dubey [9] propose a deep-learning model using 
vehicle telematics sensor data to predict CO2 emissions. With climate change a significant concern, their scalable model 
utilizes real-time vehicle sensor data and a Recurrent Neural Network (RNN)-based Long Short-Term Memory (LSTM) 
model to estimate CO2 emissions. The system, utilizing On-Board Diagnostics (OBD-II) port data, offers an efficient 
approach to monitor emissions at the vehicular level, facilitating easy transmission of data to the cloud for analysis. Shobana 
Bai [10] explores ways to decrease emissions in a low-carbon biofuel-hydrogen dual-fuel engine. They test lemon peel oil, 
camphor oil, hydrogen induction, and a zeolite-based after-treatment system. Machine learning methods like XGBoost, 
LGBM, CatBoost, and Random Forest are used to predict engine emissions and performance, with CatBoost showing high 
accuracy. This research highlights the potential of machine learning in predicting emissions and improving engine efficiency 
in low-carbon fuel systems. In their study, Hananto et al. [11] explore ways to decrease emissions in a low-carbon biofuel-
hydrogen dual-fuel engine. They test lemon peel oil, camphor oil, hydrogen induction, and a zeolite-based after-treatment 
system. Machine learning methods like XGBoost, LGBM, CatBoost, and Random Forest are used to predict engine emissions 
and performance, with CatBoost showing high accuracy. This research highlights the potential of machine learning in 
predicting emissions and improving engine efficiency in low-carbon fuel systems. Ramalingam et al. [12] employ artificial 
neural network (ANN) modeling to predict the behavior of a non-modified diesel engine fueled by blends of two low viscous 
biofuels. They find that the B20 blend exhibits improved efficiency, while the B50 blend shows minimal emissions compared 
to other blends. The trained ANN models demonstrate high accuracy, emphasizing the potential of the B20 blend as an 
effective alternative fuel for diesel engines. 

The aim of this study is to systematically optimize the architecture of the artificial neural network (ANN) and employ data 
normalization techniques to enhance the accuracy and reliability of predictions for engine emissions. The originality of this 
study lies in its innovative application of machine learning techniques to predict engine emissions using eco-friendly fuels. 
While previous research has explored various methods for emissions prediction, this study uniquely focuses on ANN to 
accurately forecast emissions across different fuel compositions and engine speeds. Integrating ANN-based prediction models 
into emission control strategies can facilitate the development of cleaner and more sustainable transportation systems, thereby 
reducing the adverse impacts of emissions on the environment and public health. 

2. Material and Methods 

2.1. Artificial Neural Networks (ANN) 

This section presents the methodology employed in utilizing Artificial Neural Networks (ANN) to predict engine emissions 
associated with eco-friendly fuels. The Artificial Neural Network (ANN) is a computational model inspired by the human 
'brain's information processing mechanism. Structurally, it comprises distinct layers: an input layer, an output layer, and 
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several hidden layers. Each layer consists of neurons, the fundamental processing units interconnected through 
communication links governed by connection weights. Signal transmission within the network occurs via these weighted 
connections [13], [14]. The structure of a neuron and Artificial Neural Network (ANN) is depicted in Figure 1. This 
illustration highlights the organizational framework of a neuron, along with the interconnected layers and nodes within an 
ANN. 

Development of the ANN model involves two pivotal stages: training/learning and testing/verification. The network is 
enhanced during training to produce output estimations based on input data. Subsequently, experimental data is compared 
with predicted outcomes in the testing phase, and training terminates once the test error meets the specified tolerance level. 
The ""backpropagation algorithm"" (BPA) is the predominant technique in ANN model development. It operates in two 
phases: forward feed and feedback. In the forward feed phase, information flows from the input layer to the output layer. 
During the feedback phase, the discrepancy between the achieved output and the target output is evaluated, and this 
discrepancy is subsequently utilized to update the connection weights, thus improving the model [15], [16]. During the 
development of the ANN model, 'it's common practice to use metrics like Mean Squared Error (MSE) and coefficient of 
determination (R2) to measure the 'model's ability to predict outputs accurately.  

 
Figure 1 Structure of a Neuron and ANN [17] 

Artificial neural network modeling involves several key steps, each crucial for developing an effective model. Firstly, data 
collection, where relevant data is gathered to train and test the neural network, is essential. This data should accurately 
represent the problem being addressed, such as historical stock prices for stock prediction tasks. Following data collection, 
the next step is data preparation, involving tasks like cleaning, outlier removal, and normalization to ensure the data is suitable 
for use by the neural network. Once the data is prepared, the appropriate neural network architecture is chosen based on the 
specific requirements of the problem. With the architecture selected, the network is trained using the prepared data, allowing 
it to learn and recognize patterns. Subsequently, the trained network is tested using a separate dataset to evaluate its accuracy 
and generalization capability. Finally, upon satisfactory testing results, the neural network can be deployed for real-world 
use, enabling it to make predictions or decisions in production environments. Each step in this methodology is essential for 
developing a robust and reliable artificial neural network model [18], [19]. 

2.2. Dataset 

The dataset utilized in this study was acquired through a series of experiments to determine engine emissions. These 
experiments were conducted under varying conditions, including adjustments to fuel compositions (gasoline and ethanol 
ratios) and engine speeds (rpm). The primary objective was to develop an ANN model to predict emissions such as NOx 
(ppm), HC (ppm), and CO (%) levels. The emission concentrations were derived from the experimental data collected during 
these trials, resulting in a dataset comprising 90 observations. Statistical summaries of this dataset are presented in Table 1. 
In the model, the input variables include fuel ratio (gasoline and ethanol) and engine speeds, while the output variables consist 
of NOx, HC, and CO emissions. The dataset reflects a comprehensive evaluation of engine emissions under varying fuel 
ratios and engine speeds, providing valuable insights into the 'engine's behavior and environmental impact. Gasoline was 
predominantly used as fuel, with occasional ethanol additives. Engine speeds varied from 1400 to 3400 rpm, indicating 
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experimentation across different operating conditions. Nitrogen oxide (NOx) emissions ranged from 1328 to 2330 ppm, while 
hydrocarbon (HC) emissions varied from 176 to 295 ppm. Carbon monoxide (CO) emissions ranged from 1.12% to 1.68%. 

Table 1 Statistical information related to the dataset utilized in this study. 

 Features Unit Minimum Maximum Average 

Input 
Fuel 
Ratio 

Gasoline - 0.8 1 0.9 
Ethanol - 0 0.2 0.1 

Engine Speeds rpm 1400 3400 2400 

Output 
NOx ppm 1328 2330 1877 
HC ppm 176 295 232 
CO  % 1.12 1.68 1.36 

 

2.3. Data Normalization and Model Performance Evaluation 

Data normalization is a critical process in preparing datasets for analysis, particularly in machine learning. This technique 
involves adjusting the scale of data values to bring them within a standardized range. By doing so, we can mitigate the 
influence of outliers and ensure that different features contribute equally to the analysis. Data normalization is especially 
crucial for algorithms like artificial neural networks (ANNs), where consistent input ranges can significantly improve model 
performance. Various methods, such as min-max scaling or z-score normalization, are employed depending on the specific 
requirements of the dataset and the algorithm being used. In this study, we employ the min-max normalization technique, as 
outlined in Equation 1 [20]. 

 

𝑥𝑥′ = 𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

(𝑢𝑢 − 𝑙𝑙) + 𝑙𝑙            (1) 

 

where: 

• 𝑥𝑥 represents the original data. 
• 𝑥𝑥′ represents the normalized data. 
• 𝑥𝑥𝑚𝑚𝑚𝑚𝑥𝑥, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 refer to the maximum and minimum values of the original data vector. 
• 𝑢𝑢, 𝑙𝑙 represent the upper and lower bounds of the new range for the normalized data. 

The performance of ANN models has been evaluated based on the utilization of two metrics. Mean Squared Error (MSE) is 
commonly employed due to its simplicity and effectiveness in measuring the squared difference between actual and predicted 
values. This metric provides insight into the 'model's overall accuracy by quantifying the average squared distance between 
predicted and actual values. Utilizing squared differences helps prevent the cancellation of negative terms, contributing to 
the robustness of MSE as a performance metric. On the other hand, R Squared (R2) serves as a metric to assess the 'model's 
performance relative to a baseline model. Unlike MSE, which depends on the context, the R2 score offers a standardized 
measure of goodness of fit independent of the specific problem context. It provides a means to compare the performance of 
the regression model against a simple baseline model, typically represented by the mean line. R2, also known as the 
Coefficient of Determination or Goodness of Fit, quantifies how much better the regression line fits the data than a mean line, 
thereby providing valuable insights into the overall explanatory power of the model. The equations for R2 and MSE are 
provided below: 

R Squared (R2) [21]: 

2 1 res

tot

xR
x

= −             (2) 

 

• resx  represents the sum of squared residuals (the squared differences between actual and predicted values). 

• totx  represents the total sum of squares (the squared differences between each data point and the mean of the 
dependent variable). 
 

 

 

Mean Squared Error (MSE) [21]: 
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2

1

1 ( )
n

act pre
i

MSE x x
n =

= −∑           (3) 

Where: 

• n is the number of data points. 

• actx is the actual value of the dependent variable for the ith data point. 

• prex is the predicted value of the dependent variable for the ith data point. 

3. Results and Discussion 

In this study, we acquired the dataset through experiments aimed at assessing engine emissions. The dataset consists of three 
independent variables and three dependent variables. A comprehensive overview of the dataset is presented in Table 1, 
containing a total of 90 row data records. Subsequently, the dataset was normalized using Equation 1, following which it was 
randomly partitioned into training (75%, 67 data), validation (15%, 14 data), and testing (10%, 9 data) subsets. 

To determine the optimal configuration of the neural network architecture, a single-hidden-layer artificial neural network 
(ANN) was employed. The number of neurons within the hidden layer was systematically varied from 10 to 50 in increments 
of 5. Training of the network was performed utilizing the Scaled Conjugate Gradient algorithm, with the sigmoid activation 
function implemented in the hidden layer and the pure-line function employed in the output layer. 

During the training phase, engine parameters were utilized as inputs, while corresponding emission levels served as outputs. 
Through iterative backpropagation, the network iteratively adjusted its internal weights and biases to minimize the 
discrepancy between predicted and actual emission values. At the end of the training process, the neural network 
demonstrated proficient predictive capabilities for unseen input data. Evaluation of the 'network's performance, conducted 
using the mean square error (MSE) index, revealed that the optimal number of neurons in the hidden layer for predicting 
engine performance was 50, as delineated in Figure 2. 

 
Figure 2 Determination of Neuron Number at the Hidden Layer 

Figure 3 depicts an Artificial Neural Network (ANN) architecture comprising three input and output variables. The network 
includes a hidden layer containing 50 neurons. The schematic representation of the proposed ANN model is presented in 
Figure 4.  
Figure 5 depicts the mean square error (MSE) values corresponding to varying numbers of hidden neurons within an artificial 
neural network (ANN). These MSE values are computed across training, testing, and validation datasets, offering insights 
into the ANN's performance across different hidden neuron configurations. This underscores the importance of selecting an 
optimal number of hidden neurons to attain superior model performance and generalization capability. According to Figure 
5, the most suitable number of neurons in the hidden layer appears to be 50, exhibiting the lowest MSE values across all three 
datasets. 
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Figure 3 ANN Architecture Utilized for Prediction of the Effective Efficiency of the Engine 

 

 
Figure 4 The schematic representation of the proposed ANN model. 

 

 
Figure 5 The Mean Squared Error (MSE) Values of the Neural Network  

Figure 6 displays a scatter plot comparing predicted data against observed data. This visualization provides insights into the 
relationship between the predicted values generated by the model and the actual observed values in the dataset. The high R 
values observed for the training (0.99928), test (0.99937), and validation (0.99904) datasets indicate strong correlations 
between predicted and observed values, showcasing the 'model's accuracy in predicting engine emissions. When considering 
all datasets combined, the overall R-value of 0.99927 further reinforces the 'model's effectiveness in accurately capturing the 
underlying patterns in the data. This suggests that the 'model's predictions closely align with the observed data across various 
scenarios, highlighting its reliability and robustness in predicting engine emissions. 
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Figure 6 Scatter Plot Representing the Relationship Between Predicted and Observed Data Points. 

 

In our study, we have evaluated the performance of a machine learning model in predicting engine emissions for eco-friendly 
fuels. The results presented in the Results section showcase strong correlations between predicted and observed emissions 
values, with high R values across different datasets indicating the accuracy and reliability of our model. This aligns with 
similar studies conducted in the literature, such as Chadha et al. [6], Xu, Kang, and Lv [7], Azeez et al. [8], Singh and Dubey 
[9], Shobana Bai [10], and Hananto et al. [11], which also employ various predictive modeling techniques to address 
emissions prediction in the transportation sector. However, our study stands out due to its focus on predicting emissions 
specifically for eco-friendly fuels and its utilization of a single-hidden-layer artificial neural network (ANN) architecture 
optimized through data normalization techniques. This unique approach contributes to the advancement of sustainable 
transportation solutions by providing accurate predictions for engine emissions under varying fuel compositions and engine 
speeds. 

 

4.Conclusions 

This study employed machine learning techniques to predict engine emissions for eco-friendly fuels. The dataset utilized in 
this research, acquired through experimental trials, provided valuable insights into engine emissions under varying fuel 
compositions and engine speeds. The dataset was prepared for analysis through data normalization techniques, such as min-
max scaling, facilitating the training of a single-hidden-layer artificial neural network (ANN). The ANN architecture was 
optimized to determine the optimal number of neurons in the hidden layer. The results indicated that 50 neurons yielded the 
lowest mean square error (MSE) values across all datasets. Additionally, the scatter plot visualization demonstrated strong 
correlations between predicted and observed emissions values, further validating the effectiveness of the ANN model. 
Overall, the findings underscore the potential of machine learning approaches in predicting engine emissions and guiding the 
development of eco-friendly fuels, contributing to advancing our understanding of sustainable transportation solutions. In 
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future studies, it would be valuable to explore the application of more advanced machine learning techniques or hybrid models 
for predicting engine emissions with eco-friendly fuels. Additionally, investigating the impact of other factors, such as 
ambient temperature, humidity, and driving conditions on emission levels could enhance the predictive accuracy of the 
models. Furthermore, conducting field experiments or real-world validations to assess the performance of the developed 
models under diverse operating conditions and vehicle types would provide valuable insights for practical applications. This 
study has practical implications for multiple fields involved in environmental sustainability and transportation management. 
By offering a reliable method for predicting engine emissions, the research enables policymakers to make informed decisions 
about emission control strategies and regulations. Furthermore, automotive manufacturers can control the findings to develop 
more efficient emission control technologies and create engines that are environmentally friendly. Urban planners and 
transportation authorities can also benefit by using the predictions to optimize public transportation routes and infrastructure, 
leading to reduced emissions from engines. Briefly, this research could significantly influence real-world efforts to reduce 
the environmental impact of transportation systems. 
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ABSTRACT 

Adaptive Neuro-Fuzzy Inference System (ANFIS) has gained popularity in recent years due to its predictive 

capabilities. Proper adjustment of ANFIS parameters is an optimization problem but integrating it with traditional 
optimization techniques has led to challenges such as local minima and slow convergence, resulting in obstacles to 

its prediction. Additionally, some researchers focusing on incorporating single-objective optimization often face 

issues with reliability and stability in parameter adjustment. This study, focused on multi-objective optimization, 
presents an algorithm that integrates ANFIS with MOPSO_HS. The proposed model, compared and applied to three 

real-world datasets, has demonstrated robustness in prediction problems. A comparative analysis is conducted 

between the proposed integrated model and well-known integrated algorithms with 20 runs. For further comparison, 
the Wilcoxon signed-rank test is used to determine whether there is a statistically significant difference in 

performance. The experimental results indicate the algorithm's accuracy, stability, and reliability in solving 

integration problems, highlighting its superiority over alternative approaches. 

Keywords: Metaheuristic, Multi-Objective Optimization, ANFIS, Exchange Rate, Neuro Fuzzy, RMSE 

SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND 
INFORMATION SCIENCES 

http://saucis.sakarya.edu.tr/ 

  

RESEARCH ARTICLE 

 

 

 

 

Corresponding author:

Aref Yelghi, Department of Computer  

Engineering, İstanbul Topkapı University 

arefyelghi@topkapi.edu.tr  

 

Article History: 

Received: 04.01.2024 

Accepted: 29.04.2024 

Published Online: 29.04.2024 

1. Introduction

Numerous artificial intelligence (AI) techniques have been widely used in practical applications over the past few years. In 

the field of neuro-fuzzy techniques, the Adaptive Neuro-Fuzzy Inference System, also known as the Adaptive Network-

Based Fuzzy Inference System (ANFIS) [1], has become more well-known. Fuzzy logic (FL) and artificial neural networks 

(ANN) are combined in ANFIS, which has applications in Data Science, Image processing, Finance Technology, traffic 

control studies, feature extraction, estimate, prediction, and more [2]. Fuzzy logic, introduced by Zadeh [3], defines 

membership between 0 and 1, while ANN models certain functions of human brain neurons. In ANFIS, the premise and 

consequence layers play pivotal roles in the network's training process. The setting of ANFIS parameters involves the use of 

optimization algorithms. 

The original ANFIS, proposed by Jang [1], employed hybrid learning using the gradient descent (GD) algorithm for 

antecedent parameters and the Least Squares Error (LSE) algorithm for consequent parameters. These classical optimizations 

were applied to the set of ANFIS parameters. However, due to GD and LSE's tendency to get trapped in local minima, 

researchers turned to metaheuristic algorithms, which explore the global minimum effectively. In the metaheuristic 

optimization field, two types of algorithms exist: based on the derivative (gradient descent) and not based on the derivative 

(metaheuristic and heuristic) algorithms. While derivative-based algorithms work only on differentiable functions, ANFIS 

parameters can be transformed into non-differentiable functions. Hence, in this study, metaheuristic methods can solve 

ANFIS parameters as non-differential functions. 

Fewer studies have investigated multi-objective algorithms for integration, even though some have combined ANFIS with 

single-objective metaheuristic optimization techniques. This paper focuses on using multi-objective algorithms to carry out 

tune ANFIS configurations. Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Genetic Algorithms (GA), 

Simulated Annealing (SA), and Hybrid Approaches that combine ANFIS with various algorithms are some of the strategies 

that have been investigated in this field. 

The objective in this endeavor is to develop a prediction system for complicated data by emphasizing on multi-objective 
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optimization and ANFIS. Several well-known multi-objective optimization algorithms include Non-dominated Sorting 

Genetic Algorithm (NSGA) [19], Non-dominated Sorting Genetic Algorithm II (NSGAII) [20], Strength–Pareto Evolutionary 

Algorithm 2 (SPEA2) [21], Multi-Objective Particle Swarm Optimization (MOPSO) [22], Multi-Objective Artificial Bee 

Colony (MOABC) [23] and Multi-Objective Grey Wolf Optimizer [24]. When combined with Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS), these techniques greatly aid in solving practical problems and give results that are highly precise. 
 

Hybrid ANFIS techniques have been increasingly applied to real-life scenarios in recent years, with definite advantages and 

disadvantages. This study aims to find out how adjusting operational factors, such as engine load and syngas composition, 

can improve the efficiency of a dual-fuel syngas/diesel engine while reducing pollution emissions. Using a hybrid technique 

of ANFIS and response surface methodology (RSM), the research simulates engine performance under different syngas 

compositions and compares the predicting capacities of ANFIS and RSM [25]. 

 

The other study used genetic algorithms (GA) to optimize multi-objective age-hardening process parameters while leveraging 

the improved performance of artificial neural networks (ANN) beyond experimental points. This demonstrated the 

effectiveness of ANNs [26]. The objective of other work is to precisely calculate the recompression coefficient (Cr) for over-

consolidated soil using a hybrid ANFIS-PSO Machine Learning (ML) model. The model compares favorably to benchmark 

models of single ANFIS and Support Vector Machines (SVM) using PSO and ANFIS techniques [27]. 

 

The hybrid ANFIS-GA-PSO model, along with an extreme learning machine (ELM), is used in the research for predictive 

analysis. The results show that the ANFIS-GA model performs better than ELM in analyzing shear behavior. The comparison 

shows how well the hybrid model predicts shear strength and is analyzed using regression indices [28]. The objective of this 

research is to develop prediction models for a range of cut quality variables, including surface roughness, kerf taper, and 

material removal rate, during abrasive aqua jet cutting (AAJC) of natural fiber composite laminates. The models are created 

using an ANFIS and the Taguchi-genetic algorithm (TGA) [29]. 

 

In general, it has been shown in the studies that layers one and four of ANFIS have been looked at as a problem of setting 

parameters. So far, no study has been done on different measurements for each solution-providing parameter. In this study, 

with the efficiency of multi objective, it has been tried to use at least two different measurements or functions for layer one 

and four so that Anfis can show better accuracy. In line with the proposal, it has been tried to use the existing multi-objective 

algorithms. Finally, by combining the existing algorithms, efficiency, and improvement in this type of problem can be 

achieved. 

 
The structure of this research paper is as follows: Section 2 provides a detailed overview of the ANFIS model. In contrast, 

Section 3 delves into multi-objective optimization and discusses the integration of PSO and HS algorithms for multi-objective 

optimization. Section 4 presents the experimental results and evaluations. Section 5 Application of Proposed Model is 

described, and Section 6 concludes the study, offering recommendations for further research. 

 

 

2. ANFIS Tool 

 

An artificial intelligence method called the adaptive network-based fuzzy inference system (ANFIS) blends fuzzy logic (FL) 

and artificial neural networks (ANN). There are five levels in the approach for each layer that provides the data set. Figure 1 

is a representation of the ANFIS Framework. 

 

 
Fig 1. Example: an ANFIS Two-input Model 
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First Rule: İF x is 𝐴1 and y 𝐵1 then z is 𝑓1(𝑥, 𝑦) 

Second Rule: İF x is 𝐴2 and y 𝐵2 then z is 𝑓1(𝑥, 𝑦) 

 

x, y: Inputs for ANFIS 

A, B: Fuzzy sets  

𝑧: 𝑓𝑖(𝑥, 𝑦) Outputs for Sugeno Fuzzy inference systems. 

 

The first- and fourth-layer nodes represent parameters that have been optimized. The structure has been fixed at layers 2 and 

3. The first layer has responsive nodes with the following characteristics: 

 

𝑜1,𝑖-𝜇𝐴𝑥
(𝑥)            for i=1,2                                                                                                            (1) 

𝑜1,𝑖-𝜇𝐵𝑖−2
(𝑥)         for i=3,4                                                                                                            (2) 

 
𝜇(𝑥), 𝜇(𝑦) are the membership functions, which can be defined as a bell shape. The formula is given as follows: 

  

μ(x) =
1

1+(
x−ci

ai
)

2bi
                                                                                                                            (3)                                              

Or  

μ(x) = exp {− (
x−ci

ai
)

2

}                                                                                                                   (4) 

 
𝑎𝑖 , 𝑏𝑖 ,  𝑐𝑖  Parameters are called premise parameters. They will be changed in the training step. The output of them illustrates 

the power of a rule. Every fixed node in the second layer has been multiplied with the signal input from the previous layer. 

 
𝑜2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖

(𝑥). 𝜇𝐵𝑖
(𝑦) for i=1,2                                                                          (5) 

 
Every node in the third layer normalizes the input data by taking into account all relevant criteria. The following formula is 

provided: 

 

𝑜3,𝑖 = 𝑤𝑖=
𝑤𝑖

∑ 𝑤𝑖
=

𝑤𝑖

𝑤1+𝑤2
 for i=1,2                                                                                                      (6) 

 
Every node in the fourth layer is an adaptive layer, which has the following definition and description: 
 
𝑜4,𝑖 = 𝑤𝑖 .𝑓𝑖   for i=1,2                                                                                                                       (7) 

 
First Rule: if x is 𝐴1 and y is 𝐵1 then𝑓1=𝑝1x+𝑞1y+𝑟1 
Second Rule: if x is 𝐴2 and y is 𝐵2 then𝑓2=𝑝2x+𝑞2y+𝑟2 
 
𝑝𝑖 , 𝑞𝑖 , and 𝑟𝑖 Consequential parameters are parameters. The final layer assesses the output while it is running and 
computes the total output [17, 18]. 
 
𝑜5,𝑖 = 𝑓𝑜𝑢𝑡 = ∑ 𝑤𝑖𝑖 . 𝑓𝑖=overall output                                                                                                       (8) 
 

 

3. Multi-Objective Optimization  

In mathematical terms, a multi-objective optimization problem can be formulated as follows: 

Min/Max 𝑓𝑚(x),                   m=1,2,…,M 

Subject to 𝑔𝑖(𝑥) ≥ 0,           j=1,2,…, J 

ℎ𝑘(𝑥) = 0,                              k=1,2,…, K 

𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝐿)

,                   i=1,2,…,n                                                                                           (9) 

 
The optimal solution in the single-objective optimization problem is the first or last of the sorted solutions. The comparison 

of solutions is based on the sorting. Conversely, in the case of a multi-objective optimization issue, a solution's superiority 

can be determined by its domination over many values of the optimal solution. 
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3.1. Definition of Dominance 

A solution is considered dominant if it does not perform worse than any of the objective values, and the solution on the 

opposing side performs better than the other in at least one of the objective values. Refer to Figure 2. A set of solutions is 

called a non-dominated solution set if it contains all of the solutions that are not dominated by any other feasible solution. 

This is how the term "Pareto front" is defined. (see Fig 2) 

 

 
Fig 2. The Concept of Domination and Non-Pareto Front. 

 

3.2. Multi-Objective Particle Swarm Optimization (MOPSO) 

Swarm intelligence is used by MOPSO, in which a collection of particles works together to search the solution space. 

According to their previous best positions and the best positions discovered by their neighbors, each particle represents a 

potential solution to the optimization issue, and their positions are updated all over iterations. MOPSO aims to provide a set 

of solutions that gives decision-makers a variety of trade-offs to choose from when dealing with conflicting objectives by 

combining Pareto dominance with diversity-preserving processes. A sequential algorithm's general form is provided below. 

 

1- Initialization: The population of particles should be initialized with random velocities (𝑣𝑖) and coordinates (𝑥𝑖). 

Decide on your own best positions.𝑃𝑏𝑒𝑠𝑡𝑖
 of every particle to its starting location. 

2- Objective Evaluation: Evaluate each particle's objective values:𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑘} 

3- Pareto Dominance: Pareto dominance is used to compare particles. We have discussed before. 

4- Update Individual Best and Archive: 

5- Position and Velocity Updates: 

Utilizing the following formulas, adjust each particle's position and velocity:𝑉𝑖(t+1)=w⋅𝑉𝑖(t)+ 𝑐1⋅𝑟1⋅(𝑃𝑏𝑒𝑠𝑡𝑖
−𝑥𝑖(t))+ 𝑐2. 𝑟2⋅(𝑃𝑔

−𝑥𝑖 (t)) and 𝑥𝑖(t+1)= 𝑥𝑖(t)+ 𝑉𝑖 (t+1) 

6- Mechanisms of Convergence and Diversity: 

Use techniques to promote the dispersion of solutions along the Pareto front, such as crowding distance calculation, in 

order to achieve a balance between convergence and diversity. 

7- Termination Standards: 

Search for conditions that indicate when the process should end, like completing a certain number of iterations or 

approximating the Pareto front to a reasonable degree. 

8- Goal: 

The collection of non-dominated solutions that indicate the Pareto front in the external archive is the final outcome. 

 

Wherever, 

w is the weight of inertia. 

The coefficients of acceleration are 𝑐1 and 𝑐2 
There are two random variables, 𝑟1and 𝑟2 , in [0,1] 

The position with the best global ranking among the non-dominated solutions in the external archive is 𝑃𝑔. 

 

3.3 Multi-Objective Particle Swarm Optimization and Harmony Search (MOPSO_HS) 

The proposed algorithm combines multi-objective particle swarm optimization (MOPSO) and harmony search (HS), offering 

flexibility and stability while seeking the global minimum. It seamlessly adapts to the ANFIS model and operates as follows: 

The main body of algorithms is the probability operators and mutation operators, which are complementary to each other. 

The Poisson cumulative distribution, the Gaussian distribution, and the mutation operator all work together to keep the 

balance between exploration and exploitation in our algorithm. They let the suggested algorithm look for new solutions in a 
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way that is based on probability, get scape of around local optima, and add variety solution, which guarantees a thorough and 

successful search for the global minimum. 

 

Poisson Cumulative Distribution: The Poisson cumulative distribution represents the probability that several events will take 

place within a specific window of time or space. About the proposed algorithm: The number of separate occurrences 

(represented by the variable x) is given. When calculating the Poisson cumulative distribution function, the parameter pm is 

employed. In point of view of Application for proposed Algorithm: Using the Poisson cumulative distribution function, 

randomization is added while still following a structured methodology. It enables the algorithm to balance exploitation and 

exploration in the search space by allowing it to investigate novel solutions probabilistically. The algorithm can take into 

account different probabilities when developing new solutions because of the cumulative structure of the distribution. 

 

Gaussian Distribution: A continuous probability distribution that is symmetric about its mean and resembles a bell curve is 

the Gaussian distribution, commonly referred to as the normal distribution. R stands for a random variable that was utilized 

to choose a particular dimension. 

 

The fret width (FW) is a parameter that affects how widely spaced out the Gaussian distribution is. Application in Algorithm: 

In order to add randomness to the algorithm's progress through the search space, the Gaussian distribution is used. The 

program searches a larger search space by producing arbitrary numbers using a Gaussian distribution and exploring the region 

surrounding the current solutions. This exploration technique helps the algorithm achieve global optimization by assisting in 

escaping local optima. 

 

Evolutionary algorithms need to include the mutation operator. By adjusting some of the search space parameters used for 

determining the solutions, it provides genetic diversity to the existing population. By altering the existing solutions, the 

mutation operator assists in introducing novel solutions and promotes the algorithm to proceed toward uncharted areas of the 

search space. 

 

MOPSO_HS Algorithm 

1. BEGIN 

2. Initialize swarm Positions, Velocities and evaluate fitness value   

3. FW=0.02*(VarMax-VarMin);    /*Fret Width (Bandwidth)*/ 

4. MaxIt=100;  /*Max generation*/ 

5. It /*generation number 

6. WHILE (Check Terminate or Maximum Number of Generation is reached) 

7. BEGIN 

a. Select Leader by RouletteWheelSelection method. 

b. Update Positions and Velocities. 

c. Rand (par); 

d. If par>0.7 Then Apply Mutation by Formula pm=(1-(it-1)/(MaxIt-1))^(1/2) 

e. Else If ((par<=0.7) && (par>0.3)) Then /*Gaussian*/ 

i. R=Random [1..5] 

ii. Delta=FW*randn(); 

iii. NewSol.Position (R)=OldSol.Position(R)+ Delta 

f. Else    /*Poisson cumulative distribution*/  

i. R=Random [1..5] 

ii. x = 0:4; 

iii. pm=(1-(it-1)/(MaxIt-1))^(1/2); 

iv. y = poisscdf(x,pm);  

v. Delta=FW*y;             

vi. NewSol.Position(R)=OldSol.Position(R)+ Delta 

g. Update Repository by truncating its member. 

h. Update Grid 

i. Check if the Repository is Full Remove the bad solution 

8. END 

9. END  

Fig 3. MOPSO_HS Algorithm for Global Optimization 

 

As viewed in Figure 3, which includes three sections. Roulette Wheel Selection, a fundamental genetic algorithmic technique, 

is used to choose a leader at the beginning of this repetitive algorithmic process. It then modifies particle placements and 

velocities according to selected leaders and other variables, allowing efficient search space exploration. To decide whether a 

mutation should be applied, a random value par between 0 and 1 is generated. If par is greater than 0.7, a decreasing factor 

is used to carry out the mutation, providing a balanced exploration-exploitation strategy (Figure 3-d). When 0.3<=par<=0.7, 
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the specified dimension's particle positions are perturbed using a Gaussian distribution (Figure 3-e). 

Alternatively, the Poisson cumulative distribution is used for position perturbation if par<=0.3 (Figure 3-f). By updating the 

repository and grid structures, truncating inappropriate solutions, and controlling solution variety, the algorithm preserves 

solution quality. It dynamically adjusts to the repository's capacity while ensuring the retention of top-notch solutions. The 

execution of the algorithm brings this complex process to a successful conclusion, delivering a flexible and efficient 

optimization framework. 

 

The algorithm is integrated with ANFIS, and then the obtained general model is applied to the data set. The dataset is 

categorized into 7 systems, where each system includes inputs and targets that are fed to ANFIS. The data set related to the 

exchange rates in Turkish Lira and Dolar from 2007 to 2020. As you can see in Figure 4, the general system contains two 

components: ANFIS and the real system, which are fed to ANFIS. For setting the parameters of ANFIS, all parameters in 

each iteration map to a vector, individual, or particle in multi-objective optimization. 

 

 
Fig 4. ANFIS and Dataset with Definition of 7 Systems 

 
For integrating the proposed algorithm with ANFIS. Layers 1 and 4 of ANFIS are converted to one vector, which is the 

proposed algorithm that tries to find the best parameters for ANFIS. As you view Figure 5, parts (a) and (c) of a vector are 

antecedent decision parameters and conclusion decision parameters, respectively. Seven other systems also have different 

parameters. 

 
Fig 5. The Decision Variables or Vectors 

 
Tables 1 and 2 are the definitions and descriptions of the components of systems. As you view seven systems generated by 

two inputs called buy and sell, the systems are generated based on the last few days for easy feed to the ANFIS. By taking 

this action, it will be clear and easy to extract a pattern from the complex dataset. The data set instance 151 has two inputs 

and is generated with a supposed target from one of the inputs.  
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Table 1. Definition of a Finance Problem Utilized in the Application 

 

Table 2. Applications Using Data Systems 

 

3.4. Fitness Function 

The calculation of Mean Squared Error (MSE) involves averaging the squared deviations between the values �̂�𝑖 that were 

predicted and those 𝑌𝑖 that were observed. The MSE formula is: 

MSE= 
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

2𝑛
𝑖=1          (10) 

 

The square root of the MSE is the RMSE. Because the error metric has the same units as the dependent variable, it is 

frequently employed to improve its readability. 

The RMSE formula is: 

 

RMSE=√𝑀𝑆𝐸            (11) 

 

In this case, it can be said that the formulas are of the same type, and both of them are different interpretations of information. 

Here, the algorithms should provide the minimum value of each as a solution to a problem. The question is, if we consider 

these two together, the act of dominating does not make sense. By combining a small amount of imaginary noise, the problem 

can be transformed into a demonization. Finally, after successive execution of multi-objective algorithms, the Pareto front 

solution of the desired case can be obtained. 

 

4. Result and Experiments 

All the parameters of algorithms are tuned according to Table 3, and the other specified parameters are standard. For the 

input of ANFIS, Using the SUGENO technique, take five cluster inputs based on the Gaussian. Figure 6 shows one example 

of sys1, which is estimated using some integrated methods with ANFIS. The two basic steps of ANFIS are the train and test 

steps, with 138 and 13 instances of the dataset, respectively. As you observe each figure, you can find the training dataset, 

test dataset, mean squared error (MSE) of the target and output of the network for each instance, standard deviation, and error 

mean based on the bin for proper presentation. As a result, as shown in Table 4, the comparison of performance with 20 runs 

for the integrated ANFIS with MOPSO, NSGA2, SPEE2, MOGWO and MOPSO_HS. It is demonstrated that MOPSO_HS 

algorithms with specific features and complex systems outperform the others in sys 3,4,6, which is a significant feed that is 

odd or even intervals operate well. MOPSO in sys 1,2,7 indicates the best performance and have diversity in solving problem 

and it is not able to work in sequence interval. NSGA2 also only proposed the best result in sys 5. We try to prove the 

algorithm that provides the best results according to the given sequence based on Table 2 .  

 

Table 3. Parameters of the Metaheuristic Algorithms 

 

 

  

 
 

Name Definition Systems 

𝒇𝟏 Calculating the exchange rate between USD and YTL 𝑺𝟏. . 𝑺𝟕 

x Buy x(t), time-based on the day 

y Sell y(t), time-based on the day 

Systems Inputs of system Target of system 

𝑺𝟏 x(t-1),x(t-2),x(t-3),x(t-4),x(t-5),x(t-6),x(t-7) x(t+1) 

𝑺𝟐 y(t-1),y(t-2),y(t-3),y(t-4),y(t-5),y(t-6),y(t-7) y(t+1) 

𝑺𝟑 x(t) y(t)  

𝑺𝟒 x(t-1),x(t-2),x(t-4), x(t-6) x(t+1) 

𝑺𝟓 x(t-1), x(t-3),x(t-5), x(t-7) x(t+1) 

𝑺𝟔 y(t-1),y(t-2),y(t-4), y(t-6) y(t+1) 

𝑺𝟕 y(t-1),y(t-3),y(t-5), y(t-7) y(t+1) 

parameters MOPSO NSGA2 MOPSO_HS 

Population size 25 25 25 

iteration 100 100 100 

Upper and Lower Bound [0.1..1] [0.1..1] [0.1..1] 
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a) Train phase of the MOPSO algorithm for sys1 
 

b) Test phase of the MOPSO algorithm for sys1 

 

 
c) Train phase of the NSGA2 algorithm for sys1  

 

 
 d) Test phase of the NSGA2 algorithm for sys1 

 

 
 e) Train phase of the MOPSO_HS algorithm for sys1 

 

 
f) Test phase of the MOPSO_HS algorithm for sys1 

 
Figure 6. The Integrated Algorithms in Train and Test steps 

 

One of the performance comparisons for each system using algorithms based on the training and testing steps' root-mean-

square deviation (RMSE) appears in Table 5. We just give an example of the estimated Sys 3 using algorithms to demonstrate 

the performance of the models. As you view Table 6, the comparison between the target and the output of 

ANFIS_MOPSO_HS exhibits strong performance. To further prove the estimation model, we used one real dataset for traffic 

in the LTE network in 2018, which included 8735 training sets and 167 testing sets (Kaggle community). The traffic of data 

collected from the 4G cell for mobile phones adjacent to the cell is examined and predicted. Traffic is the total data capacity 

of all users within an hour that are served by an antenna cell [22]. Example: Cell 01000 is serving 60 users; each user uses 

an average of 10 Mb in 1 hour. Traffic in cell 01000. So, the traffic of this cell in hours x = 60 * 10 = 600 Mb. The data set 
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includes 57 cells, and it is gathered in approximately 1 year x 24 hours x 57 cells. In Table 7. As you can see, as in the 

previous case, three systems have been used for modeling. The results of our algorithm are obtained with less error than other 

algorithms.  
 

Table 4. Evaluation of Multi-objective Metaheuristic Algorithms' Performances in ANFIS Comparison 

* The most statistically significant outcomes are shown in bold. 

 

Table 5. One of the Comparisons of Performance in Each System Based on RMSE 

Problem MOPSO NSGA2 ANFIS_SPEA2       MOPSO_HS   MOGWO 
S

y
stem

 

TR TS TR TR TR TS TR TS   TR TS 

𝑆1 0.04 0.104 0.041 0.093 0.04 0.0102 0.093 0.206 
 

0.05 0.098 

𝑆2 0.042 0.102 0.04 0.086 0.051 0.077 0.086 0.219 
 

0.081 0.075 

𝑆3 0.002 0.003 0.002 0.056 0.002 0.052 0.056 0.24 
 

0.030 0.046 

𝑆4 0.052 0.075 0.051 0.072 0.057 0.072 0.072 0.107 
 

0.046 0.064 

𝑆5 0.046 0.101 0.045 0.078 0.046 0.089 0.078 0.118 
 

0.075 0.095 

𝑆6 0.052 0.086 0.052 0.078 0.021 0.091 0.078 0.118 
 

0.039 0.076 

𝑆7 0.044 0.089 0.045 0.07 0.048 0.077 0.07 0.121 
 

0.65 0.47 

* The most statistically significant outcomes are shown in bold. 

 

 

 

Algorithms 
Statistic 

Value Sys1 Sys2 Sys3 Sys4 Sys5 Sys6 Sys7 

MOPSO 

Average 4.06E-02 4.18E-02 1.80E-03 4.89E-02 4.51E-02 4.85E-02 4.38E-02 

Minimum 3.09E-02 3.27E-02 1.76E-03 4.37E-02 3.35E-02 4.22E-02 3.17E-02 

Maximum 5.05E-02 5.05E-02 1.88E-03 5.16E-02 4.97E-02 5.24E-02 5.04E-02 

Variance 2.69E-05 1.65E-05 9.16E-10 6.42E-06 1.65E-05 1.15E-05 2.74E-05 

NSGA2 

Average 4.29E-02 4.35E-02 1.82E-03 4.95E-02 4.34E-02 5.01E-02 4.46E-02 

Minimum 3.30E-02 3.31E-02 1.76E-03 4.32E-02 3.30E-02 4.27E-02 3.25E-02 

Maximum 4.70E-02 5.10E-02 1.99E-03 5.22E-02 4.89E-02 5.46E-02 5.12E-02 

Variance 8.41E-06 1.25E-05 3.98E-09 6.93E-06 3.18E-05 9.99E-06 3.08E-05 

SPEA2  

Average 4.28E-02 4.20E-02 1.93E-03 4.80E-02 4.40E-02 4.95E-02 4.32E-02 

Minimum 3.45E-02 3.39E-02 1.68E-03 3.76E-02 3.48E-02 3.69E-02 3.45E-02 

Maximum 4.48E-02 7.41E-02 3.62E-03 6.19E-02 6.41E-02 7.75E-02 5.33E-02 

Variance 4.66E-05 1.51E-05 7.13E-08 3.80E-05 3.35E-05 1.52E-05 6.20E-05 

MOPSO_HS  

Average 4.49E-02 4.45E-02 1.91E-03 4.76E-02 4.38E-02 4.90E-02 4.20E-02 

Minimum 3.11E-02 3.36E-02 1.65E-03 3.59E-02 3.43E-02 3.61E-02 3.39E-02 

Maximum 5.47E-02 5.39E-02 2.64E-03 5.79E-02 5.28E-02 6.05E-02 5.31E-02 

Variance 4.55E-05 1.82E-05 6.63E-08 3.70E-05 3.34E-05 2.56E-05 4.10E-05 

MOGWO 

Average 3.25E-01 3.60E-02 1.73E-02 3.70E-01 3.50E-04 3.85E-02 3.32E-01 

Minimum 2.20E-02 3.59E-02 1.68E-02 3.63E-02 3.47E-02 3.39E-02 3.30E-02 

Maximum 5.47E-02 4.81E-02 4.72E-02 7.25E-02 5.36E-02 8.45E-02 5.63E-02 

Variance 3.45E-02 2.61E-03 8.14E-03 4.70E-01 1.76E-02 6.22E-01 3.30E-02 
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Table 6. Compute the Sys 3 Using Multi-Objective Metaheuristic Algorithms and ANFIS 

TARGET ANFIS_MOPSO ANFIS_NSGA2 ANFIS_SPEA2 ANFIS_MOPSO_HS ANFIS_ MOGWO  

0.247601 0.2476008 0.247601 0.247745 0.247600768 0.247901  

0.328215 0.328215 0.328215 0.328316 0.328214971 0.328314  

0.37428 0.3742802 0.37428 0.334587 0.37428023 0.34536  

0.754319 0.7543186 0.754319 0.744901 0.754318618 0.75012  

1 1 1 1 1 1  

0.804223 0.8042226 0.804223 0.806040 0.804222649 0.807200  

0.616123 0.6161228 0.616123 0.616421 0.616122841 0.624600  

0.589251 0.5892514 0.589251 0.516401 0.58925144 0.560520  

0.616123 0.6161228 0.616123 0.616147 0.616122841 0.616201  

0.573896 0.5738964 0.573896 0.512606 0.573896353 0.540120  

0.642994 0.6429942 0.642994 0.642910 0.642994242 0.650230  

0.754319 0.7543186 0.754319 0.769512 0.754318618 0.753201  

0.877159 0.8771593 0.877159 0.778418 0.877159309 0.870230  

0.785029 0.7850288 0.785029 0.718202 0.785028791 0.790212  

0.731286 0.731286 0.731286 0.748601 0.731285988 0.740230  

0.712092 0.7120921 0.712092 0.748730 0.712092131 0.720210  

0.746641 0.7466411 0.746641 0.746649 0.746641075 0.746452  

0.773512 0.7735125 0.773512 0.775124 0.773512476 0.773210  

0.754319 0.7543186 0.754319 0.754318 0.754318618 0.754160  

0.796545 0.7965451 0.796545 0.796541 0.796545106 0.796402  

 

Table 7. Performance of Algorithms on the Traffic of LTE Network Problem 

  *The most statistically significant outcomes are shown in bold. 
 

 

The traffic of the LTE network 

Algorithms Statistic Value Sys1 Sys4 Sys5 

MOPSO 

Average 0.0078 0.0075 0.0082 

Minimum 0.0071 0.0071 0.0080 

Maximum 0.0079 0.0085 0.0087 

Variance 2.64E-03 2.64E-03 2.64E-03 

NSGA2 

Average 0.0081 0.0080 0.0082 

Minimum 0.0079 0.0079 0.0078 

Maximum 0.0082 0.0088 0.0086 

Variance 2.32E-03 2.94E-02 2.71E-03 

SPEA2 

Average 0.0080 0.0082 0.0090 

Minimum 0.0062 0.0069 0.0070 

Maximum 0.0085 0.0086 0.0089 

Variance 2.71E-02 2.69E-02 2.31E-02 

MOPSO_HS  

Average 0.0050 0.0057 0.0054 

Minimum 0.0049 0.0050 0.0048 

Maximum 0.0057 0.0059 0.0060 

Variance 3.71E-02 6.69E-02 5.61E-03 

MOGWO 

Average 0.0060 0.0067 0.0076 

Minimum 0.0042 0.0055 0.0068 

Maximum 0.0078 0.0088 0.0091 

Variance 6.23E-02 1.79E-02 2.52E-02 
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Two real benchmark datasets were also used. The first is the lowest daily temperature recorded in Melbourne, Australia, 

between 1981 and 1990. There are 3650 instances and it is based on degrees Celsius. The Australian Bureau of Meteorology 

is the data's original source. The second is a monthly total of sunspot observations spanning little more than 230 years, from 

1749 to 1983. There are 2,820 instances, and the units are a count. The dataset's original source is given credit to Andrews & 

Herzberg (1985). The aforementioned datasets are split in half and supplied to the model for testing and training. (Refer to 

Table 8) 

Table 8. Comparison of the Minimum daily temperatures and Sunspots datasets 

* The most statistically significant outcomes are shown in bold. 
 
 

4.2. Wilcoxon Signed Rank Test for Comparison 

 

Three algorithms—NSGA2, SPEA2, and MOGWO—with min metric are compared to the algorithm MOPSO_HS in seven 

different systems (Sys1 through Sys7). The Wilcoxon signed-rank test, which is the foundation of every comparison, indicates 

whether there is a statistically significant difference in performance. In Table 9. Indicates the result of the Wilcoxon Signed 

Rank Test for each Sys. 

 
For Sys1, NSGA2 and SPEA2 (p-values of 0.688 and 0.109, respectively) did not show a significant difference when 

compared to MOPSO_HS. However, with a p-value of 0.031, MOGWO showed a statistically significant difference, 

indicating better performance in this situation. With p-values of 0.031 and 0.001, respectively, NSGA2 and MOGWO 

demonstrated statistically significant differences when compared to MOPSO_HS in Sys2. SPEA2, on the other hand, showed 

no discernible variation (p = 0.312). Sys3 showed a similar trend, with MOGWO demonstrating significance (p = 0.219), 

indicating its higher performance, whereas NSGA2 and SPEA2 failed to show significant differences (p-values of 0.109 and 

0.031). Sys4 through Sys7 are analyzed, with different results for each system. Interestingly, Sys5 showed substantial 

differences for each of the three algorithms, suggesting that it performs differently from MOPSO_HS.  

 

 

Minimum daily temperatures  Sunspots 

Algorithms 
Statistic 

Value S1 S4 S5 
Algorithms 

Statistic 

Value S1 S4 S5 

MOPSO 

Average 0.1902 0.1916 0.1915 

MOPSO 

Average 0.1186 0.1202 0.1190 

Minimum 0.1901 0.1917 0.1913 Minimum 0.1185 0.1201 0.1188 

Maximum 0.1904 0.1918 0.1916 Maximum 0.1188 0.1204 0.1194 

Variance 4.50e-10 5.0e-12 4.50e-10 Variance 2.0e-11 4.5e-11 1.8e-10 

NSGA2 

Average 0.1903 0.1917 0.1914 

NSGA2 

Average 0.1186 0.1202 0.1191 

Minimum 0.1901 0.1917 0.1913 Minimum 0.1185 0.1201 0.1188 

Maximum 0.1904 0.1918 0.1915 Maximum 0.1188 0.1202 0.1194 

Variance 4.5e-11 5.0e-12 2.e-12 Variance 4.5e-11 5.e-13 1.8e-10 

SPEA2 

Average 0.1910 0.1917 0.1911 

SPEA2 

Average 0.1200 0.1208 0.1208 

Minimum 0.1908 0.1917 0.1909 Minimum 0.1194 0.1207 0.1199 

Maximum 0.1912 0.1918 0.1914 Maximum 0.1206 0.1209 0.1217 

Variance 8.0e-11 5.0e-11 1.2e-10 Variance 7.2e-10 2.0e-11 1.62e-08 

MOPSO 

_HS 

Average 0.1191 0.1914 0.1905 

MOPSO 

_HS 

Average 0.1188 0.1193 0.1188 

Minimum 0.1877 0.1913 0.1905 Minimum 0.1186 0.1188 0.1188 

Maximum 0.1896 0.1916 0.1906 Maximum 0.1190 0.1199 0.1189 

Variance 1.805e-7 4.5e-11 5.e-13 Variance 8.e-12 6.05e-09 5.e-13 

MOGWO 

Average 0.1289 0.1990 0.1990 

MOGWO 

Average 0.1195 0.1223 0.1202 

Minimum 0.1280 0.1980 0.1992 Minimum 0.1194 0.1200 0.1199 

Maximum 0.1915 0.1990 0.1999 Maximum 0.1216 0.1235 0.1220 

Variance 7.2e-11 1.1e-10 4.2e-5 Variance 1.2e-05 1.0e-06 2.63e-04 
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Table 9. The result of the Wilcoxon Signed Rank Test for each Sys 

Sys 1 

Algorithm Test Statistic p-value Significant 

NSGA2 -0.5 0.688 No 

SPEA2 -2.0 0.109 No 

MOGWO -3.0 0.031 Yes 

Sys 2 

NSGA2 -3.0 0.031 Yes 

SPEA2 -1.0 0.312 No 

MOGWO -6.0 0.001 Yes 

Sys 3 

NSGA2 -2.0 0.109 No 

SPEA2 -3.0 0.031 Yes 

MOGWO -1.5 0.219 No 

Sys 4 

NSGA2 -0.5 0.688 No 

SPEA2 -1.5 0.219 No 

MOGWO -2.5 0.078 No 

Sys 5 

NSGA2 -4.0 0.004 Yes 

SPEA2 -3.5 0.031 Yes 

MOGWO -4.5 0.004 Yes 

Sys 6 

NSGA2 -2.0 0.109 No 

SPEA2 -0.5 0.688 No 

MOGWO -3.0 0.031 Yes 

Sys 7 

NSGA2 -2.5 0.078 No 

SPEA2 -1.0 0.312 No 

MOGWO -5.0 0.004 Yes 

 

When integrating these algorithms with ANFIS, their own set of disadvantages should be taken into consideration. NSGA-II 

algorithm maintains a variety of approaches and applies elitism to achieve several goals, but it might need numerous 

evaluations. SPEA2 algorithm comprises diversity preservation and elitism but requires parameter adjusting and can be 

computationally expensive. MOPSO_HS algorithm requires parameter tuning but combines the exploration of PSO with the 

local search of Harmony Search. It can be used for a variety of situations. MOGWO algorithm employs a population-based 

methodology inspired by the grey wolf; while effective, it necessitates careful parameter selection and may encounter certain 

issues. 

 

5. Application of Proposed Model 

 

The suggested model provides a wide variety of potential applications in various companies and industries since it combines 

innovative multi-objective optimization methods with an ANFIS model. The model can be used for business processes for 

market analysis, business process optimization, and financial forecasting. For example, it can predict stock prices better, 

improve the efficiency of supply chain operations, and improve marketing strategies by analyzing client behavior. The 

model's combination of an ANFIS model with multi-objective optimization algorithms may lead to more precise forecasts in 

the stock market. Using past stock data and market trends, the algorithm may be able to spot linkages and patterns that 

traditional analysis methods might have missed. This can help investors and financial analysts make better decisions about 

buying, selling, or holding onto stocks, which will ultimately enhance portfolio management and boost return on investment. 

 

Moreover, the model can be used to assess and enhance several aspects of the supply chain, such as inventory control, 

production scheduling, and distribution, in terms of supply chain optimization. The approach considers several criteria, such 

as cost minimization, lead time reduction, and customer satisfaction maximization, to develop optimal solutions that strike a 

balance between conflicting objectives. This might result in a supply chain that is more adaptable and efficient, which would 

save costs, raise satisfaction with clients, and increase the company's overall competitiveness. 
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Additionally, the proposed methodology has the potential to revolutionize the product development process by offering 

insights into market demands and forecasting product performance. Through analyzing consumer behavior and market trends, 

the technique helps businesses find opportunities for new products. It fills gaps in the market, leading to more targeted and 

successful product launches. In order to ensure that the finished products meet customer needs and expectations, the model 

can also be used to improve product designs for greater usefulness and cost-effectiveness. 

 

Systems and structures can be designed using the model to have the least amount of environmental impact and energy usage. 

Through the optimization of building design, insulation, lighting, and HVAC (heating, ventilation, and air conditioning) 

systems, the model has the potential to significantly reduce energy expenditures and carbon emissions. Additionally, the 

model can help with the development of intelligent energy management systems, which monitor energy consumption and 

adjust based on occupancy and usage trends. When everything is said and done, companies and the environment will benefit 

greatly from the implementation of the proposed model for energy efficiency and product development. Reduced expenses, 

improved competitiveness, and a lesser carbon impact are some of these advantages. 

 

Overall, the suggested model offers a strong strategy for tackling difficult problems in a range of industries and provides a 

route forward for more effective, competitive, and environmentally friendly business operations. When put into practice, it 

could lead to beneficial changes in how businesses run and innovate, as well as open up new opportunities. 

 

6. Conclusion and Future Work  

 

The study introduces innovative multi-objective optimization algorithms integrated with an ANFIS model, demonstrating 

their superiority over other integrated estimation methods. The dataset, sourced from the Central Bank of the Republic of 

Turkey and spanning TL and dollar exchange rates from 2007 to 2020, served as the basis for the analysis. Notably, 

predictions in sys 3, 4, and 6 exhibited the best performance. To further validate the algorithm's efficacy, standard datasets 

including LTE network traffic, minimum daily temperatures, and sunspot dataset temperatures were examined. The 

investigation revealed that the proposed algorithm (ANFIS_MOPSO_HS) surpassed ANFIS_MOPSO, ANFIS_NSGA2, 

MOGWO, and ANFIS_SPEA2 in terms of stability and reliability when applied to real data. This indicates its potential 

applicability across various real-world systems. In conclusion, the study affirms the applicability of the proposed model in 

different real-world contexts. In order to further enhance the multi-objective optimization algorithms connected to the ANFIS 

model, the paper's future studies will concentrate on evaluating new features and increasing parameters.  We intend to expand 

the model's use to non-financial domains such energy forecasting and other financial sectors include stock market forecasting. 

As well as we intend to improve algorithmic performance to handle larger datasets and integrate real-time data streams. To 

further guarantee the robustness and generalizability of the model, we plan to perform out validation tests utilizing a variety 

of datasets. In order to enhance prediction, the model also aims to investigate how well the model integrates with cutting-

edge technologies, including edge computing, blockchain, and the Internet of Things.  
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