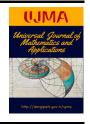


Universal Journal of Mathematics and Applications



Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: https://doi.org/10.32323/ujma.799576

On Submanifolds of N(k)-Quasi Einstein Manifolds with a Type of Semi-Symmetric Metric Connection

İnan Ünal¹

¹Department of Computer Engineering, Faculty of Engineering, Munzur University, Tunceli, Turkey

Article Info

Abstract

Keywords: N(k)-quasi Einstein manifolds, Totally geodesic, Totally umbili-

cal, Para-Kenmotsu

2010 AMS: 53C15, 53C25, 53D10 Received: 24 September 2020 Accepted: 2 November 2020 Available online: 23 December 2020 In this study, we consider the N(k)-quasi Einstein manifolds with respect to a type of semi-symmetric metric connection. We suppose that the generator of N(k) –quasi-Einstein manifolds is parallel with respect to semi-symmetric metric connection and we classify such manifolds. In addition, we consider the submanifolds of a N(k)-quasi Einstein manifold and we obtain some conditions on the totally geodesic and the totally umbilic submanifolds. Finally, we consider a para-Kenmotsu space form as an example of N(k)—quasi-Einstein manifolds.

1. Introduction

An Einstein manifold is a Riemannian manifold (M,g) satisfying Einstein fields equation. We determine such manifold by $Ric = \lambda g$, for the Ricci curvature Ric of M non-zero constant λ . In differential geometry, there are many kind of manifolds which satisfy this relation. Einstein manifolds are widely studied by researchers from mathematics and physics. A well known generalization of Einstein manifolds is the notion of quasi-Einstein manifolds defined by Chaki in [5]. Similar to Einstein manifolds, quasi-Einstein manifolds are also occur in the solutions of Einstein field equations. In this manner, quasi-Einstein manifolds have some applications in the general relativity. An example is Robertson-Walker space times [8]. A quasi-Einstein manifold is a Riemannian manifold (M,g) which has the following relation on the Ricci tensor of M;

$$Ric(\Omega_1, \Omega_2) = ag(\Omega_1, \Omega_2) + b\eta(\Omega_1)\eta(\Omega_2) \tag{1.1}$$

for some smooth functions a and b, arbitrary vector fields $\Omega_1, \Omega_2 \in \Gamma(TM)$, where η is a non-zero 1-form on M such that $g(\Omega_1, \xi) = 0$ $\eta(\Omega_1), \ \eta(\xi) = 1$ for a vector field $\xi \in \Gamma(TM)$. We call η by associated 1- form and ξ by the generator of the manifold. If a (2m+1)dimensional Riemannian manifold M has an almost contact metric structure (ϕ, ξ, η, g) and Ricci tensor satisfies (1.1) then M is called by an η -Einstein manifold [1]. So, an η -Einstein manifold is an example of quasi-Einstein manifolds. Also, a generalized Sasakian space form is a quasi-Einstein manifold [6].

k-nullity distribution of a quasi Einstein manifold is defined as

$$N(k): p \longrightarrow N_p(k) = \left[\Omega_3 \in \Gamma(T_pM): Rim(\Omega_1, \Omega_2)\Omega_3 = k\left\{g(\Omega_2, \Omega_3)\Omega_1 - g(\Omega_1, \Omega_3)\Omega_2\right\}\right], \tag{1.2}$$

for any Ω_1 , $\Omega_2 \in \Gamma(T_pM)$ and $k \in \mathbb{R}$, where Rim is the Riemannian curvature tensor of M. If the generator vector field ξ belongs to k-nullity distribution then M is called N(k)-quasi Einstein manifold $(NK(QE)_m)$ [5]. A quasi Einstein manifold is an $NK(QE)_m$ manifold if it is conformally flat [15]. In 2004 De and Ghosh [7] prove the existence of $NK(QE)_m$ manifolds and presented some results. In 2008 Özgür [3] examined $NK(QE)_m$ manifolds under some certain curvature conditions. Yıldız et al. [4] worked on $NK(QE)_m$ manifolds with some semi-symmetry conditions and gave examples. The Riemannian geometry of N(k) – quasi-Einstein manifolds have been studied by many researchers in [3, 6, 10, 12, 16].

In this work, we consider a $NK(QE)_m$ manifold admitting a type of semi-symmetric metric connection (SSMC) and we obtain some results on the submanifolds of such manifolds. Also, we present a classification of $NK(QE)_m$ manifold admitting SSMC. We proved some theorems on the totally geodesic and totally umbilical submanifolds. Finally, we consider a para-Kenmotsu space form as an example.

2. N(k)-quasi Einstein manifolds with a type of semi-symmetric metric connection

In the Riemannian geometry, we know that the Levi-Civita connection have no torsion and it is a metric connection. Also, there are many type of connections which has torsion and not symmetric. One of them is a semi-symmetric metric connection (SSMC). In the [17] Yano defined a type of SSMC. Murathan and Özgür [3] studied Riemannian manifolds with this connection under some semi-symmetry conditions. The authors consider the parallel unit vector field with respect to the Levi-Civita connection. In this section, we consider a $NK(QE)_m$ manifold with the parallel vector field ξ with respect to SSMC. We present some results related to SSMC.

Let M be an m-dimensional $NK(QE)_m$ manifold and define a map on M by

$$\widetilde{\nabla}_{\Omega_1} \Omega_2 = \widetilde{\nabla}_{\Omega_1} \Omega_2 + \eta(\Omega_2) \Omega_1 - g(\Omega_1, \Omega_2) \xi \tag{2.1}$$

for all $\Omega_1, \Omega_2 \in \Gamma(TM)$, where $\widetilde{\nabla}$ is the Levi-Civita connection (LCC) on M. The map $\overline{\widetilde{\nabla}}$ on M defines a semi-symmetric metric connection [17]. The Riemannian curvature of M with respect to $\overline{\widetilde{\nabla}}$ was obtained in [17] as;

$$\widetilde{\widetilde{Rim}}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) = \widetilde{Rim}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) - \omega(\Omega_2, \Omega_3)g(\Omega_1, \Omega_4) + \omega(\Omega_1, \Omega_3)g(\Omega_2, \Omega_4) \\
- g(\Omega_2, \Omega_3)\omega(\Omega_1, \Omega_4) + g(\Omega_1, \Omega_3)\omega(\Omega_2, \Omega_4)$$
(2.2)

for all $\Omega_1, \Omega_2, \Omega_3, \Omega_4 \in \Gamma(TM)$, where ω is defined as

$$\omega(\Omega_1,\Omega_2) = (\widetilde{\nabla}_{\Omega_1}\eta)\Omega_2 - \eta(\Omega_1)\eta(\Omega_2) + \frac{1}{2}g(\Omega_1,\Omega_2).$$

From (2.1) we obtain

$$\overline{\widetilde{\nabla}}_{\Omega_1} \xi = \widetilde{\nabla}_{\Omega_1} \xi + \Omega_1 - \eta(\Omega_1) \xi.$$

Suppose that $\overline{\widetilde{\nabla}}_{\Omega_1} \xi = 0$. Then, we recall ξ by parallel vector field with respect to SSMC. Thus, we get

$$\widetilde{\nabla}_{\Omega_1} \xi = -\Omega_1 + \eta(\Omega_1) \xi. \tag{2.3}$$

On the other hand, we have

$$(\widetilde{
abla}_{\Omega_1} oldsymbol{\eta})\Omega_2 = \widetilde{
abla}_{\Omega_1} oldsymbol{\eta}(\Omega_2) - oldsymbol{\eta}(\widetilde{
abla}_{\Omega_1} \Omega_2).$$

Since, $\widetilde{\nabla}$ is a metric connection i.e $(\widetilde{\nabla}_{\Omega_1} g)(\Omega_2, \Omega_3) = g(\widetilde{\nabla}_{\Omega_1} \Omega_2, \Omega_3) + g(\Omega_3, \widetilde{\nabla}_{\Omega_1} \Omega_2)$, from (2.3) we get

$$(\tilde{\nabla}_{\Omega_1} \eta)\Omega_2 = -g(\Omega_1, \Omega_2) + \eta(\Omega_1)\eta(\Omega_2).$$

Thus, we obtain $\omega(\Omega_1, \Omega_2) = -\frac{1}{2}g(\Omega_1, \Omega_2)$ and so from (2.2), we get

$$\overline{\widetilde{Rim}}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) = \widetilde{Rim}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) + g(\Omega_2, \Omega_3)g(\Omega_1, \Omega_4) - g(\Omega_1, \Omega_3)g(\Omega_2, \Omega_4). \tag{2.4}$$

In [2] it was proved that in a $NK(QE)_m$ manifold $k = \frac{a+b}{m-1}$. Thus, from (1.2), we obtain

$$\overline{\widetilde{R}}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) = (\frac{a+b}{m-1} + 1)[g(\Omega_2, \Omega_3)g(\Omega_1, \Omega_4) - g(\Omega_1, \Omega_3)g(\Omega_2, \Omega_4)]$$
 (2.5)

Finally, we state that

Theorem 2.1. Let M be a $NK(QE)_m$ manifold with respect to a SSMC $\overline{\widetilde{\nabla}}$ and ξ be a parallel vector field with respect to $\overline{\widetilde{\nabla}}$. We have following classifications;

- If a+b=1-m then M is locally isometric to m-dimensional Euclidean space \mathbb{E}^m ,
- If a+b>1-m then M is locally isometric to m-dimensional sphere $S^m(\frac{a+b}{m-1}+1)$,
- If a+b < 1-m then M is locally isometric to m-dimensional hyperbolic space $H^n(\frac{a+b}{m-1}+1)$.

Let take an orthonormal basis of M as $\{E_1, E_2, ..., E_{m-1}, E_m = \xi\}$. Then with taking sum over $1 \le i \le m$ in (2.4) we obtain

$$\sum_{i=1}^{m} \overline{\widetilde{Rim}}(\Omega_1, E_i, E_i, \Omega_4) = \sum_{i=1}^{m} \{\widetilde{Rim}(\Omega_1, E_i, E_i, \Omega_4) + g(E_i, E_i)g(\Omega_1, \Omega_4) - g(\Omega_1, E_i)g(E_i, \Omega_4)\}$$

and so, we get

$$\widetilde{Ric}(\Omega_1, \Omega_4) = \widetilde{Ric}(\Omega_1, \Omega_4) + (m-1)g(\Omega_1, \Omega_4)$$

for all $\Omega_1, \Omega_2 \in \Gamma(TM)$. Then from (1.1), we obtain

$$\overline{\widetilde{Ric}}(\Omega_1, \Omega_4) = (a + (m-1))g(\Omega_1, \Omega_4) + bm\eta(\Omega_1)\eta(\Omega_2)$$

Finally, we conclude that;

Theorem 2.2. Let M be an $NK(QE)_m$ manifold with respect to a LCC $\widetilde{\nabla}$ and ξ be a parallel vector field with respect to SSMC $\overline{\widetilde{\nabla}}$. Then M is an $NK(QE)_m$ manifold with respect to $\overline{\widetilde{\nabla}}$.

3. Submanifolds of N(k)-quasi Einstein manifolds with a type of semi-symmetric metric connection

Let M be an m-dimensional $NK(QE)_m$ manifold with respect to SSMC $\widetilde{\nabla}$ and N be an n-dimensional submanifold of M. Suppose that the generator vector field ξ tangent to N. Thus, we have two subbundles of TM as TN and TN^{\perp} such that $TM = TN \oplus TN^{\perp}$. The subbundles TN and TN^{\perp} are called tangent bundle and normal bundle of N, respectively. Let recall some classical equations from the submanifold theory. For details we refer to reader [1].

The Gauss equation is given by

$$\widetilde{\nabla}_{\Omega_1}\Omega_2 = \nabla_{\Omega_1}\Omega_2 + \sigma(\Omega_1,\Omega_2)$$

for all $\Omega_1, \Omega_2 \in \Gamma(TN)$, where $\sigma(\Omega_1, \Omega_2)$ denote the second fundamental form, and $\widetilde{\nabla}, \nabla$ are the Levi-Civita connections on M and N, respectively.

The Weingarten equation is

$$\widetilde{\nabla}_{\Omega_1} W = -A_W \Omega_1 + \nabla_{\Omega_1}^{\perp} W$$

for all $\Omega_1 \in \Gamma(TN)$ and $W \in \Gamma(TN^{\perp})$, where A_W is the shape operator related to W, ∇^{\perp} is the induced normal connection on the normal bundle TN^{\perp} . Consider the definition of SSMC $\overline{\widetilde{\nabla}}$ and using the Gauss equation, we get

$$\overline{\widetilde{\nabla}}_{\Omega_1} \Omega_2 = \nabla_{\Omega_1} \Omega_2 + \eta(\Omega_2) \Omega_1 - g(\Omega_1, \Omega_2) \xi + \sigma(\Omega_1, \Omega_2). \tag{3.1}$$

Suppose that ξ is parallel with respect to $\overline{\widetilde{\nabla}}$, then we obtain

$$\nabla_{\Omega_1} \xi = -\Omega_1 + \eta(\Omega_1) \xi - \sigma(\Omega_1, \xi).$$

Hence, we provide the following lemma.

Lemma 3.1. Let M be an $NK(QE)_m$ manifold with respect to SSMC $\widetilde{\nabla}$, N be a submanifold of M, and ξ be a parallel vector field with respect to SSMC $\widetilde{\overline{\nabla}}$. Then, we get

$$\nabla_{\Omega_1} \xi = -\Omega_1 + \eta(\Omega_1) \xi$$
, $\sigma(\Omega_1, \xi) = 0$

for all $\Omega_1 \in \Gamma(TN)$, where $\xi \in \Gamma(TN)$.

Also, we know that

$$(\widetilde{\nabla}_{\Omega_1}\sigma)(\Omega_2,\Omega_3) = \nabla^{\perp}_{\Omega_1}(\sigma(\Omega_1,\Omega_2)) - \sigma(\nabla_{\Omega_1}\Omega_2,\Omega_3) - \sigma(\Omega_2,\nabla_{\Omega_1}\Omega_3) \tag{3.2}$$

for all $\Omega_1, \Omega_2, \Omega_3 \in \Gamma(TN)$ [1].

Definition 3.2. Let M be an $NK(QE)_m$ manifold and N be submanifold of M. If the covariant derivation of the second fundamental form vanishes, then N is called parallel submanifold [1].

Theorem 3.3. Let M be an $NK(QE)_m$ manifold with respect to SSMC $\widetilde{\overline{\nabla}}$, N be a submanifold of M and ξ be a parallel vector field with respect to SSMC $\widetilde{\overline{\nabla}}$. If N is parallel submanifold with respect to LCC $\widetilde{\nabla}$ then it is not parallel submanifold with respect to SSMC $\widetilde{\overline{\nabla}}$.

Proof. From the definition of SSMC $\overline{\widetilde{\nabla}}$, we have

$$\begin{split} (\overline{\widetilde{\nabla}}_{\Omega_1}\sigma)(\Omega_2,\Omega_3) &= \widetilde{\nabla}_{\Omega_1}\sigma(\Omega_1,\Omega_2) - \sigma(\widetilde{\nabla}_{\Omega_1}\Omega_2,\Omega_3) - \eta(\Omega_2)\sigma(\Omega_1,\Omega_3) - g(\Omega_1,\Omega_2)\sigma(\xi,Z) \\ &- \sigma(\Omega_2,\widetilde{\nabla}_{\Omega_1}\Omega_3) - \eta(\Omega_3)\sigma(\Omega_1,\Omega_2) - g(\Omega_1,\Omega_3)\sigma(\Omega_2,\xi). \end{split}$$

Since ξ is parallel with respect to SSMC $\overline{\widetilde{\nabla}}$, by using Lemma 3.1 we obtain

$$(\overline{\widetilde{\nabla}}_{\Omega_1}\sigma)(\Omega_2,\Omega_3) = \nabla^{\perp}_{\Omega_1}(\sigma(\Omega_1,\Omega_2)) - \sigma(\nabla_{\Omega_1}\Omega_2,\Omega_3) - \sigma(\Omega_2,\nabla_{\Omega_1}\Omega_3) - \eta(\Omega_2)\sigma(\Omega_1,\Omega_3) - \eta(\Omega_3)\sigma(\Omega_1,\Omega_2).$$

Suppose that, *N* is parallel with respect to LCC $\widetilde{\nabla}$. Then, from (3.2) we have

$$(\overline{\widetilde{\nabla}}_{\Omega_1}\sigma)(\Omega_2,\Omega_3) = -\eta(\Omega_2)\sigma(\Omega_1,\Omega_3) - \eta(\Omega_3)\sigma(\Omega_1,\Omega_2).$$

Thus *N* is not parallel with respect to SSMC $\overline{\widetilde{\nabla}}$.

We also state following result.

Corollary 3.4. Let M be an $NK(QE)_m$ manifold with respect to $SSMC\ \widetilde{\nabla}$, N be a submanifold of M and ξ be a parallel vector field with respect to $SSMC\ \widetilde{\overline{\nabla}}$. If N is parallel with respect to $SSMC\ \widetilde{\overline{\nabla}}$ then it is not parallel with respect to $LCC\ \widetilde{\nabla}$.

The Codazzi equation for *N* is given by

$$\widetilde{Rim}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) = Rim(\Omega_1, \Omega_2, \Omega_3, \Omega_4) + g(\sigma(\Omega_1, \Omega_3), \sigma(\Omega_2, \Omega_4)) - g(\sigma(\Omega_2, \Omega_3), \sigma(\Omega_1, \Omega_4))$$
(3.3)

for all $\Omega_1, \Omega_2, \Omega_3, \Omega_4 \in \Gamma(TN)$, where \widetilde{Rim} is the Riemannian curvature tensor of M and Rim is the Riemannian curvature tensor of N [1]. Let M be an $NK(QE)_m$ manifold with respect to SSMC $\overline{\widetilde{\nabla}}$, ξ be a parallel vector field with respect to SSMC $\overline{\widetilde{\nabla}}$ and N be a submanifold of M. From (2.4) and (3.2), we get

$$\begin{split} \widetilde{\mathit{Rim}}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) &= \mathit{Rim}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) + g(\sigma(\Omega_1, \Omega_3)\sigma(\Omega_2, \Omega_4)) - g(\sigma(\Omega_2, \Omega_3)\sigma(\Omega_1, \Omega_4) \\ &+ g(\Omega_2, \Omega_3)g(\Omega_1, \Omega_4) - g(\Omega_1, \Omega_3)g(\Omega_2, \Omega_4). \end{split}$$

Thus, by using (2.5) we obtain

$$\mathit{Rim}(\Omega_1,\Omega_2,\Omega_3,\Omega_4) = \frac{a+b}{m-1}[g(\Omega_2,\Omega_3)g(\Omega_1,\Omega_4) + g(\Omega_1,\Omega_3)g(\Omega_2,\Omega_4)] - g(\sigma(\Omega_1,\Omega_3),\sigma(\Omega_2,\Omega_4)) + g(\sigma(\Omega_2,\Omega_3),\sigma(\Omega_1,\Omega_4)) + g(\sigma(\Omega_1,\Omega_3)g(\Omega_2,\Omega_4)) + g(\sigma(\Omega_1,\Omega_2,\Omega_4)g(\Omega_2,\Omega_4)) + g(\sigma(\Omega_1,\Omega_2,\Omega_4)g(\Omega_2,\Omega_4) + g(\sigma(\Omega_1,\Omega_2,\Omega_4)g(\Omega_2,\Omega_4)) + g(\sigma(\Omega_1,\Omega_2,\Omega_4)g(\Omega_2,\Omega_4)g(\Omega_2,\Omega_4) + g(\sigma(\Omega_1,\Omega_2,\Omega_4)g(\Omega_2,\Omega_4)g(\Omega_2,\Omega_4) + g(\sigma(\Omega_1,\Omega_2,\Omega_4)g(\Omega_2,\Omega_4)g(\Omega_2,\Omega_4)g(\Omega_2,\Omega_4) + g(\sigma(\Omega_1,\Omega_2,\Omega_4)g(\Omega_2,\Omega_4)g(\Omega_2,\Omega_4)g(\Omega_2,\Omega_4)g(\Omega_4,\Omega_4)g$$

Finally, we state the following theorem.

Theorem 3.5. Let M be an $NK(QE)_m$ manifold with respect to $SSMC(\widetilde{\nabla}, N)$ be a submanifold of M and ξ be a parallel vector field with respect to $SSMC(\widetilde{\nabla}, N)$ is totally geodesic, then N is an $NK(QE)_m$ manifold with $k = \frac{a+b}{m-1}$.

On the other hand if N is totally umbilical, i.e. $\sigma(\Omega_1, \Omega_2) = Hg(\Omega_1, \Omega_2)$, then we get

$$Rim(\Omega_1, \Omega_2, \Omega_3, \Omega_4) = (\frac{a+b}{m-1} + g(H, H))[g(\Omega_2, \Omega_3)g(\Omega_1, \Omega_4) + g(\Omega_1, \Omega_3)g(\Omega_2, \Omega_4)].$$

where H is the mean curvature of N. Therefore we can state following theorem.

Theorem 3.6. Let M be an $NK(QE)_m$ manifold with respect to $SSMC\ \overline{\widetilde{\nabla}}$, N be a submanifold of M and ξ be a parallel vector field with respect to $SSMC\ \overline{\widetilde{\nabla}}$. If N is totally umbilical, then N is a generalized real space form.

Example 3.7. Let M be a (2m+1)-dimensional smooth manifold. (ϕ, ξ, η) is called an almost para-contact structure on M such that

$$\phi^2 \Omega = \Omega - \eta(\Omega)\xi, \quad \phi(\xi) = 0, \quad \eta \circ \phi = 0, \quad \eta(\xi) = 1 \tag{3.4}$$

where ϕ is a (1,1) tensor field, ξ is a vector field, η is a 1- form, and Ω is an arbitrary vector field on M [18]. M is called a para-Kenmotsu (PK) manifold if we have

$$\left(\widetilde{\nabla}_{\Omega_1}\phi\right)\Omega_2 = -g(\phi\Omega_1,\Omega_2)\xi + \eta(\Omega_2)\phi\Omega_1 \tag{3.5}$$

for all $\Omega_1, \Omega_2 \in \Gamma(TM)$ [14]. Thus on M, we have

$$\widetilde{\nabla}_{\Omega_1} \xi = -\phi^2 \Omega_1 \tag{3.6}$$

for all $\Omega_1 \in \Gamma(TM)$.

Let $\overline{\widetilde{\nabla}}$ be a SSMC defined in (2.1) on M. Thus, we get $\overline{\widetilde{\nabla}}_{\Omega_1} \xi = 0$, i.e ξ is parallel with respect to SSMC $\overline{\widetilde{\nabla}}$.

The ϕ -sectional curvature of PK-manifold is defined as the sectional curvature of plane section spanned by Ω_1 and $\phi\Omega_1$, for unit vector field Ω_1 . If M has constant ϕ -sectional curvature c then we have

$$\begin{split} \widetilde{Rim}(\Omega_{1},\Omega_{2},\Omega_{3},\Omega_{4}) &= \left(\frac{c-3}{4}\right) [g(\Omega_{2},\Omega_{3})g(\Omega_{1},\Omega_{4}) - g(\Omega_{1},\Omega_{3})g(\Omega_{2},\Omega_{4})], \\ &+ \left(\frac{c+1}{4}\right) [g(\Omega_{1},\phi\Omega_{3})g(\phi\Omega_{2},\Omega_{4}) - g(\Omega_{1},\phi\Omega_{3})g(\phi\Omega_{2},\Omega_{4}) + 2g(\Omega_{1},\phi\Omega_{2})g(\phi\Omega_{3},\Omega_{4}), \\ &+ \eta(\Omega_{1})\eta(\Omega_{3})g(\Omega_{2},\Omega_{4}) - \eta(\Omega_{2})\eta(\Omega_{3})g(\Omega_{1},\Omega_{4}) + g(\Omega_{1},\Omega_{3})\eta(\Omega_{2})\eta(\Omega_{4}) - g(\Omega_{2},\Omega_{3})\eta(\Omega_{1})\eta(\Omega_{4})]. \end{split}$$

A PK-manifold M with above curvature relation is called a PK-space form. For details see [13]. The Ricci curvature of a PK-space forms is given by

$$\widetilde{Ric}(\Omega_1,\Omega_2) = (\frac{(m+1)(c+1)}{4} - (m-1))g(\Omega_1,\Omega_2) - \frac{(m+1)(c+1)}{4}\eta(\Omega_1)\eta(\Omega_2). \tag{3.8}$$

This shows M is a quasi-Einstein manifold with $a = \frac{(m+1)(c+1)}{4} - (m-1)$, $b = \frac{(m+1)(c+1)}{4}$. On a PK-manifold we have

$$(\tilde{\nabla}_{\Omega_1} \eta) \Omega_2 = g(\Omega_1, \Omega_2) - \eta(\Omega_1) \eta(\Omega_2), \tag{3.9}$$

thus we obtain

$$\omega(\Omega_1, \Omega_2) = \frac{3}{2}g(\Omega_1, \Omega_2) - 2\eta(\Omega_1)\eta(\Omega_2). \tag{3.10}$$

By using (2.2), the curvature of a PK-manifold admitting SSMC given in (2.1) is

$$\begin{split} \widetilde{\mathit{Rim}}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) &= \widetilde{\mathit{Rim}}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) - 3(g(\Omega_2, \Omega_3)g(\Omega_1, \Omega_4) - g(\Omega_1, \Omega_3)g(\Omega_2, \Omega_4), \\ &+ \eta(\Omega_1) \eta(\Omega_3) g(\Omega_2, \Omega_4) - \eta(\Omega_2) \eta(\Omega_3) g(\Omega_1, \Omega_4) + \eta(\Omega_2) \eta(\Omega_4) g(\Omega_1, \Omega_3) - \eta(\Omega_1) \eta(\Omega_4) g(\Omega_2, \Omega_3)). \end{split}$$

Also, from (3.7), on a PK-space form we get

$$\begin{split} \overline{\widetilde{Rim}}(\Omega_{1},\Omega_{2},\Omega_{3},\Omega_{4}) &= \left(\frac{c-15}{4}\right) \left(g(\Omega_{2},\Omega_{3})g(\Omega_{1},\Omega_{4}) - g(\Omega_{1},\Omega_{3})g(\Omega_{2},\Omega_{4})\right. \\ &\quad + \left(\frac{c-11}{4}\right) \eta(\Omega_{1})\eta(\Omega_{3})g(\Omega_{2},\Omega_{4}) - \eta(\Omega_{2})\eta(\Omega_{3})g(\Omega_{1},\Omega_{4}) + \left(\eta(\Omega_{2})\eta(\Omega_{4})g(\Omega_{1},\Omega_{3})\right. \\ &\quad + \eta(\Omega_{1})\eta(\Omega_{4})g(\Omega_{2},\Omega_{3})) \\ &\quad + \left(\frac{c+1}{4}\right) \left[g(\Omega_{1},\phi\Omega_{3})g(\phi\Omega_{2},\Omega_{4}) - g(\Omega_{1},\phi\Omega_{3})g(\phi\Omega_{2},\Omega_{4}) + 2g(\Omega_{1},\phi\Omega_{2})g(\phi\Omega_{3},\Omega_{4})\right]. \end{split}$$

A generalized para-Sasakian space form (GPSSF) is an almost para-contact metric manifold (M, ϕ, ξ, η, g) with the following curvature relation:

$$\begin{split} \widetilde{\mathit{Rim}}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) &= F_1[g(\Omega_2, \Omega_3)g(\Omega_1, \Omega_4) - g(\Omega_1, \Omega_3)g(\Omega_2, \Omega_4)] \\ &+ F_2(-g(\Omega_1, \phi\Omega_3)g(\phi\Omega_2, \Omega_4) + g(\Omega_1, \phi\Omega_3)g(\phi\Omega_2, \Omega_4) - 2g(\Omega_1, \phi\Omega_2)g(\phi\Omega_3, \Omega_4)) \\ &\times F_3(\eta(\Omega_1)\eta(\Omega_3)g(\Omega_2, \Omega_4) - \eta(\Omega_2)\eta(\Omega_3)g(\Omega_1, \Omega_4) + g(\Omega_1, \Omega_3)\eta(\Omega_2)\eta(\Omega_4) - g(\Omega_2, \Omega_3)\eta(\Omega_1)\eta(\Omega_4)). \end{split}$$

for all $\Omega_1, \Omega_2, \Omega_3, \Omega_4$ vector fields.

Corollary 3.8. A PK-space form with respect to SSMC $\overline{\widetilde{\nabla}}$ is a GPSSF with $F_1 = \frac{c-15}{4}$, $F_2 = -\frac{c-11}{4}$ and $F_3 = \frac{c+1}{4}$.

Let take an orthonormal basis of M by $E_1, E_2, ... E_n, E_{m+1} = \phi E_1, ..., E_{2m} = \phi E_m, \xi$. By choosing $\Omega_2 = \Omega_3 = E_i$ and taking sum over i such that $1 \le i \le 2m$ in (3.11) then, we obtain

$$\overline{\widetilde{Ric}}(\Omega_1,\Omega_2) = (\frac{m(c-15)-2}{2})g(\Omega_1,\Omega_2) + \frac{c-11}{4}(1-2m)\eta(\Omega_1)\eta(\Omega_4).$$

Thus, M is a quasi-Einstein manifold. So, we state;

Corollary 3.9. A PK-space form with respect to SSMC $\overline{\widetilde{\nabla}}$ is a quasi-Einstein manifold.

This is compatible with Theorem 2.2.

Let N be a submanifold of PK-space form M with respect to $\overline{\widetilde{\nabla}}$. Then, we have

$$\begin{aligned} \mathit{Rim}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) &= \overline{\widetilde{\mathit{Rim}}}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) - g(\sigma(\Omega_1, \Omega_3)\sigma(\Omega_2, \Omega_4)) + g(\sigma(\Omega_2, \Omega_3)\sigma(\Omega_1, \Omega_4) \\ &- g(\Omega_2, \Omega_3)g(\Omega_1, \Omega_4) + g(\Omega_1, \Omega_3)g(\Omega_2, \Omega_4) \end{aligned}$$

and from (3.11) we get

$$\begin{split} \mathit{Rim}(\Omega_1, \Omega_2, \Omega_3, \Omega_4) &= \left(\frac{c-19}{4}\right) (g(\Omega_2, \Omega_3) g(\Omega_1, \Omega_4) - g(\Omega_1, \Omega_3) g(\Omega_2, \Omega_4) \\ &+ \left(\frac{c-11}{4}\right) (\eta(\Omega_1) \eta(\Omega_3) g(\Omega_2, \Omega_4) - \eta(\Omega_2) \eta(\Omega_3) g(\Omega_1, \Omega_4) \\ &+ \eta(\Omega_2) \eta(\Omega_4) g(\Omega_1, \Omega_3) - \eta(\Omega_1) \eta(\Omega_4) g(\Omega_2, \Omega_3)) \\ &+ \left(\frac{c+1}{4}\right) (g(\Omega_1, \phi \Omega_3) g(\phi \Omega_2, \Omega_4) - g(\Omega_1, \phi \Omega_3) g(\phi \Omega_2, \Omega_4) + 2g(\Omega_1, \phi \Omega_2) g(\phi \Omega_3, \Omega_4)) \\ &- g(\sigma(\Omega_1, \Omega_3) \sigma(\Omega_2, \Omega_4)) + g(\sigma(\Omega_2, \Omega_3) \sigma(\Omega_1, \Omega_4) \end{split}$$

for all $\Omega_1, \Omega_2, \Omega_3, \Omega_4 \in \Gamma(TN)$.

Suppose that ξ is normal to N and N is an anti-invariant submanifold i.e. $\phi\Omega_1 \in \Gamma(TN^{\perp})$, for $\Omega_1 \in \Gamma(TN)$. Then, we get

Thus, we state following results.

Corollary 3.10. Let M be a PK-space form with respect to SSMC $\widetilde{\nabla}$ and N be an anti-invariant submanifold of M with ξ is normal to N. If N is totally geodesic, then N is N(k)—manifold.

Corollary 3.11. Let M be a PK-space form with respect to SSMC $\widetilde{\overline{\nabla}}$ and N be an anti-invariant submanifold of M with ξ is normal to N. If N is totally umbilical, then N is a reel space form.

Corollary 3.12. Let M be a PK-space form with respect to SSMC $\widetilde{\overline{\nabla}}$ and N be an anti-invariant submanifold of M with ξ is normal to N. If N is totally geodesic. Then N is an Einstein manifold.

Let M be a PK-space form with respect to SSMC $\widetilde{\nabla}$ and N be a submanifold of M. If ξ is tangent to submanifold N, then Lemma 3.1 is verified. Also, for the same submanifold the Theorem 3.3 is verified.

References

- [1] K. Yano, M. Kon, Structures on Manifolds, Series in Pure Mathematics, World Scientific, 3, 1984.
- [2] C. Özgür, M. M. Tripathi, On the concircular curvature tensor of an N(κ)-quasi Einstein manifold, Math. Pannon., 18(1), (2007), 95-100.
- [3] C. Özgür, $N(\kappa)$ -quasi Einstein manifolds satisfying certain conditions, Chaos Solitons Fractals, **38**(5) (2008), 1373-1377.
- [4] A. Yıldız, U.C. De, A. Çetinkaya, On some classes of $N(\kappa)$ -quasi Einstein manifolds, Proc. Natl. Acad. Sci. India A, 83(3) (2013), 239-245.
- [5] M.C. Chaki, On quasi Einstein manifolds, Publ. Math. Debr., 57 (2000), 297-306.
- [6] S.K. Chaubey, Existence of $N(\kappa)$ -quasi Einstein manifolds, Facta universitatis Nis. Ser. Math.Inform., 32(3) (2017), 369-385.
- [7] U.C. De, G.C.Ghosh, On quasi Einstein manifolds, Period. Math. Hung., 48 (2004), 223-231.
- [8] U. C. De, S. Shenawy, Generalized quasi-Einstein GRW space-times, Int. J. Geom. Methods Mod. Phys., 16(08) (2019), 1950124.
- [9] G.C. Ghosh, U.C. De, T.Q. Binh, Certain curvature restrictions on a quasi Einstein manifolds, Publ. Math. Debr. 69 (2006), 209-217.
- [10] A.T. Kotamkar, A. Tarini, T. Brajendra, Certain curvature conditions catisfied by N(κ)-quasi Einstein manifolds, Int. J. Innov. Res. Adv. Eng. G., 1(9) (2015), 1-9.
- [11] C. Murathan, C. Özgür, Riemannian manifolds with a semi-symmetric metric connection satisfying some semi-symmetry conditions, Proc. Est. Acad. Sci., 57(4) (2008), 210-216.
- [12] H.G. Nagaraja, K. Venu, On Ricci solitons in $N(\kappa)$ -quasi Einstein manifolds, NTMSCI, 5(3) (2017), 46-52.
- [13] G. Pitiş, Geometry of Kenmotsu Manifolds, Editura Üniversitatii Transilvania, 2007.
- [14] B.B. Sinha, K. L. Sai Prasad, A class of almost para contact metric manifolds, Bull. Cal. Math. Soc., 87 (1995), 307–312.
- [15] M.M. Tripathi, J. Kim, $On\ N(\kappa)$ quasi Einstein manifolds, Commun. Korean Math. Soc., 22 (2007), 411-417.
- [16] A. Taleshian, A. A. Hosseinzadeh, *Investigation of some conditions on N*(κ)-quasi Einstein manifolds, Bull. Malaysian Math. Sci. Soc, **34**(3) (2011), 455-464.
 [17] K. Yano, *On semi-symmetric connection*, Revue Roumaine Math. Pures Appl., **15** (1970), 1570-1586.
- [18] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36(1) (2008), 37–60.