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1. Introduction

An Einstein manifold is a Riemannian manifold (M, g) satisfying Einstein fields equation. We determine such manifold by Ric = A g, for
the Ricci curvature Ric of M non-zero constant A. In differential geometry, there are many kind of manifolds which satisfy this relation.
Einstein manifolds are widely studied by researchers from mathematics and physics. A well known generalization of Einstein manifolds is
the notion of quasi-Einstein manifolds defined by Chaki in [5]. Similar to Einstein manifolds , quasi-Einstein manifolds are also occur in the
solutions of Einstein field equations. In this manner, quasi-Einstein manifolds have some applications in the general relativity. An example is
Robertson-Walker space times [8]. A quasi-Einstein manifold is a Riemannian manifold (M, g) which has the following relation on the Ricci
tensor of M;

Ric(Q1,Q)) = ag(Q1,Q2) +bn(Q)1n(Q2) (1.1

for some smooth functions a and b, arbitrary vector fields Q;,Q, € I'(TM), where 7 is a non-zero 1—form on M such that g(Q;,&) =
Nn(Q1), n(&) =1 for a vector field & € ['(TM). We call 1) by associated 1— form and £ by the generator of the manifold. If a (2m+ 1)-
dimensional Riemannian manifold M has an almost contact metric structure (¢, &, 7, g) and Ricci tensor satisfies (1.1) then M is called by an
n—Einstein manifold [1]. So, an 11 —Einstein manifold is an example of quasi-Einstein manifolds. Also, a generalized Sasakian space form
is a quasi-Einstein manifold [6].

k-nullity distribution of a quasi Einstein manifold is defined as

N(k): p — Np(k) = [Q3 € T(T,M) : Rim(Q1,9)Q3 = k{g(Q2,93)Q1 —g(Q1,93)Q}], 1.2

for any Q, Q, € I'(T,M) and k € R, where Rim is the Riemannian curvature tensor of M. If the generator vector field & belongs to k—nullity
distribution then M is called N(k)-quasi Einstein manifold (NK(QE),,) [5]. A quasi Einstein manifold is an NK(QE),, manifold if it is
conformally flat [15]. In 2004 De and Ghosh [7] prove the existence of NK(QE),, manifolds and presented some results. In 2008 Ozgiir [3]
examined NK(QF),, manifolds under some certain curvature conditions. Yildiz et al. [4] worked on NK(QE),, manifolds with some
semi-symmetry conditions and gave examples. The Riemannian geometry of N(k)— quasi-Einstein manifolds have been studied by many
researchers in [3,6, 10, 12, 16].

In this work, we consider a NK(QE),, manifold admitting a type of semi-symmetric metric connection (SSMC) and we obtain some results
on the submanifolds of such manifolds. Also, we present a classification of NK(QE),, manifold admitting SSMC. We proved some theorems
on the totally geodesic and totally umbilical submanifolds. Finally, we consider a para-Kenmotsu space form as an example.
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2. N(k)-quasi Einstein manifolds with a type of semi-symmetric metric connection

In the Riemannian geometry, we know that the Levi-Civita connection have no torsion and it is a metric connection. Also, there are many
type of connections which has torsion and not symmetric. One of them is a semi-symmetric metric connection (SSMC) . In the [17] Yano
defined a type of SSMC. Murathan and Ozgiir [3] studied Riemannian manifolds with this connection under some semi-symmetry conditions.
The authors consider the parallel unit vector field with respect to the Levi-Civita connection. In this section, we consider a NK(QE),
manifold with the parallel vector field & with respect to SSMC. We present some results related to SSMC.

Let M be an m—dimensional NK (QE),, manifold and define a map on M by

Vo, @ = Vg, 0 +1(22)Q) — g(Q1,2)E .1

for all Q;,Q, € I'(TM), where V is the Levi-Civita connection (LCC) on M. The map V on M defines a semi-symmetric metric

connection [17]. The Riemannian curvature of M with respect to V was obtained in [17] as;

Rim(Q1,Q,Q3,Q4) = Rim(Q1,Q,Q3,Q4) — 0(Q,0Q3)g(Q1, Q) + 0(Q1,93)g(Q, Q) 22)
—8(Q2,93)0(Q1,Q4) +£(Q1,93)0(Q2,4)

for all Q1,Q,,Q3,Q4 € I'(TM), where @ is defined as
0(01,02) = (Vo, 1)~ 1(@1)1(Q2) + 32(Q1, 2).
From (2.1) we obtain
Vo,& =V, E+Q —n(Q))E.
Suppose that 5915 = 0. Then, we recall £ by parallel vector field with respect to SSMC. Thus, we get
Vo, &= -0 +1(Q)E. (2.3)
On the other hand, we have
(Va, 1) = Vo, 1(R2) —n(Va, Q).
Since, V is a metric connection i.e (%g]g)(Qz,Q3) = g(%gI Q,Q3) +g(Q3, %g] Q,), from (2.3) we get
(Va, M = —g(Q1,22) +1(Q1)n(Q).
Thus, we obtain 0(Q,;) = —%g(Ql ,Q5) and so from (2.2), we get
Rim(Q1,Q2,Q3,Q4) = Rim(Q1, 0,23, Q4) + 2(Q2, Q3)g(Q1,24) — g(Q1,23)2(Qn, ). 24

In [2] it was proved that in a NK(QE),, manifold k =

r‘:lfli . Thus, from (1.2) , we obtain

= b
R(91,95,95,00) = (52 11)[¢(02,03)8(Q1,24) — ¢(21,03)8(02,24)] @5)

Finally, we state that

Theorem 2.1. Let M be a NK(QE),, manifold with respect to a SSMC é and & be a parallel vector field with respect to € We have
Jfollowing classifications;

o [fa+b=1—mthen M is locally isometric to m—dimensional Euclidean space E™,
e [fa+b>1—mthen M is locally isometric to m—dimensional sphere S’"(% +1),

o [fa+b < 1—mthen M is locally isometric to m—dimensional hyperbolic space H"(n“ib1 +1).

Let take an orthonormal basis of M as {E|,E3,...,E;;_1,Epy = &}. Then with taking sum over 1 < i < m in (2.4) we obtain

m — m —_—
Y Rim(Qi,Ei, E;,Q4) = Y {Rim(Q,E;, E;, Q4) + g(Ei, Ei)g(Q1,24) — g(Q1, E;)g(Ei, Q) }
i=1 i=1
and so, we get
Ric(Q1,94) = Ric(Q1,Q4) + (m— 1)g(Q1,94)

for all Q,Q, € I'(TM). Then from (1.1), we obtain
Ric(Q1,Q4) = (a+ (m—1))g(Q1,Q4) +bmn (Q1)1(Q2)
Finally, we conclude that;

Theorem 2.2. Let M be an NK(QE),, m@ifold with respect to a LCC V and & be a parallel vector field with respect to SSMC € Then M
is an NK(QE),, manifold with respect to V.
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3. Submanifolds of N(k)-quasi Einstein manifolds with a type of semi-symmetric metric connection

Let M be an m—dimensional NK (QE),, manifold with respect to SSMC Vand N be an n—dimensional submanifold of M. Suppose that the
generator vector field & tangent to N. Thus, we have two subbundles of TM as TN and TN~ such that TM = TN @ TN~ .The subbundles
TN and TN are called tangent bundle and normal bundle of N, respectively. Let recall some classical equations from the submanifold
theory. For details we refer to reader [1].

The Gauss equation is given by

Vo, Q= Vo @ +0(Q,Q)

for all Q;,Q, € I'(TN), where 6(21,,) denote the second fundamental form, and %, V are the Levi-Civita connections on M and N,
respectively.
The Weingarten equation is

VoW = —AyQ +V§ W

for all Q; € [(TN) and W € T(TN"), where Ay is the shape operator related to W, V! is the induced normal connection on the normal
bundle TN. Consider the definition of SSMC V and using the Gauss equation, we get

Vo, 2 = Vo, Q0 +1(Q)Q) —g(Q1, Q)& +0(Q,Q). 3.1

Suppose that & is parallel with respect to %, then we obtain

Vo, 8 =-Q1+1(Q)¢ —0o(Q,8).
Hence, we provide the following lemma.

Lemma 3.1. Let M be an NK(QE);, manifold with respect to SSMC V, N be a submanifold of M, and & be a parallel vector field with
respect to SSMC V. Then, we get

Vo & =-Q1+n(1), 0(2,8)=0
forall Q1 e T(TN), where & € T(TN).

Also, we know that
(Vo,0)(Q2,Q3) = V5, (0(21,Q)) — 6(Va,2,9Q3) — 6(2, Vo, Q3) (3.2)
for all Q1,Q,,Q3 € I'(TN) [1].

Definition 3.2. Let M be an NK(QE),, manifold and N be submanifold of M. If the covariant derivation of the second fundamental form
vanishes, then N is called parallel submanifold [1].

Theorem 3.3. Let M be an NK (QE)» manifold with respect to SSMC € N be a submanifold of M and & be a parallel vector field with
respect to SSMC V. If N is parallel submanifold with respect to LCC V then it is not parallel submanifold with respect to SSMC V.

Proof. From the definition of SSMC $, we have

(691 0)(Q2,Q3) = Vo, 06(Q1,Q) — 6(Vo, 2,Q3) — () 0(R1,Q3) —g(R1,Q)0(E,2)
—0(2,V,Q3) —N(Q3)0(Q1,Q) — g(Q1,Q23)0(Q, &).

Since & is parallel with respect to SSMC € by using Lemma 3.1 we obtain
(Vo,0)(Q2,Q3) = V5, (0(Q1,2)) — 6(Vg,22,93) — 6(Q, Vg, Q3) — 1()0(Q1,Q3) —1(Q3)0(Q, Q).
Suppose that, N is parallel with respect to LCC V. Then, from (3.2) we have
(Va, 0)(Q2,93) = —1(2)0(Q1. Q) — 1(Q3)5(Q1,2).
Thus N is not parallel with respect to SSMC é O

We also state following result.

Corollary 3.4. Let M be an NK(QE),, manifold with respect to SSMC @, N be a submanifold of M and & be a parallel vector field with
respect to SSMC V. If N is parallel with respect to SSMC V then it is not parallel with respect to LCC V.
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The Codazzi equation for N is given by
Rim(Q1,Q,Q3,Q4) = Rim(Q1,Q2,Q3,24) +8(0(Q1,03),6(Q2,)) —2(0(Q2,23),6(21,Q4)) (3.3)

for all Q,9Q,,Q3,Q4 € I'(TN), where Rim is the Riemannian curvature tensor of M and Rim is the Riemannian curvature tensor of N [1].

Let M be an NK(QE),, manifold with respect to SSMC é , & be a parallel vector field with respect to SSMC é and N be a submanifold of
M. From (2.4) and (3.2), we get

IEZT};’I(Q.l ,92793794) = Rim(Q| 792793,94) +g(G(Q] 793)6(92,94)) 7g(0'(92,93)6(91 7§24)
+2(22,93)8(Q1,Q4) — g(Q1,23)8(Q,Q4).
Thus , by using (2.5) we obtain

a+b
j[g

Rim(Ql 792793,94) = P (92,93)g(§2] ,94) +g(§21 ,93)g(92,94)] —g(O'(Ql ,93)7G(Q27Q4)) +g(G(Qz,Q3)7G(Ql ,94)}

Finally, we state the following theorem.

Theorem 3.5. Let M be an NK(QE), manifold with respect to SSMC é N be a submanifold of M and & be a parallel vector field with
respect to SSMC V. If N is totally geodesic , then N is an NK(QE),, manifold with k = %

m

On the other hand if N is totally umbilical, i.e. 6(Q,Qy) = Hg(Q1,Q;), then we get

OEL b gl H))[g(02,05)8(01,04) + 8(01,95)5(2,04)].

Rim(Q1,Q,Q3,Q4) = (

where H is the mean curvature of N. Therefore we can state following theorem.

Theorem 3.6. Let M be an NK(QE),, manifold with respect to SSMC € N be a submanifold of M and & be a parallel vector field with

respect to SSMC V. If N is totally umbilical , then N is a generalized real space form.

Example 3.7. Let M be a (2m+ 1)—dimensional smooth manifold. (¢,&,n) is called an almost para-contact structure on M such that
9’0 =0-n(Q), 9(5)=0, nog=0, n(&)=1 (34)

where ¢ is a (1,1) tensor field, & is a vector field, 1 is a 1— form, and Q is an arbitrary vector field on M [18]. M is called a para-Kenmotsu
(PK) manifold if we have

(691 ¢) Q = —g(0Q1,2:)8 +1(Q)9Q 3.5
forall Q;,Qy e T(TM) [14]. Thus on M, we have
Vo, & = —9°Q (3.6)

for all Q; € T(TM).

Let V be a SSMC defined in (2.1) on M. Thus, we get §91§ =0, i.e & is parallel with respect to SSMC §
The ¢—sectional curvature of PK-manifold is defined as the sectional curvature of plane section spanned by Q1 and ¢, for unit vector
field Q1. If M has constant ¢ —sectional curvature ¢ then we have

__ -3
le(gl 592793794) = (CT> [g(Q2aQ3)g(leg4) 7g(Q] 393)g(92794)}7 (37)

() (00,0002, 0) (021,000, 0) +26(62,022)6(90, 1)

+1(Q21)1(Q3)2(Q2,Q4) — M (Q2)N(23)2(R1,24) +8(21,23)1N ()N (Q4) — (2, 23)N (1)1 (4)].

A PK-manifold M with above curvature relation is called a PK-space form. For details see [13]. The Ricci curvature of a PK-space forms is
given by

(m+1)(c+1)

(m+1)(c+1)
4 4

Ia(ﬂl,gz):( —(m—1))g(Q,Q2) -

(m+1)(c+1)
|

n(Q1)n(Qa). (3.8)
This shows M is a quasi-Einstein manifold with a = —(m—1),b= w. On a PK-manifold we have

(Va,m)Q = g(Q1,Q) — n(Q)n(Q), (3.9

thus we obtain
3
0(Q1,Q) = Z8(L1,22) — 20 (1)1 (22). (3.10)
By using (2.2), the curvature of a PK-manifold admitting SSMC given in (2.1) is

Rim(Q1,Q2,93,Q4) = Rim(Q1, 92,03, Q) — 3(5(Q2,23)8(Q1, ) — 8(Q1,23)8(Q2,Q),
+0(21)1(Q3)8(22,Q4) — N(Q2)N(Q3)2(Q1,Q4) + 1 (2)N(Q4)2(R1,23) —N(Q1)N(R4)8(Q2,23)).
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Also, from (3.7), on a PK-space form we get

c—15

Rim(Q1, ©,03,Q4) = ( ) (6(92, 23)g(21, Q) — 51, 25)g(, Q) (3.11)

(5 ) n(0)n(@)6(02,00) - n(2)1(@2)el01.24) + (1(@2)n (@)e(2,2)
1(20)71(24)5(0,95)

(7] 6(01,092)6(002,20) — (621, 00)e(0922.02) + 26(0 002102, )L

A generalized para-Sasakian space form (GPSSF) is an almost para-contact metric manifold (M, ¢,&,1n,g) with the following curvature
relation;

Rim(Qq,Q,9Q3,Q4) = Fi [3(Q,Q3)g(Q1,Q4) — 8(Q1,93)2(Q2, Q)]
+ P (—g(Q1,093)g(Q2,Q4) + g(Q1,0Q23)8(0Q,Q4) —28(Q1,9Q2)g($Q3,24))
X F3(n(Q1)n(Q3)8(Q2,Q24) — N ()1 (23)8(Q1,24) +8(Q1,23)N(Q2)N(Q4) — 8(Q2,23)N(Q1)N(R4))-

Sfor all Q1,8,,Q3,Q4 vector fields.

Corollary 3.8. A PK-space form with respect to SSMC V is a GPSSF with F = "7415, P = —6%4“ and F3 = %.

Let take an orthonormal basis of M by E1,Ey,...Ep,Epyi 1 = 0E1,...,Exy = 0En, E. By choosing Q; = Q3 = E; and taking sum over i such
that 1 <i<2min (3.11) then, we obtain

m(c—15) =2

IEIYC(QI»QZ):( 2

c—11
)8(821, ) + —— (1 =2m)n(Q1)n (Q4).
Thus, M is a quasi-Einstein manifold. So, we state;

Corollary 3.9. A PK-space form with respect to SSMC $ is a quasi-Einstein manifold.
This is compatible with Theorem 2.2. -
Let N be a submanifold of PK-space form M with respect to V. Then, we have
Rim(Qy, R, Q3, Q) = Rim(Q1,Q,Q3,Q4) — 8(0(Q1,23)0(Q2, Q) +8(0(Q2,23) 5 (R4, Q)
—8(Q2,9Q3)8(Q1, Q) +8(Q1,Q3)8(Q2, Q)
and from (3.11) we get

c—19
4

Rim(Q1,Q,Q3,Q4) = ( ) (8(22,9Q3)8(Q1,Q4) —8(Q1,23)g(22,Q4)

(1) m@n(@e(02.00 - n(@:)n(@)e(@.0)
+1(Q2)1(Q4)8(21,23) — N (1)1 (24)8(22,23))
+ <C:1) (8(Q1,0Q3)g(9Q0,, Q) — g(Q1,9Q3)8(9Q0,,Q4) +28(Q1,022)g(903,Q4))

—8(0(Q1,923)0(Q2,Q4)) +8(0(Q2,Q3)0(Q1,Q4)

forall Q1,Q,,Q3,Q4 € F(TN).
Suppose that & is normal to N and N is an anti-invariant submanifold i.e. $Q1 € T(TN"L), for Qi € T(TN). Then, we get

—19
Rim(Q1,Q,Q3,Q4) = (-

)(8(Q2,93)8(Q1,Q4) — 8(Q1,23)8(Q2, ) +8(0(Q1,23)0(Q2,Q4)) — 8(0(Q2,Q3)0(Q1,Q4).
Thus, we state following results.

Corollary 3.10. Let M be a PK-space form with respect to SSMC V and N be an anti-invariant submanifold of M with & is normal to N. If
N is totally geodesic, then N is N(k)—manifold.

Corollary 3.11. Let M be a PK-space form with respect to SSMC v and N be an anti-invariant submanifold of M with & is normal to N. If
N is totally umbilical, then N is a reel space form.

Corollary 3.12. Let M be a PK-space form with respect to SSMC V and N be an anti-invariant submanifold of M with £ is normal to N. If
N is totally geodesic. Then N is an Einstein manifold.

Let M be a PK-space form with respect to SSMC V and N be a submanifold of M. If & is tangent to submanifold N, then Lemma 3.1 is
verified. Also, for the same submanifold the Theorem 3.3 is verified.
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