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Analysis of the Solutions of the Equation Modeled in the Field of Nonlinear Sciences  

 Tolga AKTÜRK1*, Mahşure Kübra DİKİCİ2 

ABSTRACT: In this article, the travelling wave solutions of the fourth-order nonlinear Ablowitz-Kaup-

Newell-Segur (AKNS) equation are investigated using the modified exponential function method 

(MEFM). This method is used to find analytical travelling wave solutions of the AKNS equation. The 

different travelling wave solutions are obtained by determining the appropriate values for the parameters. 

Two and three dimensional graphics of the different wave solutions found in this way are plotted with 

the help of Mathematica package program by determining the appropriate parameters. 

Keywords: Modified exponential function method, fourth-order nonlinear Ablowitz-Kaup-Newell-

Segur equation, travelling wave solutions.    
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INTRODUCTION  

Solutions of the nonlinear partial differential are physically important. NPDEs, engineering, 

physics, medicine etc. each represents a scientific event in various fields of science. Therefore, various 

methods have been developed in the literature to obtain solutions of such equations. Some of them are 

as follows; /G G  method (Wang, et al.,2008), the Hirota’s bilinear operators (Hirota, R. 1973), the F-

expansion method (Zhou, et al., 2004), the Jacobi elliptic function expansion (Liu, et al., 2001), the 

Bernoulli sub-ODE method (Zheng, et al., 2011, Baskonus, et al., 2016), the sine–cosine method 

(Yusufoğlu, et al.,2008), Improved Bernoulli Simple Equation Method (Bulut, et al., 2016), New 

Function Method (Shen, et al., 2013, Sun, 2014, Bulut, et al., 2014) and so on. In additon to these 

methods in the literature, the modified exponential function method (MEFM) (Bulut, et al., 2014), was 

used in our study. In this study, we consider the fourth-order nonlinear AKNS water wave equation as 

follow (Bruz ́on, et al., 2003, Helal, et al., 2013), 

4 8 4 0.xt xxxt x xy xx y xxu u u u u u u                           (1) 

Using the modified exponential function method (1), no study has been done on the travelling 

wave solutions of the equation. The solutions obtained help to understand physical events. In this study, 

MEFM is introduced in the second section, and in the third section, two and three-dimensional graphs 

are plotted by applying parameters of MEFM to the fourth-order AKNS equation and the solution 

functions obtained. Finally, in the fourth section, the comments of the results is given. 

MATERIALS AND METHODS 

We consider the following nonlinear partial differential equation (NPDE): 

                               , , , , , , 0,P u u u u u u u
x y xx xy xt xxxt

 
 

 
                                                                     (2) 

where ( , , )u x y t  is unknown function, P  is the general form of the given nonlinear partial differential 

equation. If the travelling wave solution (3) is applied to equation (2), nonlinear ordinary differential 

equation (4) is obtained. 

 

Step 1: Consider the following travelling wave transformation: 

                     ( , , ) = ( ), .u x y t u k ax by ct                                                                          (3) 

Substituting Eq. (3) into Eq. (2), gives the following nonlinear ordinary differential equation 

(NODE); 

                                 2
, , , , 0.N u u u u                                                                                                (4) 

Step 2: We get that the following the solution; 
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                                   (5) 
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where , , (0 , 0 ).A B i m j n
i j

     m , n  are positive integers that can be get by using the balancing 

procedure. The balancing procedure is the relationship between the highest order derivative term in the 

nonlinear ordinary differential equation and the highest grade nonlinear term. 

 

                              
( ) ( )'( ) = .e k e

   
  


                                                                    (6) 

Eq.(6) has the following families of solutions (Naher, et al., 2013):    

Family 1: When, 0  , 2 4 > 0,   

                            
2 24 4

( ) = ( ( ( )) ).
2 2 2

ln tanh EE
    

  
 

  
 

                                           
(7) 

Family 2: When, 0  , 2 4 < 0,   

                            
2 24 4

( ) = ( ( ( )) ).
2 2 2

ln tan EE
    

  
 

   
 

                                           
(8) 

Family 3: When, 0, 0   , 2 4 > 0,   

                           ( ) = ( ).
( )

1

ln
EE

e


 

 





                                                        (9) 

Family 4: When, 0, 0   , 2 4 0,    

                           
2 ( ) 4

( ) = ( ).
2( )

EE
ln

EE

 
 

 

 


    

                                                  (10) 

Family 5: When, 0, 0   , 2 4 0,    

                            ( ) = ( ),ln EE                                                                                (11) 

where, EE is a integral constant. 

Step 3: If the derivatives required in the equation (4) are get in the equation (5) and replaced in the 

equation (4), an algebraic equation system is obtained. This system is solved using the Mathematica 

software program and solutions of the fourth-order nonlinear AKNS equation are obtained. 

RESULTS AND DISCUSSION 

In this section, we use the modified exponential function method (MEFM) to find the travelling 

wave solutions of the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) equation, 

 

                          4 8 4 0.u u u u u u u
xt xxxt x xy xx y xx

                                                              (12) 

When we apply the travelling wave transformation as  ( , , ) = ( ), ,u x y t u k ax by ct      we 

get the nonlinear ordinary differantial equation (NODE) as following, 

                            ' 3 2 ''' 2 ' 2 2 '4 6 ( ) 0.cau ca k u a bk u a u                                                                    (13) 
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In order to get the solution function, integrals must be taken in equation (13). However, if 
'u v  

is taken to make these integration processes more simple, equation (13) follows, 

                             3 2 2 24 6 0.c a av ca k v a bkv                                                                            (14)   

If the balancing procedure is applied to the equation (14), if 1m  is selected, 3n   is obtained. 

When the equation (14) is solved, v  function is obtained. Using the 
'u v  relation, the two sides of 

equality are integrated. In this way, u  solution function is obtained for the equation (1), 

                           
2 3

0 1 2 3

0 1

u( )= .
A Ae A e A e

B B e

  




  



  


                                                                            (15) 

 Derivative terms required for equation (13) are obtained from equation (15). By substituting these 

terms (13) in the equation, an algebraic equation system consisting of coefficients is obtained. When this 

system of algebraic equations is solved, the following cases are obtained. 

Case 1: 

  

2

0
0 2 2 2

;
4 4

a k B
A

b a k



 
 

 
 

 

  

2

0 1

1 2 2 2
;

4 4

a k B B
A

b a k

  

 


 

 
 

 

  

2

0 1

2 2 2 2
;

4 4

a k B B
A

b a k

 

 


 

 
 

  

2

1
3 2 2 2

;
4 4

a k B
A

b a k



 
 

 
 

 2 2 2
;

4 4

a
c

a k



 
 

 
 

 These coefficients are substituted in the equation (15) and the following conditions are get.  

Family 1: When, 0, 
2 4 0   ,  

 

   

    

2

2 2 2

1.1 2

2 2 2 2 2

1
4 4

2
( , ) ,

1
4 4 4 tanh 4

2

a k Sech EE

v x t

b a k EE

      

       

 
   

 
  

       
  

                    (16) 

is obtained. If the equation (16) is integrated, the solution function of equation (1) is as follows, 

 
  

     

2 3 2 2

1.1
2 2 2 2 2

4 2 4 sinh 4
( , ) .

2 4 4 2 2 cosh 4

a k EE
u x t

b a k EE

       

       

     
 


      
 

                       (17)   
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Figure-1: The 3D and 2D surfaces of Eq. (17) in 1, 1, 4, 1, 3, 1,a b k       
4

, 1,
9

c y  

0.75EE   and 1.t   

 

Family 2: When, 0, 
2 4 0   , 

 

   

    

2

2 2 2

1.2 2

2 2 2 2 2

1
4 sec 4

2
( , ) ,

1
4 4 4 tan 4

2

a k EE

v x t

b a k EE

      

       

 
    

 
  

         
  

                 (18) 

 is obtained. If equation (18) is integrated, the solution function of equation (1) is get, 

 

 
 

     

2
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2

1.2
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2 sin 4
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4
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   

 

       

    
   
 

  
 


       
 

                        (19) 

    

Figure-2: The 3D and 2D surfaces of Eq. (19) in 
4

1, 1, 4, 1, 1 ,
3

, 2 , 1,a b k c y          

0.75EE  and 1.t   
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Family 3: When, 0, 0,   4 0,    

 

 

  

2

2 2

1.3 2 2 2

1
4

2
( , ) ,

4 4 4

a k Csch EE

v x t
b a k

    

 

  
       
 

                                                                  (20)  

is get. If the equation (20) is integrated, the solution function of equation (1), 

 

 

  

2

1.3 2 2 2

1
2 coth

2
( , ) .

2 4 4

a k EE

u x t
b a k

    

 

  
    

  


 
                                                                    (21)          

       

Figure-3: The 3D and 2D surfaces of Eq. (21) in 1, 4, 1, 1, 0, 1, 0.75, 1,a k b EE y         

4

5
c     and 1.t   

 

Family 4: 0  , 0  , 2 4 0   , 

 
      
     

2 2

1.4 22 2 2

16 4 4
( , ) ,

4 4 4 2

a k EE EE
v x t

b a k EE

       

   

     


   
                                            (22)  

is obtained . When the integrated form of equation (22)  is written in equation (1),  the solution function 

is get,  

 
 

    

  

2

2

1.4 2 2 2

4 24

2
( , ) .

4 4 4

EE
a k

EE
u x t

b a k

   


  

 

   
 
  
 

 
                                              (23)  
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Figure-4: The 3D and 2D surfaces of Eq. (23) in 1, 4, 1, 2, 1, 1,a k c         1, 0.75b EE 

1y   and 1.t   

 

Family 5: 0, 0,   2 4 0   , 

 
     

   

2

1.5 22 2 2

1
( , ) .

4 4

a k EE EE
v x t

b a k EE

    

  

   
 

  
                                                                   (24) 

 If obtained equation (24) has been integrated, the soluttion function of equation is following, 

 

   

  

2

1.5 2 2 2

1
log

( , ) .
4 4

a k EE EE
EE

u x t
b a k

    


 

 
     

 
 

 
                                                   (25) 

  

Figure-5: The 3D and 2D surfaces of Eq. (25) in 1, 4, 1, 0,a k     0, 1, 1,b c     1,y 

0.75EE   and 1.t   
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Case 2 

0
0 ;

ack B
A

b


  

 0 1

1 ;
ack B B

A
b

 
  

 0 1

2 ;
ack B B

A
b


  

1
3 ;

ackB
A

b
  

  2 2 24 4
;

c a k

a

 


 
   

 Solutions written in the equation of these coefficients (15) are obtained. 

Family 1: When, 0, 
2 4 0   , 

 

 
 

  

 
 

  

2 2

2 2

2.1 2 2

2 sinh 2 sinh
4 4

4 4
( , ) ,

2 2 2 cosh 2 2 2 cosh

ack ack

v x t
b b

   
     

   

       

   
        

       
   

         (26) 

where   2 4 .EE       

 If equation (26) is integrated,  

 
  

  

3 2 2

2.1
2 2

4 2 4 sinh 4
( , ) .

2 2 2 cosh 4

ack EE
u x t

b EE

      

     

      
  

  
     
  

                               (27) 

 

Figure-1: The 3D and 2D surfaces of Eq. (17) in 1, 1, 1, 1, 3, 1, 9, 0.75,a b c k EE            

1y   and 1.t   

5 5 10

1.0

0.5

0.5

1.0



Tolga AKTÜRK ve Mahşure Kübra DİKİCİ 10(3): 2009-2020, 2020 

Analysis of the Solutions of the Equation Modeled in the Field of Nonlinear Sciences  

 

2017 

Family 2: When, 0, 
2 4 0   , 

 

 
 

  

2

2

2

2.2
2 2

2 sin 4
4

4

( , ) ,
2 2 2 cos 4

EE
ack

v x t
b EE

   
  

 

     

    
    
 

  
 


     
 

                                             (28) 

is obtained. If the equation (28) is integrated, the solution function of equation (1) is as follows, 

 
  

  

3 2 2

2.2
2 2

4 2 4 sin 4
( , ) .
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b EE

       

     

        
  

  
      
  

                            (29) 

  

Figure-2: The 3D and 2D surfaces of Eq. (17) in 1, 1, 1, 1, 3, 1, 1, 0.75,a b c k EE            

1y   and 1.t   

 

Family 3: When, 0, 0,   4 0,    
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is obtained. If the equation (30) is integrated, solution function u  of equation (1) is get as follows, 
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Figure-3: The 3D and 2D surfaces of Eq. (17) in 1, 1, 1, 1, 1, 0, 5, 0.75,a b c k EE          

1y   and 1.t   

Family 4: When, 0  , 0  ,
2 4 0   , 
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 If the equation (32) is integrated, the solution function of equation (1) is obtained as follows, 
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Figure-4: The 3D and 2D surfaces of Eq. (17) in 1, 1, 1, 1, 2, 1, 4, 0.75,a b c k EE            

1y   and 1.t   
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Family 5: When, 0, 0,  
2 4 0   , 
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 If the equation (34) is integrated, the solution function of equation (1) is as follows, 
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Figure-5: The 3D and 2D surfaces of Eq. (35) in 1, 1, 1, 1, 0, 0, 4, 0.75,a b c k EE            

1y   and 1.t   

 

CONCLUSION 

 In this article, some analytical solutions of the AKNS equation were obtained with the modified 

exponential function method. The modified exponential function method has been successfully used to 

reliable the significant wave solutions of nonlinear models; fourth-order nonlinear Ablowitz-Kaup-

Newell-Segur equation. Whether the solutions obtained provide the AKNS equation was checked with 

the Mathematica program. Two and three dimensional graphs of the analytical solutions of the AKNS 

equation were plotted by determining the appropriate parameters with the same program. Various 

solutions of the AKNS equation are in the literature. Different wave solutions obtained using this 

effective method have been reported in this study. Otherwise, when we compare the results obtained by 

using this method in this article with the results obtained in [Helal, et al., 2013], some new travelling 

wave solutions have been introduced to the literature.  

However, the solution functions in this study have not been obtained before. 
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