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Abstract 

This study addresses a novel perspective for analyzing the source of confidence in human behavior. The 
concept of confidence was examined via the relationship between two phenomena in the area of machine 
learning and psychology, namely the Dunning-Kruger effect and the curse of dimensionality. A relationship 
was established between these two phenomena which were investigated in the light of neuroscience. This 
study claims that confidence is highly related with the total time it takes to reach specific information and 
this relationship is inversely proportional. Image gender classification algorithm was used to analyze this 
relationship for this study and the curves which were obtained as a result of this analysis was compared 
with the curve of Dunning-Kruger effect and curse of dimensionality. This relationship has been explained 
by the knowledge of human's problem-solving ability and mathematical models of memory. 
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Boyutun Laneti ve Dunning-Kruger Etkisi Arasındaki İlişkinin 
İncelenmesi 

Öz 

Bu çalışma insan davranışındaki güvenin kaynağının incelenmesi ile ilgili yenilikçi bir bakış açısı 
içermektedir. Güven kavramı, makine öğrenmesinin ve psikoloji biliminin iki fenomeni olan boyutun laneti 
ve Dunning-Kruger etkisine göre incelenmiştir. Bu iki fenomen arasındaki ilişki sinir bilimi ışığında 
incelenmiştir. Bu çalışmaya göre bireyin güveni o konudaki özel bilgiye erişme süresi ile alakalıdır ve bu 
ilişki ters orantılıdır. Cinsiyet imgelerinin sınıflandırılması sürecinde bu ilişki analiz edilmiştir ve bu süreç 
sonucunda elde edilen eğriler Dunning-Kruger etkisi ve boyutun laneti kavramı ile karşılaştırılmıştır. Bu 
ilişki insanoğlunun problem çözme yeteneği ve hafızanın matematiksel modellerine ait bilgiler kullanılarak 
açıklanmıştır. 

Anahtar Kelimeler: Sinir Bilimi, Yapay Zeka, Dunning-Kruger, Hafıza Modeli, Bilişsel Bilim 

1. Introduction 

Throughout history, humankind has explored the causes of their behavior and brain activity which has 
been a black-box since the ancient Greeks. Neuroscience, which is known as the science of the brain, 
has opened a way to systematically analyze human behavior [1]. Neuroscience is a branch of science 
that examines the relationship of the nervous system with behavior and learning. Research into human 
behavior will never end. As neuroscience can develop, measure and observe living beings, its popularity 
increases day by day. Additionally, neuroscience is an interdisciplinary science which is related to areas 
such as, mathematics, linguistics, engineering and computer science [2,3]. Neuroscience provides an 
understanding of various diseases in the brain including Parkinson’s disease and brain tumors [4]. 
Nowadays, research on the brain has reached a new era thanks to brain imaging techniques such as 
Magnetic resonance imaging (MRI), especially functional MRI [5,6]. Neuroscience also investigates 
how the brain processes new information and stores it which is highly important for the field of 
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education and there are several studies conducted in this area to increase the learning ability of a student 
in the classroom [7-9]. Another area of interest in neuroscience investigates the reasons behind the 
decision one makes regarding social life. This trending topic opens a new perspective in the area of 
advertising as it helps to analyses the reasons customers prefer certain products. Customers’ product 
preferences are analyzed in many different ways by neuroscientists to make products more attractive 
[10]. Another area which is investigated in the scope of neuroscience is the vision ability of human 
beings.  

Neuroscientists try to understand the stages of how a real object is transformed into a representation in 
the brain which is a process that also leads to the understanding and development of the areas of 
computer vision and artificial intelligence [11,12]. According to research in this area, the human brain 
performs edge detection and determines the shape at first contact after which the colors and other 
information available are processed. In this study, the relationship between psychology and machine 
learning was investigated and the source of confidence was analyzed according to this relationship. 
Firstly, the Dunning-Kruger effect, a phenomenon in psychology, was explained and then another term 
in the area of machine learning which is known as the curse of dimensionality was explained briefly.  

The common part of these two terms was discussed in the light of computational neuroscience. Although 
these two phenomena occur at different times and in different areas, their graphical representations are 
quite similar. The area of computational neuroscience creates a bridge between these two phenomena 
and explains briefly the reason for similarity in terms of graphical representation. Additionally, this 
study gives information in a different perspective to understand the main reason for confidence in human 
behavior. According to this study, the main reason of self-confidence is not only related with the general 
knowledge of humans but also related with the amount of time it takes to reach a piece of information 
in a specific subject. 

2. Dunning-Kruger Effect 

The Dunning-Kruger effect, a theory received a Nobel Prize in 2000, was first proposed by Justin Kruger 
and David Dunning in 1999. In general, this theory examines the relationship between self-confidence 
and achievements with human behaviors [13, 14]. It is said that people who suffer from the Dunning-
Kruger effect have high self-confidence in a subject despite having inadequate knowledge in that 
specific subject whereas people who do have knowledge don’t declare this fact. The basic illustration 
of the Dunning-Kruger effect is shown in Figure 1. 

 
Figure 1 Dunning-Kruger confidence curve 

In this study, the relationship between these two phenomena in the fields of machine learning and human 
behavior was investigated. The relationship between the amount of information and self-confidence is 
similar in various ways to the curse of dimensionality, an important phenomenon in machine learning. 
According to Bellman’s curse of dimensionality, if there is a larger data set than there should 
be(“required”) to solve a problem, this will decrease the performance of the solution to the problem. 
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3. Bellman’s Curse of Dimensionality 

The term of the curse of dimensionality was first introduced by Belman in 1961 [15,16]. According to 
this term, number of feature must be an optimal size to represent data in the storage area and increase 
the number of the feature do not always give the satisfying result on classification, clustering or 
regression. In general, the cost of the algorithm increases exponentially with the dimension of the 
information. This cost makes the calculation impossible or too difficult for large space dimensions. 

The problems with increasing dimensions (d) in the dataset are as follows: 

•Sparsity on the input becomes more obvious and the redundant part in the dataset increases rapidly. 
•The decreasing performance of the algorithm dramatically depends on the increase of dimensions. 
•The similarity measurement or classification process of the algorithms becomes redundant due to input 
and test data becoming the same as each other. The purpose of using a method such as a classifier or a 
similarity measurement becomes useless. 
•Even though the computation and data storage ability of computers have evolved significantly since 
the term curse of dimensionality was first discussed, computation time and area of usage in the storage 
are still critical issues in the area of machine learning. 

The curve of the curse of dimensionality is shown in Figure 2 and the classifier performance is 
represented via Equation 1. 

(%)Correct ClassificationPercentage
ClassifierPerformance

ComputationTime
=                              (1) 

 
Figure 2 Bellman’s curse of dimensionality 

As shown in Figure 2, there is a number about an optimal number of feature for classifier performance 
and this peak point gives information about the optimal representation of features in a dataset with this 
classifier algorithm. 

4. Human Problem Solving and Cognitive Science 

According to recent studies in the area of neuroscience, the main reason for the decrease in cognitive 
ability is the size of information received over time. In a study by Ramscar et al., the processing speed 
of the brain was found to decrease over time with the size of the stored information and the cognitive 
model they proposed was tested with linguistic models for the simulation of the human brain [17]. The 
present study consolidated the relationship between the human brain and machine learning via 
classification algorithms. As noted at the beginning of this study, processing speed not only affects 
learning ability but also manipulates human behaviour such as confidence. Processing new information 
must have a computation cost. This cost is highly related to the size and location of information. 
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Old studies have suggested that the brains of adult individuals have become stable and do not develop 
over time. However, it has been observed with current studies in neuroscience that this situation is 
contrary to what is believed and the neural clusters of human memory are dynamically reconstructed 
especially at lower level clusters. In the basic studies in the field of human memory, it is foreseen that 
the human brain consists of three basic parts and these are as follow: after image, primary and secondary 
memory [18, 19]. Thanks to the developing cognitive and neuroscience today, human memory is 
predicted to consist of four categories: 1. sensory buffer memory (SBM), 2. short-term memory (STM), 
3. long-term memory (LTM), and 4. T action buffer memory (ABM). These categories are classified 
according to data saving period and the type and size of the stored data [20]. For example, LTM is 
defined as a category of memory in which knowledge and skills are kept permanently and the storage 
ability of LTM is about limitless due to large number of neurons (at 100 × 109 level) and much more 
potential synaptic connections (at 108,432 level). The basics of human knowledge and long-term 
memory can be represented by an Object-Attribute-Relationship (OAR) model based on the synaptic 
structure of human memory [21]. The model of OAR is representing dynamic and hierarchical 
information clusters which are stored in the memory and this model provides to develop a logical model 
of cognitive knowledge bases. The mathematical model of OAR model which is stored at LTM is given 
in Equation 2 [18]. 

𝑂𝑂𝑂𝑂𝑂𝑂 ≜ (𝑂𝑂,𝑂𝑂,𝑂𝑂)                                                             (2) 

where O is a finite set of objects identified by unique symbolic names, A is a finite set of attributes for 
characterizing each object, and R is a set of relations between objects and attributes. The illustration of 
OAR model is shown in Figure 3. 

 
Figure 3 The OAR model of human memory architecture 

As shown in the OAR model, the memory architecture of human is consist of the enormous number of 
networks. These memory structures are similar to the neuron structure, which is the basic building block 
of the process a, dynamically solving problems. Because neuron structures are also a network structure 
that contains many interactive and complex relationships with each other. These neuron structures are at 
the basis of artificial neural networks that form the basis of today's machine learning.  

In this study, radial basis function (RBFN) neural networks were used to model the classification process 
of the human brain [22]. RBF neural networks are generally used to create a nonlinear function between 
inputs and outputs and the topology of RBF is a form of three-layered feed-forward neural networks. 
The first layer is defined as the input layer, the hidden layer consists of structures containing a large 
number of nonlinear RBF activation functions and the third layer is defined as the output layer. The 
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preliminary structure that separates the RBF neural network from traditional multilayer neural networks 
is the structure of the activation function and Gaussian transfer function is used as an activation function 
in RBFN structure [23]. The illustration of Gaussian transfer function is given in Figure 4. The value of 
radius (𝜎𝜎) is determines the behavior of the model to be created on RBFN. The larger value of selection 
on sigma causes underfitting, while the low sigma value leads to overfitting on the stage of function 
approximation or classification. 

 
Figure 4 Gaussian Activation Function 

The structure of RBFN is given in Figure 5. 

 
Figure 5 Generic illustration of RBFN structure 

The output of activation function 𝜙𝜙𝑖𝑖 is given in Equation 3 and x is equal to input value, 𝑐𝑐𝑖𝑖 is ith center, 
𝜎𝜎𝑗𝑗 is spread of jth transfer function, and ‖. ‖ is Euclidean norm. 

𝜙𝜙𝑖𝑖(‖𝑥𝑥 − 𝑐𝑐𝑖𝑖‖) = exp �− ‖𝑥𝑥−𝑐𝑐𝑖𝑖‖2

2𝜎𝜎𝑗𝑗2
�                                               (3) 

The output (𝑦𝑦𝑘𝑘)  of the node m at the output layer can be determined as Equation 4. 

𝑦𝑦𝑘𝑘 = ∑ 𝑤𝑤𝑗𝑗𝑘𝑘𝜙𝜙𝑗𝑗(𝑥𝑥)ℎ
𝑗𝑗=1                                                        (4) 

RBFN is a popular alternative to MLP structure due to rapid training process and a simple structure and 
it has the capability of universal approximation. 
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5. Image Classification and Curse of Dimensionality 

In this study, the optimal numbers of the feature selection process were realized with an image 
classification problem. In this problem, gender classification was performed with principal component 
analysis (PCA) and Radial Basis Function (RBFN) [24,25]. The proposed technique was tested using 
Aberdeen facial images from Psychological Image Collection at Stirling (PICS image database) [26]. In 
this dataset, there were 130 input images for each gender and 70 of them were selected for training image 
while the rest of the images were used for the testing process. The detection of classifier performance 
was obtained as a result of the cross-validation of the dataset. The flowchart of the classification process 
is shown in Figure 6. 

 
Figure 6 Gender detection from the images 

The error percentage of gender classification according to the number of features dimension is shown in 
Figure 7. As can be seen from the figure, the increase of the selected feature number is meaningless after 
the first four features after which this kind of selection only causes a decreasing performance in the 
algorithm. 

 
Figure 7 Percentage of error 

The computation time of the algorithm versus the selected feature size is shown in Figure 8. As 
expected, the total computation time of the classifier increased with feature size. 
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Figure 8 Computation time 

The classifier performance of the gender classification process was performed according to Equation 1. 
As a result of this computation, a specific curve very similar to the curse of dimensionality curve was 
obtained as shown in Figure 9.  

 
Figure 9 Classifier performance 

The selection of the first two components is necessary to achieve optimal classification performance for 
this gender classification process. Additionally, this curve is also very similar to the curve of the 
Dunning-Kruger effect. In the image classification process, using the RBFN structure, it was provided 
to simulate the classification skills of people on computer systems [27].  The results of studies in the 
field of cognitive science are supportive of this similarity. Hong et al conducted analyzes on students to 
examine the relationships between cognitive parameters and self-confidence in the area of education 
[28].  In the study in which 6 different hypotheses were analyzed and the partial least squares (PLS) 
method was used to analyze the research hypotheses. The hypothesis which is related to our research 
paper is 6th hypothesis and the hypothesis question is analyses the relationship between self-confidence 
enhancements (SCE) relevant to learning progress (LP) is examined in the 6th hypothesis.  Path graphic 
showing the relations obtained as a result of the analysis is given in Figure 10.  

 
Figure 10 Relationship between SCE and LP 
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As a result of the analysis, there is a positive correlation between SCE to the learning process and this 
result supports the relationship between the self-confidence and performance of data access as we 
suggest in this article. 

6. Results 

In this study, the source of confidence in human behaviour was explained according to the curse of 
dimensionality. Image gender classification and a number of component selections were performed to 
obtain classifier performance. The obtained curve was found to be very similar to the curse of 
dimensionality. This study explained the reason for confidence being not only inadequate amounts of 
information about a specific subject but also the processing time information on the brain. This study 
provides a new perspective to the Dunning-Kruger effect in psychology and also uses neuroscience to 
explain the source of confidence. In this study, the storage area was defined as the human brain. This 
enhancement is the increase in total area and time it takes to reach specific information on the brain like 
a storage area on computer system. This means there must be a way to the optimal representation of data 
on the brain to increase confidence. The phenomena about machine learning and psychology are not as 
far apart as it is thought. In fact, they are highly correlated with each other and can be used to describe 
the origin of human behavior. Human memory structure and types are explained. The results of the 
studies supporting the proposed relationship were analyzed within the scope of the article. As a result 
of this study, processing speed and the total time it takes to reach correct information are highly 
correlated with confidence in human behavior and this result was explained in this multidisciplinary 
study utilizing information theory, machine learning and neuroscience.  
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