NOMA-Integrated Interleave-Division Multiple Access: A Beyond 5G Perspective
Year 2025,
Volume: 8 Issue: 3, 441 - 456, 30.09.2025
Shivani Dixit
Özkan Canay
,
Varun Shukla
Manoj Kumar Misra
Abstract
Efficient multiple access is vital for spectrum-constrained, user-dense IoT networks. This study joins interleave-division multiple access (IDMA) with power-domain non-orthogonal multiple access (NOMA) and employs ordered successive-interference-cancellation multi-user detection (SIC-MUD). Unequal power allocation and orthogonal interleavers let all users share one spreading code while keeping chip-level complexity low. Simulations of a five-user uplink and a thirty-two-user downlink show that the worst user attains a bit-error rate of 1.4 × 10⁻³ at 10 dB, needing ≈ 3 dB less SNR than equal-power IDMA; flat Rayleigh fading raises the curve by only ≈ 2 dB. A software detector processes 2048-bit frames in ≈ 0.03 s on a standard desktop, and cycle estimates predict under 5 ms latency on a 32-100 MHz FPGA. Random interleaving gives the lowest error rate, while master-random and tree-based patterns lose < 0.3 dB yet cut memory sharply. Ordered SIC-MUD NOMA-IDMA thus offers concrete performance gains and real-time feasibility for dense 6G and massive-IoT deployments.
References
-
L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A Survey of Non-Orthogonal Multiple Access for 5G,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2294-2323, 2018. doi: 10.1109/COMST.2018.2835558
-
A. Osseiran, F. Boccardi, V. Braun, et al., “Scenarios for 5G Mobile and Wireless Communications: The Vision of the METIS Project,” IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, 2014. doi: 10.1109/MCOM.2014.6815890
-
F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G,” IEEE Communications Magazine, vol. 52, no. 2, pp. 74-80, 2014. doi: 10.1109/MCOM.2014.6736746
-
B. Makki, K. Chitti, A. Behravan, and M.-S. Alouini, “A Survey of NOMA: Current Status and Open Research Challenges,” IEEE Open Journal of the Communications Society, pp. 1-1, 2020. doi: 10.1109/OJCOMS.2020.2969899
-
Y. Liu, Z. Qin, M. Elkashlan, A. Nallanathan, and J. A. McCann, “Evolution of NOMA Toward Next-Generation Multiple Access (NGMA) for 6G,” IEEE Journal on Selected Areas in Communications, vol. 40, pp. 1037-1071, 2022. doi: 10.1109/JSAC.2022.3145234
-
Y. Hamad, A. Ashfaq, A. Emad, and A. Arafat, “Error Rate Analysis of NOMA: Principles, Survey, and Future Directions,” IEEE Open Journal of the Communications Society, vol. 4, pp. 1682-1727, 2022. doi: 10.36227/techrxiv.18975011.v1
-
D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge, U.K.: Cambridge University Press, 2005.
-
P. Wang, J. Xiao, and L. Ping, “Comparison of Orthogonal and Non-Orthogonal Approaches to Future Wireless Cellular Systems,” IEEE Vehicular Technology Magazine, vol. 1, no. 3, pp. 4-11, 2006. doi: 10.1109/MVT.2006.307294
-
S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, “Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 721-742, 2016. doi: 10.1109/COMST.2016.2621116
-
D. Duchemin, J. M. Gorce, and C. Goursaud, “Code Domain Non-Orthogonal Multiple Access versus ALOHA: A Simulation-Based Study,” in Proc. 25th International Conf. Telecommunications (ICT), 2018, pp. 445-450. doi: 10.1109/ICT.2018.8464836
-
M. Aldababsa, M. Toka, S. Gokceli, G. K. Kurt, and O. Kucur, “A Tutorial on Non-Orthogonal Multiple Access for 5G and Beyond,” Wireless Communications and Mobile Computing, vol. 2018, Article ID 9713450, 2018. doi: 10.1155/2018/9713450
-
L. Ping, L. Liu, K. Wu, and W. K. Leung, “Interleave-Division Multiple-Access,” IEEE Transactions on Wireless Communications, vol. 5, no. 4, pp. 938-947, 2006. doi: 10.1109/TWC.2006.1618943
-
L. Ping and L. Liu, “Analysis and Design of IDMA Systems Based on SNR Evolution and Power Allocation,” in Proc. IEEE 60th Vehicular Technology Conf. (VTC), 2004, pp. 1068-1072.
-
K. Li, X. Wang, and L. Ping, “Analysis and Optimization of Interleave-Division Multiple-Access Communication Systems,” IEEE Transactions on Wireless Communications, vol. 6, no. 5, pp. 1973-1983, 2007. doi: 10.1109/TWC.2007.360398
-
M. Shukla, V. K. Srivastava, and S. Tiwari, “Analysis and Design of Optimum Interleaver for Iterative Receivers in IDMA Scheme,” Wireless Communications and Mobile Computing, vol. 9, no. 10, pp. 1312-1317, 2009. doi: 10.1002/wcm.710
-
S. A. Aliesawi, C. C. Tsimenidis, B. S. Sharif, and M. Johnston, “Iterative Multi-user Detection for Underwater Acoustic Channels,” IEEE Journal of Oceanic Engineering, vol. 36, no. 4, pp. 728-744, 2011. doi: 10.1109/JOE.2011.2164954
-
H. Wu, L. Ping, and A. Perotti, “User-Specific Chip-Level Interleaver Design for IDMA Systems,” IEE Electronics Letters, vol. 42, no. 4, pp. 233-234, 2006. doi: 10.1049/el:20063770
-
S. Dixit, S. Srivastava, and M. Shukla, “Design and Analysis of Numerical Interleaver for IDMA Schemes with Iterative Multi-user Detection,” Indian Journal of Science and Technology, vol. 10, no. 12, Article 105389, 2017. doi: 10.17485/ijst/2017/v10i12/105389
-
S. Dixit, V. Shukla, and M. Shukla, “Progressive Pattern Orthogonal Interleaver Set for Interleave-Division Multiple Access-Based, Non-Orthogonal Multiple Access Schemes: Beyond 5G Perspective,” Journal of Electrical Engineering, vol. 73, no. 6, pp. 419-425, 2022. doi: 10.2478/jee-2022-0057
-
Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users,” IEEE Signal Processing Letters, vol. 21, no. 12, pp. 1501-1505, 2014. doi: 10.1109/LSP.2014.2343971
-
A. Agarwal, R. Chaurasiya, S. Rai, and A. K. Jagannatham, “Outage Probability Analysis for NOMA Downlink and Uplink Communication Systems with Generalized Fading Channels,” IEEE Access, vol. 8, pp. 220461-220481, 2020. doi: 10.1109/ACCESS.2020.3042993
-
N. Purohit and N. Gupta, “Performance Analysis of Non-Orthogonal Multiple Access in 5G mm-Wave Wireless Networks,” International Journal of Wireless and Mobile Computing, vol. 21, no. 4, p. 375, 2021. doi: 10.1504/IJWMC.2021.121629
-
I. Kumar, M. K. Mishra, and R. K. Mishra, “Performance Analysis of NOMA Downlink for Next-Generation 5G Network with Statistical Channel State Information,” Ingénierie des Systèmes d’Information, vol. 26, no. 4, pp. 417-423, 2021. doi: 10.18280/isi.260410
-
W. Shin, M. Lee, and B. Choi, “An Efficient User Ordering and Power Allocation Scheme for Successive Interference Cancellation in NOMA,” IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 3247-3258, 2018. doi: 10.1109/TWC.2018.2809591
-
Y. Liu, Z. Qin, M. Elkashlan, A. Nallanathan, and J. A. McCann, “Evolution of NOMA Toward Next-Generation Multiple Access for 6G,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 1037-1071, 2022. doi: 10.1109/JSAC.2022.3145234
-
S. Kusaladharma, W. P. Zhu, W. Ajib, and G. A. A. Baduge, “Achievable Rate Characterization of NOMA-Aided Cell-Free Massive MIMO with Imperfect Successive Interference Cancellation,” IEEE Transactions on Communications, vol. 69, no. 5, pp. 3054-3066, 2021. doi: 10.1109/TCOMM.2021.3053613
-
Y. Li and L. Dai, “Maximum Sum Rate of Slotted Aloha with Successive Interference Cancellation,” IEEE Transactions on Communications, vol. 66, no. 11, pp. 5385-5400, 2018. doi: 10.1109/TCOMM.2018.2843338
-
C. Kumaradasa, D. Kumar, N. Rajatheva, and V. Bhatia, “On Performance of Hybrid RIS-Aided NOMA Network,” Proc. IEEE WCNC, Milan, Italy, Mar. 2025, pp. 1-6, doi: 10.1109/WCNC61545.2025.10978366
-
X. Dong, L. Qian, and Q. Wang, “Task Offloading and Resource Allocation in NOMA-Enabled Vehicular Edge Computing Networks,” Proc. IEEE WCNC, Mar. 2025, pp. 1-6, doi: 10.1109/WCNC61545.2025.10978415
-
K. Cui, W. Wang, C. Dong, and N. Zhao, “Constructive Interference Precoding for IRS-NOMA Networks,” IEEE Trans. Wireless Commun., vol. 24, no. 5, pp. 3964-3978, May 2025, doi: 10.1109/TWC.2025.3541858
-
V. T. Ta et al., “Convergence Evaluation of OFDMA-IDMA Combination Based on IEEE 802.11ax,” 2024 Int. K-Sci. Tech. Conf., Seoul, Korea, Jun. 2024, doi: 10.1109/KST61284.2024.10499693
-
V. T. Ta et al., “Massive Up-Link Multi-User with OFDMA-IDMA Combination Based on IEEE 802.11ax,” Proc. IEEE VTC-Spring, Jun. 2024, doi: 10.1109/VTC2024-Spring62846.2024.10683025
-
Z. Ding, H. V. Poor, and Y. Liu, “NOMA as the Next-Generation Multiple Access in Non-Terrestrial Networks,” Proc. IEEE, vol. 112, no. 4, pp. 487-515, Apr. 2024, doi: 10.1109/JPROC.2024.3496775
-
C. Yu, X. Peng, and P. Zhu, “RIS-NOMA Assisted Covert Transmission for Integrated Sensing and Communication,” IEEE Wireless Commun. Lett., vol. 14, no. 1, pp. 13-17, Jan. 2025 (e-pub 2024), doi: 10.1109/LWC.2024.3477610
-
M. Moriyama, M. Yamazoe, T. Matsuda, and T. Matsumura, “Non-Orthogonal Multiple Access with Transmit Diversity for Low Latency and Massive Connection,” Proc. IEEE PIMRC, Sept. 2023, doi: 10.1109/PIMRC56721.2023.10293936
-
L. Chen et al., “Queue-Aware STAR-RIS Assisted NOMA Communication Systems,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 10645-10659, Dec. 2023, doi: 10.1109/TWC.2023.3322381
-
Y. Zhao et al., “Energy Efficiency of RIS-Assisted NOMA-Based MEC Networks in Finite Blocklength,” IEEE Trans. Commun., vol. 71, no. 11, pp. 6654-6668, Nov. 2023, doi: 10.1109/TCOMM.2023.3334811
-
K. Cui et al., “A Multi-Carrier Quadrature NOMA with α-μ Fading Channel,” IEEE Trans. Commun., vol. 71, no. 8, pp. 4790-4802, Aug. 2023, doi: 10.1109/TCOMM.2023.3337255
-
Y. Wu et al., “Impact of NOMA on Age of Information: A Grant-Free Transmission Model,” IEEE Trans. Wireless Commun., vol. 22, no. 7, pp. 4745-4757, Jul. 2023, doi: 10.1109/TWC.2023.3313612
NOMA-Integrated Interleave-Division Multiple Access: A Beyond 5G Perspective
Year 2025,
Volume: 8 Issue: 3, 441 - 456, 30.09.2025
Shivani Dixit
Özkan Canay
,
Varun Shukla
Manoj Kumar Misra
Abstract
Efficient multiple access is vital for spectrum-constrained, user-dense IoT networks. This study joins interleave-division multiple access (IDMA) with power-domain non-orthogonal multiple access (NOMA) and employs ordered successive-interference-cancellation multi-user detection (SIC-MUD). Unequal power allocation and orthogonal interleavers let all users share one spreading code while keeping chip-level complexity low. Simulations of a five-user uplink and a thirty-two-user downlink show that the worst user attains a bit-error rate of 1.4 × 10⁻³ at 10 dB, needing ≈ 3 dB less SNR than equal-power IDMA; flat Rayleigh fading raises the curve by only ≈ 2 dB. A software detector processes 2048-bit frames in ≈ 0.03 s on a standard desktop, and cycle estimates predict under 5 ms latency on a 32-100 MHz FPGA. Random interleaving gives the lowest error rate, while master-random and tree-based patterns lose < 0.3 dB yet cut memory sharply. Ordered SIC-MUD NOMA-IDMA thus offers concrete performance gains and real-time feasibility for dense 6G and massive-IoT deployments.
Ethical Statement
This study was conducted in accordance with scientific and ethical principles, and all referenced works are properly cited in the bibliography.
References
-
L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A Survey of Non-Orthogonal Multiple Access for 5G,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2294-2323, 2018. doi: 10.1109/COMST.2018.2835558
-
A. Osseiran, F. Boccardi, V. Braun, et al., “Scenarios for 5G Mobile and Wireless Communications: The Vision of the METIS Project,” IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, 2014. doi: 10.1109/MCOM.2014.6815890
-
F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five Disruptive Technology Directions for 5G,” IEEE Communications Magazine, vol. 52, no. 2, pp. 74-80, 2014. doi: 10.1109/MCOM.2014.6736746
-
B. Makki, K. Chitti, A. Behravan, and M.-S. Alouini, “A Survey of NOMA: Current Status and Open Research Challenges,” IEEE Open Journal of the Communications Society, pp. 1-1, 2020. doi: 10.1109/OJCOMS.2020.2969899
-
Y. Liu, Z. Qin, M. Elkashlan, A. Nallanathan, and J. A. McCann, “Evolution of NOMA Toward Next-Generation Multiple Access (NGMA) for 6G,” IEEE Journal on Selected Areas in Communications, vol. 40, pp. 1037-1071, 2022. doi: 10.1109/JSAC.2022.3145234
-
Y. Hamad, A. Ashfaq, A. Emad, and A. Arafat, “Error Rate Analysis of NOMA: Principles, Survey, and Future Directions,” IEEE Open Journal of the Communications Society, vol. 4, pp. 1682-1727, 2022. doi: 10.36227/techrxiv.18975011.v1
-
D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge, U.K.: Cambridge University Press, 2005.
-
P. Wang, J. Xiao, and L. Ping, “Comparison of Orthogonal and Non-Orthogonal Approaches to Future Wireless Cellular Systems,” IEEE Vehicular Technology Magazine, vol. 1, no. 3, pp. 4-11, 2006. doi: 10.1109/MVT.2006.307294
-
S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, “Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 721-742, 2016. doi: 10.1109/COMST.2016.2621116
-
D. Duchemin, J. M. Gorce, and C. Goursaud, “Code Domain Non-Orthogonal Multiple Access versus ALOHA: A Simulation-Based Study,” in Proc. 25th International Conf. Telecommunications (ICT), 2018, pp. 445-450. doi: 10.1109/ICT.2018.8464836
-
M. Aldababsa, M. Toka, S. Gokceli, G. K. Kurt, and O. Kucur, “A Tutorial on Non-Orthogonal Multiple Access for 5G and Beyond,” Wireless Communications and Mobile Computing, vol. 2018, Article ID 9713450, 2018. doi: 10.1155/2018/9713450
-
L. Ping, L. Liu, K. Wu, and W. K. Leung, “Interleave-Division Multiple-Access,” IEEE Transactions on Wireless Communications, vol. 5, no. 4, pp. 938-947, 2006. doi: 10.1109/TWC.2006.1618943
-
L. Ping and L. Liu, “Analysis and Design of IDMA Systems Based on SNR Evolution and Power Allocation,” in Proc. IEEE 60th Vehicular Technology Conf. (VTC), 2004, pp. 1068-1072.
-
K. Li, X. Wang, and L. Ping, “Analysis and Optimization of Interleave-Division Multiple-Access Communication Systems,” IEEE Transactions on Wireless Communications, vol. 6, no. 5, pp. 1973-1983, 2007. doi: 10.1109/TWC.2007.360398
-
M. Shukla, V. K. Srivastava, and S. Tiwari, “Analysis and Design of Optimum Interleaver for Iterative Receivers in IDMA Scheme,” Wireless Communications and Mobile Computing, vol. 9, no. 10, pp. 1312-1317, 2009. doi: 10.1002/wcm.710
-
S. A. Aliesawi, C. C. Tsimenidis, B. S. Sharif, and M. Johnston, “Iterative Multi-user Detection for Underwater Acoustic Channels,” IEEE Journal of Oceanic Engineering, vol. 36, no. 4, pp. 728-744, 2011. doi: 10.1109/JOE.2011.2164954
-
H. Wu, L. Ping, and A. Perotti, “User-Specific Chip-Level Interleaver Design for IDMA Systems,” IEE Electronics Letters, vol. 42, no. 4, pp. 233-234, 2006. doi: 10.1049/el:20063770
-
S. Dixit, S. Srivastava, and M. Shukla, “Design and Analysis of Numerical Interleaver for IDMA Schemes with Iterative Multi-user Detection,” Indian Journal of Science and Technology, vol. 10, no. 12, Article 105389, 2017. doi: 10.17485/ijst/2017/v10i12/105389
-
S. Dixit, V. Shukla, and M. Shukla, “Progressive Pattern Orthogonal Interleaver Set for Interleave-Division Multiple Access-Based, Non-Orthogonal Multiple Access Schemes: Beyond 5G Perspective,” Journal of Electrical Engineering, vol. 73, no. 6, pp. 419-425, 2022. doi: 10.2478/jee-2022-0057
-
Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users,” IEEE Signal Processing Letters, vol. 21, no. 12, pp. 1501-1505, 2014. doi: 10.1109/LSP.2014.2343971
-
A. Agarwal, R. Chaurasiya, S. Rai, and A. K. Jagannatham, “Outage Probability Analysis for NOMA Downlink and Uplink Communication Systems with Generalized Fading Channels,” IEEE Access, vol. 8, pp. 220461-220481, 2020. doi: 10.1109/ACCESS.2020.3042993
-
N. Purohit and N. Gupta, “Performance Analysis of Non-Orthogonal Multiple Access in 5G mm-Wave Wireless Networks,” International Journal of Wireless and Mobile Computing, vol. 21, no. 4, p. 375, 2021. doi: 10.1504/IJWMC.2021.121629
-
I. Kumar, M. K. Mishra, and R. K. Mishra, “Performance Analysis of NOMA Downlink for Next-Generation 5G Network with Statistical Channel State Information,” Ingénierie des Systèmes d’Information, vol. 26, no. 4, pp. 417-423, 2021. doi: 10.18280/isi.260410
-
W. Shin, M. Lee, and B. Choi, “An Efficient User Ordering and Power Allocation Scheme for Successive Interference Cancellation in NOMA,” IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 3247-3258, 2018. doi: 10.1109/TWC.2018.2809591
-
Y. Liu, Z. Qin, M. Elkashlan, A. Nallanathan, and J. A. McCann, “Evolution of NOMA Toward Next-Generation Multiple Access for 6G,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 1037-1071, 2022. doi: 10.1109/JSAC.2022.3145234
-
S. Kusaladharma, W. P. Zhu, W. Ajib, and G. A. A. Baduge, “Achievable Rate Characterization of NOMA-Aided Cell-Free Massive MIMO with Imperfect Successive Interference Cancellation,” IEEE Transactions on Communications, vol. 69, no. 5, pp. 3054-3066, 2021. doi: 10.1109/TCOMM.2021.3053613
-
Y. Li and L. Dai, “Maximum Sum Rate of Slotted Aloha with Successive Interference Cancellation,” IEEE Transactions on Communications, vol. 66, no. 11, pp. 5385-5400, 2018. doi: 10.1109/TCOMM.2018.2843338
-
C. Kumaradasa, D. Kumar, N. Rajatheva, and V. Bhatia, “On Performance of Hybrid RIS-Aided NOMA Network,” Proc. IEEE WCNC, Milan, Italy, Mar. 2025, pp. 1-6, doi: 10.1109/WCNC61545.2025.10978366
-
X. Dong, L. Qian, and Q. Wang, “Task Offloading and Resource Allocation in NOMA-Enabled Vehicular Edge Computing Networks,” Proc. IEEE WCNC, Mar. 2025, pp. 1-6, doi: 10.1109/WCNC61545.2025.10978415
-
K. Cui, W. Wang, C. Dong, and N. Zhao, “Constructive Interference Precoding for IRS-NOMA Networks,” IEEE Trans. Wireless Commun., vol. 24, no. 5, pp. 3964-3978, May 2025, doi: 10.1109/TWC.2025.3541858
-
V. T. Ta et al., “Convergence Evaluation of OFDMA-IDMA Combination Based on IEEE 802.11ax,” 2024 Int. K-Sci. Tech. Conf., Seoul, Korea, Jun. 2024, doi: 10.1109/KST61284.2024.10499693
-
V. T. Ta et al., “Massive Up-Link Multi-User with OFDMA-IDMA Combination Based on IEEE 802.11ax,” Proc. IEEE VTC-Spring, Jun. 2024, doi: 10.1109/VTC2024-Spring62846.2024.10683025
-
Z. Ding, H. V. Poor, and Y. Liu, “NOMA as the Next-Generation Multiple Access in Non-Terrestrial Networks,” Proc. IEEE, vol. 112, no. 4, pp. 487-515, Apr. 2024, doi: 10.1109/JPROC.2024.3496775
-
C. Yu, X. Peng, and P. Zhu, “RIS-NOMA Assisted Covert Transmission for Integrated Sensing and Communication,” IEEE Wireless Commun. Lett., vol. 14, no. 1, pp. 13-17, Jan. 2025 (e-pub 2024), doi: 10.1109/LWC.2024.3477610
-
M. Moriyama, M. Yamazoe, T. Matsuda, and T. Matsumura, “Non-Orthogonal Multiple Access with Transmit Diversity for Low Latency and Massive Connection,” Proc. IEEE PIMRC, Sept. 2023, doi: 10.1109/PIMRC56721.2023.10293936
-
L. Chen et al., “Queue-Aware STAR-RIS Assisted NOMA Communication Systems,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 10645-10659, Dec. 2023, doi: 10.1109/TWC.2023.3322381
-
Y. Zhao et al., “Energy Efficiency of RIS-Assisted NOMA-Based MEC Networks in Finite Blocklength,” IEEE Trans. Commun., vol. 71, no. 11, pp. 6654-6668, Nov. 2023, doi: 10.1109/TCOMM.2023.3334811
-
K. Cui et al., “A Multi-Carrier Quadrature NOMA with α-μ Fading Channel,” IEEE Trans. Commun., vol. 71, no. 8, pp. 4790-4802, Aug. 2023, doi: 10.1109/TCOMM.2023.3337255
-
Y. Wu et al., “Impact of NOMA on Age of Information: A Grant-Free Transmission Model,” IEEE Trans. Wireless Commun., vol. 22, no. 7, pp. 4745-4757, Jul. 2023, doi: 10.1109/TWC.2023.3313612