Research Article
BibTex RIS Cite

LLC rezonans dönüştürücüsündeki hava aralıklı manyetik bileşenler için yeni bir optimizasyon yöntemi

Year 2024, Volume: 39 Issue: 1, 327 - 338, 21.08.2023
https://doi.org/10.17341/gazimmfd.1090267

Abstract

LLC rezonans dönüştürücü tasarımı, Lm, Lr, Cr ve kalite faktörünün gerilim kazancının karmaşık bir fonksiyonu olması ve uygulamaya bağlı olarak gerilim kazançlarını kapsayan Sıfır Gerilimde Anahtarlama’yı (SGA) sağlayabilecek anahtarlama frekansı aralığı seçiminin zorluğundan dolayı elektrikli araç şarj uygulamaları için hayli zorlu bir tasarım problemidir. Bu çalışma, hava aralıklı manyetik bileşenler için birden fazla tasarım bileşenini ve kısıtını bir arada değerlendirebilen, doğadan esinlenen matematiksel yöntem tabanlı yeni bir tasarım yöntemi sunmaktadır. Önerilen yeni yöntem Parçacık Sürüsü Algoritması ile, oluşturulan çekirdek veri tabanındaki birçok çekirdek arasından en uygun tasarımı seçmektedir. Geleneksel tasarım algoritmalarından farklı olarak önerilen algoritma, manyetik bileşenlerin kaybını, maliyetini ve hacmini içeren bir amaç fonksiyonunu en aza indirerek en uygun manyetik akı yoğunluğunu belirlemektedir. Sunulan yöntem hafif bir elektrikli araç şarj cihazındaki 3700W, 48V LLC rezonans dönüştürücü için denenmiştir. Algoritma içinde birincil ve ikincil sargılarda sırasıyla seri ve paralel çoklu bağlamaların uygulandığı çok çekirdekli yapılar dikkate alınarak bir tasarım çalışması yapılmıştır. Tasarlanan manyetik bileşenler Ansys Electronic Desktop ve Simplorer ortak benzetim ortamında doğrulanmış ve çekirdek veri tabanından en uygun çekirdek yapıları seçilmiştir. Önerilen yöntemin en uygun LLC rezonans dönüştürücü tasarımını bulmak için çoklu kombinasyonların bir arada ve hızla değerlendirilebileceği sistem düzeyinde bir optimizasyon algoritmasının bir parçası olarak kullanılabileceği görülmüştür.

Supporting Institution

TÜBİTAK 2232 Uluslararası Lider Araştırmacılar Programı

Project Number

118C374

Thanks

Bu çalışma, TÜBİTAK'ın 2232 Uluslararası Lider Araştırmacılar Programının (Proje No: 118C374) finansal desteği ile hazırlanmıştır.

References

  • [1] Bilgin B., Emadi A., Krishnamurthy M., Design considerations for a universal input battery charger circuit for PHEV applications, IEEE International Symposium on Industrial Electronics, 3407-3412, 2010.
  • [2] Khaligh A., Dusmez S., Comprehensive Topological Analysis of Conductive and Inductive Charging Solutions for Plug-In Electric Vehicles, IEEE Transactions on Vehicular Technology, 61 (8), 3475-3489, 2012.
  • [3] Wang H., Dusmez S., Khaligh A., Design and Analysis of a Full-Bridge LLC-Based PEV Charger Optimized for Wide Battery Voltage Range, IEEE Transactions on Vehicular Technology, 63 (4), 1603-1613, 2014.
  • [4] Shang F., Niu G., Krishnamurthy M., Design and Analysis of a High-Voltage-Gain Step-Up Resonant DC–DC Converter for Transportation Applications, IEEE Transactions on Transportation Electrification, 3, (1), 157-167, 2017.
  • [5] Wang H., Dusmez S., Khaligh A., Maximum Efficiency Point Tracking Technique for LLC-Based PEV Chargers Through Variable DC Link Control, IEEE Transactions on Industrial Electronics, 61, (11), 6041-6049, 2014.
  • [6] Shen Y., Zhao W., Chen Z., C. Cai, Full-Bridge LLC Resonant Converter With Series-Parallel Connected Transformers for Electric Vehicle On-Board Charger, IEEE Access, 6 (1), 13490-13500, 2018.
  • [7] Yang C., Liang T., Chen K., Li J., Lee J., Loss analysis of half-bridge LLC resonant converter, International Future Energy Electronics Conference (IFEEC), Tainan, 155-160, 2013.
  • [8] Zhang J., Hurley W. G., Wolfle W. H., Gapped Transformer Design Methodology and Implementation for LLC Resonant Converters, IEEE Transactions on Industry Applications, 52 (1), 342-350, 2016.
  • [9] Mu M., Li Q., Gilham D. J., Lee F. C., Ngo K. D. T., New Core Loss Measurement Method for High-Frequency Magnetic Materials, IEEE Transactions on Power Electronics, 29 (8), 4374-4381, 2014.
  • [10] Hurley W. G., Gath E., Breslin J. G., Optimizing the AC resistance of multilayer transformer windings with arbitrary current waveforms, IEEE Transactions on Power Electronics, 15 (2), 369-376, 2000.
  • [11] Sullivan C. R., Optimal choice for number of strands in a litz-wire transformer winding, IEEE Transactions on Power Electronics, 14 (2), 283-291, 1999.
  • [12] Nan X.,, Sullivan C. R., An improved calculation of proximity-effect loss in high-frequency windings of round conductors, IEEE 34th Annual Conference on Power Electronics Specialist, Acapulco, Mexico, 853-860, 2003.
  • [13] Fei C., Lee F. C., Li Q., High-Efficiency High-Power-Density LLC Converter With an Integrated Planar Matrix Transformer for High-Output Current Applications, IEEE Transactions on Industrial Electronics, 64, (11), 9072-9082, 2017.
  • [14] Ahmed M. H., Fei C., Lee F. C., Li Q., 48-V Voltage Regulator Module With PCB Winding Matrix Transformer for Future Data Centers, IEEE Transactions on Industrial Electronics, 64 (12), 9302-9310, 2017.
  • [15] Yu R., Ho G. K. Y., Pong B. M. H., Ling B. W., Lam J., Computer-Aided Design and Optimization of High-Efficiency LLC Series Resonant Converter, IEEE Transactions on Power Electronics, 27 (7), 3243-3256, 2012.
  • [16] Lo Y., Chiu H., Lin J., Wang C., Lin C., Gu B., Single-stage interleaved active-clamping forward converter employing two transformers, 28. Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 1898-1905, 2013.
  • [17] Lin B., Shih H., ZVS Converter With Parallel Connection in Primary Side and Series Connection in Secondary Side, IEEE Transactions on Industrial Electronics, 58 (4), 1251-1258, 2011.
  • [18] Lin B., Dong J., ZVS Resonant Converter With Parallel–Series Transformer Connection, IEEE Transactions on Industrial Electronics, 58 (7), 2972-2979, 2011.
  • [19] Zhou J., Ma H., Full-Bridge LLC Resonant Converter with Parallel-Series Transformer Connection and Voltage Doubler Rectifier, 10. International Conference on Power Electronics and ECCE Asia (ICPE 2019- ECCE Asia), Busan, Korea (South), 1-6., 2019.
  • [20] Huang Y., Liang T., Wu W., Analysis and implementation of half-bridge resonant capacitance LLC converter, IEEE International Conference on Industrial Technology (ICIT), Taipei, 1302-1307, 2016.
  • [21] Shi J. J., Zhang J. M., Long J. T., Liu T. J., A cascaded DC converter with primary series transformer LLC and output interleaved buck, Trans. China Electrotech. Soc., 30 (24), 93–102, 2015.
  • [22] Gu W., Liu R., A study of volume and weight vs. frequency for high-frequency transformers, Proceedings of IEEE Power Electronics Specialist Conference, Seattle, WA, USA, 1123-1129, 1993.
  • [23] Versele C., Deblecker O., Lobry J., Multiobjective optimal design of high frequency transformers using genetic algorithm, 13. European Conference on Power Electronics and Applications, Barcelona, Spain, 1-10, 2009.
  • [24] Zhang K., Chen W., Cao X., Song Z., Qiao G., L. Sun, Optimization Design of High-Power High-Frequency Transformer Based on Multi-Objective Genetic Algorithm, IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 1-5, 2018.
  • [25] Ahmed D., Wang L., Optimal Peak Flux Density Model (OPFDM) for Non-Iterative Design of High Frequency Gapped Transformer (HFGT) in LLC Resonant Converters, IET Power Electron., 13 (5), 942–952, 2020.
  • [26] Nazerian E., Tahami F., Optimum Design of Planar Transformer for LLC Resonant Converter using metaheuristic method, 45. Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 6621-6626, 2019.
  • [27] Gülbahçe M. O. and Karaaslan M. E., Estimation of induction motor equivalent circuit parameters from manufacturer’s datasheet by particle swarm optimization algorithm for variable frequency drives, Electrica, 22(1), 16-26, 2022.
  • [28] Hurley W., and Werner H. W., Transformers and inductors for power electronics: theory, design and applications, John Wiley & Sons, 2013.
  • [29] Burkart, R. M., Advanced modeling and multi-objective optimization of power electronic converter systems, Ph.D. Dissertation in ETH Zurich, 2016.
  • [30] Lordoglu A., Gulbahce M. O., Kocabas D. A., Dusmez S., System-Level Design Approach for LLC Converters, PCIM Europe digital days 2021, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 1-8, 2021.
Year 2024, Volume: 39 Issue: 1, 327 - 338, 21.08.2023
https://doi.org/10.17341/gazimmfd.1090267

Abstract

Project Number

118C374

References

  • [1] Bilgin B., Emadi A., Krishnamurthy M., Design considerations for a universal input battery charger circuit for PHEV applications, IEEE International Symposium on Industrial Electronics, 3407-3412, 2010.
  • [2] Khaligh A., Dusmez S., Comprehensive Topological Analysis of Conductive and Inductive Charging Solutions for Plug-In Electric Vehicles, IEEE Transactions on Vehicular Technology, 61 (8), 3475-3489, 2012.
  • [3] Wang H., Dusmez S., Khaligh A., Design and Analysis of a Full-Bridge LLC-Based PEV Charger Optimized for Wide Battery Voltage Range, IEEE Transactions on Vehicular Technology, 63 (4), 1603-1613, 2014.
  • [4] Shang F., Niu G., Krishnamurthy M., Design and Analysis of a High-Voltage-Gain Step-Up Resonant DC–DC Converter for Transportation Applications, IEEE Transactions on Transportation Electrification, 3, (1), 157-167, 2017.
  • [5] Wang H., Dusmez S., Khaligh A., Maximum Efficiency Point Tracking Technique for LLC-Based PEV Chargers Through Variable DC Link Control, IEEE Transactions on Industrial Electronics, 61, (11), 6041-6049, 2014.
  • [6] Shen Y., Zhao W., Chen Z., C. Cai, Full-Bridge LLC Resonant Converter With Series-Parallel Connected Transformers for Electric Vehicle On-Board Charger, IEEE Access, 6 (1), 13490-13500, 2018.
  • [7] Yang C., Liang T., Chen K., Li J., Lee J., Loss analysis of half-bridge LLC resonant converter, International Future Energy Electronics Conference (IFEEC), Tainan, 155-160, 2013.
  • [8] Zhang J., Hurley W. G., Wolfle W. H., Gapped Transformer Design Methodology and Implementation for LLC Resonant Converters, IEEE Transactions on Industry Applications, 52 (1), 342-350, 2016.
  • [9] Mu M., Li Q., Gilham D. J., Lee F. C., Ngo K. D. T., New Core Loss Measurement Method for High-Frequency Magnetic Materials, IEEE Transactions on Power Electronics, 29 (8), 4374-4381, 2014.
  • [10] Hurley W. G., Gath E., Breslin J. G., Optimizing the AC resistance of multilayer transformer windings with arbitrary current waveforms, IEEE Transactions on Power Electronics, 15 (2), 369-376, 2000.
  • [11] Sullivan C. R., Optimal choice for number of strands in a litz-wire transformer winding, IEEE Transactions on Power Electronics, 14 (2), 283-291, 1999.
  • [12] Nan X.,, Sullivan C. R., An improved calculation of proximity-effect loss in high-frequency windings of round conductors, IEEE 34th Annual Conference on Power Electronics Specialist, Acapulco, Mexico, 853-860, 2003.
  • [13] Fei C., Lee F. C., Li Q., High-Efficiency High-Power-Density LLC Converter With an Integrated Planar Matrix Transformer for High-Output Current Applications, IEEE Transactions on Industrial Electronics, 64, (11), 9072-9082, 2017.
  • [14] Ahmed M. H., Fei C., Lee F. C., Li Q., 48-V Voltage Regulator Module With PCB Winding Matrix Transformer for Future Data Centers, IEEE Transactions on Industrial Electronics, 64 (12), 9302-9310, 2017.
  • [15] Yu R., Ho G. K. Y., Pong B. M. H., Ling B. W., Lam J., Computer-Aided Design and Optimization of High-Efficiency LLC Series Resonant Converter, IEEE Transactions on Power Electronics, 27 (7), 3243-3256, 2012.
  • [16] Lo Y., Chiu H., Lin J., Wang C., Lin C., Gu B., Single-stage interleaved active-clamping forward converter employing two transformers, 28. Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 1898-1905, 2013.
  • [17] Lin B., Shih H., ZVS Converter With Parallel Connection in Primary Side and Series Connection in Secondary Side, IEEE Transactions on Industrial Electronics, 58 (4), 1251-1258, 2011.
  • [18] Lin B., Dong J., ZVS Resonant Converter With Parallel–Series Transformer Connection, IEEE Transactions on Industrial Electronics, 58 (7), 2972-2979, 2011.
  • [19] Zhou J., Ma H., Full-Bridge LLC Resonant Converter with Parallel-Series Transformer Connection and Voltage Doubler Rectifier, 10. International Conference on Power Electronics and ECCE Asia (ICPE 2019- ECCE Asia), Busan, Korea (South), 1-6., 2019.
  • [20] Huang Y., Liang T., Wu W., Analysis and implementation of half-bridge resonant capacitance LLC converter, IEEE International Conference on Industrial Technology (ICIT), Taipei, 1302-1307, 2016.
  • [21] Shi J. J., Zhang J. M., Long J. T., Liu T. J., A cascaded DC converter with primary series transformer LLC and output interleaved buck, Trans. China Electrotech. Soc., 30 (24), 93–102, 2015.
  • [22] Gu W., Liu R., A study of volume and weight vs. frequency for high-frequency transformers, Proceedings of IEEE Power Electronics Specialist Conference, Seattle, WA, USA, 1123-1129, 1993.
  • [23] Versele C., Deblecker O., Lobry J., Multiobjective optimal design of high frequency transformers using genetic algorithm, 13. European Conference on Power Electronics and Applications, Barcelona, Spain, 1-10, 2009.
  • [24] Zhang K., Chen W., Cao X., Song Z., Qiao G., L. Sun, Optimization Design of High-Power High-Frequency Transformer Based on Multi-Objective Genetic Algorithm, IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 1-5, 2018.
  • [25] Ahmed D., Wang L., Optimal Peak Flux Density Model (OPFDM) for Non-Iterative Design of High Frequency Gapped Transformer (HFGT) in LLC Resonant Converters, IET Power Electron., 13 (5), 942–952, 2020.
  • [26] Nazerian E., Tahami F., Optimum Design of Planar Transformer for LLC Resonant Converter using metaheuristic method, 45. Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 6621-6626, 2019.
  • [27] Gülbahçe M. O. and Karaaslan M. E., Estimation of induction motor equivalent circuit parameters from manufacturer’s datasheet by particle swarm optimization algorithm for variable frequency drives, Electrica, 22(1), 16-26, 2022.
  • [28] Hurley W., and Werner H. W., Transformers and inductors for power electronics: theory, design and applications, John Wiley & Sons, 2013.
  • [29] Burkart, R. M., Advanced modeling and multi-objective optimization of power electronic converter systems, Ph.D. Dissertation in ETH Zurich, 2016.
  • [30] Lordoglu A., Gulbahce M. O., Kocabas D. A., Dusmez S., System-Level Design Approach for LLC Converters, PCIM Europe digital days 2021, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 1-8, 2021.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Abdulsamed Lordoğlu 0000-0001-9278-9202

Mehmet Onur Gulbahce 0000-0002-6689-8445

Derya Ahmet Kocabaş 0000-0002-5017-5330

Serkan Düşmez 0000-0002-3728-900X

Project Number 118C374
Early Pub Date June 15, 2023
Publication Date August 21, 2023
Submission Date March 19, 2022
Acceptance Date February 14, 2023
Published in Issue Year 2024 Volume: 39 Issue: 1

Cite

APA Lordoğlu, A., Gulbahce, M. O., Kocabaş, D. A., Düşmez, S. (2023). LLC rezonans dönüştürücüsündeki hava aralıklı manyetik bileşenler için yeni bir optimizasyon yöntemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(1), 327-338. https://doi.org/10.17341/gazimmfd.1090267
AMA Lordoğlu A, Gulbahce MO, Kocabaş DA, Düşmez S. LLC rezonans dönüştürücüsündeki hava aralıklı manyetik bileşenler için yeni bir optimizasyon yöntemi. GUMMFD. August 2023;39(1):327-338. doi:10.17341/gazimmfd.1090267
Chicago Lordoğlu, Abdulsamed, Mehmet Onur Gulbahce, Derya Ahmet Kocabaş, and Serkan Düşmez. “LLC Rezonans dönüştürücüsündeki Hava aralıklı Manyetik bileşenler için Yeni Bir Optimizasyon yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 1 (August 2023): 327-38. https://doi.org/10.17341/gazimmfd.1090267.
EndNote Lordoğlu A, Gulbahce MO, Kocabaş DA, Düşmez S (August 1, 2023) LLC rezonans dönüştürücüsündeki hava aralıklı manyetik bileşenler için yeni bir optimizasyon yöntemi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 1 327–338.
IEEE A. Lordoğlu, M. O. Gulbahce, D. A. Kocabaş, and S. Düşmez, “LLC rezonans dönüştürücüsündeki hava aralıklı manyetik bileşenler için yeni bir optimizasyon yöntemi”, GUMMFD, vol. 39, no. 1, pp. 327–338, 2023, doi: 10.17341/gazimmfd.1090267.
ISNAD Lordoğlu, Abdulsamed et al. “LLC Rezonans dönüştürücüsündeki Hava aralıklı Manyetik bileşenler için Yeni Bir Optimizasyon yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/1 (August 2023), 327-338. https://doi.org/10.17341/gazimmfd.1090267.
JAMA Lordoğlu A, Gulbahce MO, Kocabaş DA, Düşmez S. LLC rezonans dönüştürücüsündeki hava aralıklı manyetik bileşenler için yeni bir optimizasyon yöntemi. GUMMFD. 2023;39:327–338.
MLA Lordoğlu, Abdulsamed et al. “LLC Rezonans dönüştürücüsündeki Hava aralıklı Manyetik bileşenler için Yeni Bir Optimizasyon yöntemi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 1, 2023, pp. 327-38, doi:10.17341/gazimmfd.1090267.
Vancouver Lordoğlu A, Gulbahce MO, Kocabaş DA, Düşmez S. LLC rezonans dönüştürücüsündeki hava aralıklı manyetik bileşenler için yeni bir optimizasyon yöntemi. GUMMFD. 2023;39(1):327-38.